1
0
Fork 0

提交裸机版工程

This commit is contained in:
ldz 2024-09-06 17:10:09 +08:00
parent 0e839fdba3
commit b0e72aa6df
1099 changed files with 607159 additions and 0 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,125 @@
/**
******************************************************************************
* @file stm32f1xx_hal_can_ex_legacy.h
* @author MCD Application Team
* @brief Header file of CAN HAL Extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_CAN_EX_LEGACY_H
#define __STM32F1xx_HAL_CAN_EX_LEGACY_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || \
defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup CANEx CANEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief CAN filter configuration structure definition
*/
/* CAN filter banks differences over STM32F1 devices: */
/* - STM32F1 Connectivity line: 28 filter banks shared between CAN1 and CAN2 */
/* - Other STM32F10x devices: 14 filter banks */
typedef struct
{
uint32_t FilterIdHigh; /*!< Specifies the filter identification number (MSBs for a 32-bit
configuration, first one for a 16-bit configuration).
This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterIdLow; /*!< Specifies the filter identification number (LSBs for a 32-bit
configuration, second one for a 16-bit configuration).
This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterMaskIdHigh; /*!< Specifies the filter mask number or identification number,
according to the mode (MSBs for a 32-bit configuration,
first one for a 16-bit configuration).
This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterMaskIdLow; /*!< Specifies the filter mask number or identification number,
according to the mode (LSBs for a 32-bit configuration,
second one for a 16-bit configuration).
This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterFIFOAssignment; /*!< Specifies the FIFO (0 or 1) which will be assigned to the filter.
This parameter can be a value of @ref CAN_filter_FIFO */
#if defined(STM32F105xC) || defined(STM32F107xC)
uint32_t FilterNumber; /*!< Specifies the filter which will be initialized.
This parameter must be a number between Min_Data = 0 and Max_Data = 27. */
#else
uint32_t FilterNumber; /*!< Specifies the filter which will be initialized.
This parameter must be a number between Min_Data = 0 and Max_Data = 13. */
#endif /* STM32F105xC || STM32F107xC */
uint32_t FilterMode; /*!< Specifies the filter mode to be initialized.
This parameter can be a value of @ref CAN_filter_mode */
uint32_t FilterScale; /*!< Specifies the filter scale.
This parameter can be a value of @ref CAN_filter_scale */
uint32_t FilterActivation; /*!< Enable or disable the filter.
This parameter can be set to ENABLE or DISABLE. */
uint32_t BankNumber; /*!< Select the start slave bank filter
This parameter must be a number between Min_Data = 0 and Max_Data = 28. */
}CAN_FilterConfTypeDef;
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup CANEx_Private_Macros CAN Extended Private Macros
* @{
*/
#if defined(STM32F105xC) || defined(STM32F107xC)
#define IS_CAN_FILTER_NUMBER(NUMBER) ((NUMBER) <= 27U)
#else
#define IS_CAN_FILTER_NUMBER(NUMBER) ((NUMBER) <= 13U)
#endif /* STM32F105xC || STM32F107xC */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F103x6) || STM32F103xB || STM32F103xE || STM32F103xG) || STM32F105xC || STM32F107xC */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_CAN_EX_LEGACY_H */

View file

@ -0,0 +1,776 @@
/**
******************************************************************************
* @file stm32f1xx_hal_can_legacy.h
* @author MCD Application Team
* @brief Header file of CAN HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_CAN_LEGACY_H
#define __STM32F1xx_HAL_CAN_LEGACY_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || \
defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup CAN
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CAN_Exported_Types CAN Exported Types
* @{
*/
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_CAN_STATE_RESET = 0x00U, /*!< CAN not yet initialized or disabled */
HAL_CAN_STATE_READY = 0x01U, /*!< CAN initialized and ready for use */
HAL_CAN_STATE_BUSY = 0x02U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_TX = 0x12U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_RX0 = 0x22U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_RX1 = 0x32U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_TX_RX0 = 0x42U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_TX_RX1 = 0x52U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_RX0_RX1 = 0x62U, /*!< CAN process is ongoing */
HAL_CAN_STATE_BUSY_TX_RX0_RX1 = 0x72U, /*!< CAN process is ongoing */
HAL_CAN_STATE_TIMEOUT = 0x03U, /*!< CAN in Timeout state */
HAL_CAN_STATE_ERROR = 0x04U /*!< CAN error state */
}HAL_CAN_StateTypeDef;
/**
* @brief CAN init structure definition
*/
typedef struct
{
uint32_t Prescaler; /*!< Specifies the length of a time quantum.
This parameter must be a number between Min_Data = 1 and Max_Data = 1024 */
uint32_t Mode; /*!< Specifies the CAN operating mode.
This parameter can be a value of @ref CAN_operating_mode */
uint32_t SJW; /*!< Specifies the maximum number of time quanta
the CAN hardware is allowed to lengthen or
shorten a bit to perform resynchronization.
This parameter can be a value of @ref CAN_synchronisation_jump_width */
uint32_t BS1; /*!< Specifies the number of time quanta in Bit Segment 1.
This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_1 */
uint32_t BS2; /*!< Specifies the number of time quanta in Bit Segment 2.
This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_2 */
uint32_t TTCM; /*!< Enable or disable the time triggered communication mode.
This parameter can be set to ENABLE or DISABLE. */
uint32_t ABOM; /*!< Enable or disable the automatic bus-off management.
This parameter can be set to ENABLE or DISABLE */
uint32_t AWUM; /*!< Enable or disable the automatic wake-up mode.
This parameter can be set to ENABLE or DISABLE */
uint32_t NART; /*!< Enable or disable the non-automatic retransmission mode.
This parameter can be set to ENABLE or DISABLE */
uint32_t RFLM; /*!< Enable or disable the receive FIFO Locked mode.
This parameter can be set to ENABLE or DISABLE */
uint32_t TXFP; /*!< Enable or disable the transmit FIFO priority.
This parameter can be set to ENABLE or DISABLE */
}CAN_InitTypeDef;
/**
* @brief CAN Tx message structure definition
*/
typedef struct
{
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will be transmitted.
This parameter can be a value of @ref CAN_Identifier_Type */
uint32_t RTR; /*!< Specifies the type of frame for the message that will be transmitted.
This parameter can be a value of @ref CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be transmitted.
This parameter must be a number between Min_Data = 0 and Max_Data = 8 */
uint8_t Data[8]; /*!< Contains the data to be transmitted.
This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF */
}CanTxMsgTypeDef;
/**
* @brief CAN Rx message structure definition
*/
typedef struct
{
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will be received.
This parameter can be a value of @ref CAN_Identifier_Type */
uint32_t RTR; /*!< Specifies the type of frame for the received message.
This parameter can be a value of @ref CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be received.
This parameter must be a number between Min_Data = 0 and Max_Data = 8 */
uint8_t Data[8]; /*!< Contains the data to be received.
This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF */
uint32_t FMI; /*!< Specifies the index of the filter the message stored in the mailbox passes through.
This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF */
uint32_t FIFONumber; /*!< Specifies the receive FIFO number.
This parameter can be CAN_FIFO0 or CAN_FIFO1 */
}CanRxMsgTypeDef;
/**
* @brief CAN handle Structure definition
*/
typedef struct
{
CAN_TypeDef *Instance; /*!< Register base address */
CAN_InitTypeDef Init; /*!< CAN required parameters */
CanTxMsgTypeDef* pTxMsg; /*!< Pointer to transmit structure */
CanRxMsgTypeDef* pRxMsg; /*!< Pointer to reception structure for RX FIFO0 msg */
CanRxMsgTypeDef* pRx1Msg; /*!< Pointer to reception structure for RX FIFO1 msg */
__IO HAL_CAN_StateTypeDef State; /*!< CAN communication state */
HAL_LockTypeDef Lock; /*!< CAN locking object */
__IO uint32_t ErrorCode; /*!< CAN Error code */
}CAN_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CAN_Exported_Constants CAN Exported Constants
* @{
*/
/** @defgroup CAN_Error_Code CAN Error Code
* @{
*/
#define HAL_CAN_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_CAN_ERROR_EWG 0x00000001U /*!< EWG error */
#define HAL_CAN_ERROR_EPV 0x00000002U /*!< EPV error */
#define HAL_CAN_ERROR_BOF 0x00000004U /*!< BOF error */
#define HAL_CAN_ERROR_STF 0x00000008U /*!< Stuff error */
#define HAL_CAN_ERROR_FOR 0x00000010U /*!< Form error */
#define HAL_CAN_ERROR_ACK 0x00000020U /*!< Acknowledgment error */
#define HAL_CAN_ERROR_BR 0x00000040U /*!< Bit recessive */
#define HAL_CAN_ERROR_BD 0x00000080U /*!< LEC dominant */
#define HAL_CAN_ERROR_CRC 0x00000100U /*!< LEC transfer error */
#define HAL_CAN_ERROR_FOV0 0x00000200U /*!< FIFO0 overrun error */
#define HAL_CAN_ERROR_FOV1 0x00000400U /*!< FIFO1 overrun error */
#define HAL_CAN_ERROR_TXFAIL 0x00000800U /*!< Transmit failure */
/**
* @}
*/
/** @defgroup CAN_InitStatus CAN initialization Status
* @{
*/
#define CAN_INITSTATUS_FAILED 0x00000000U /*!< CAN initialization failed */
#define CAN_INITSTATUS_SUCCESS 0x00000001U /*!< CAN initialization OK */
/**
* @}
*/
/** @defgroup CAN_operating_mode CAN Operating Mode
* @{
*/
#define CAN_MODE_NORMAL 0x00000000U /*!< Normal mode */
#define CAN_MODE_LOOPBACK ((uint32_t)CAN_BTR_LBKM) /*!< Loopback mode */
#define CAN_MODE_SILENT ((uint32_t)CAN_BTR_SILM) /*!< Silent mode */
#define CAN_MODE_SILENT_LOOPBACK ((uint32_t)(CAN_BTR_LBKM | CAN_BTR_SILM)) /*!< Loopback combined with silent mode */
/**
* @}
*/
/** @defgroup CAN_synchronisation_jump_width CAN Synchronization Jump Width
* @{
*/
#define CAN_SJW_1TQ 0x00000000U /*!< 1 time quantum */
#define CAN_SJW_2TQ ((uint32_t)CAN_BTR_SJW_0) /*!< 2 time quantum */
#define CAN_SJW_3TQ ((uint32_t)CAN_BTR_SJW_1) /*!< 3 time quantum */
#define CAN_SJW_4TQ ((uint32_t)CAN_BTR_SJW) /*!< 4 time quantum */
/**
* @}
*/
/** @defgroup CAN_time_quantum_in_bit_segment_1 CAN Time Quantum in Bit Segment 1
* @{
*/
#define CAN_BS1_1TQ 0x00000000U /*!< 1 time quantum */
#define CAN_BS1_2TQ ((uint32_t)CAN_BTR_TS1_0) /*!< 2 time quantum */
#define CAN_BS1_3TQ ((uint32_t)CAN_BTR_TS1_1) /*!< 3 time quantum */
#define CAN_BS1_4TQ ((uint32_t)(CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 4 time quantum */
#define CAN_BS1_5TQ ((uint32_t)CAN_BTR_TS1_2) /*!< 5 time quantum */
#define CAN_BS1_6TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_0)) /*!< 6 time quantum */
#define CAN_BS1_7TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1)) /*!< 7 time quantum */
#define CAN_BS1_8TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 8 time quantum */
#define CAN_BS1_9TQ ((uint32_t)CAN_BTR_TS1_3) /*!< 9 time quantum */
#define CAN_BS1_10TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_0)) /*!< 10 time quantum */
#define CAN_BS1_11TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1)) /*!< 11 time quantum */
#define CAN_BS1_12TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 12 time quantum */
#define CAN_BS1_13TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2)) /*!< 13 time quantum */
#define CAN_BS1_14TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_0)) /*!< 14 time quantum */
#define CAN_BS1_15TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_1)) /*!< 15 time quantum */
#define CAN_BS1_16TQ ((uint32_t)CAN_BTR_TS1) /*!< 16 time quantum */
/**
* @}
*/
/** @defgroup CAN_time_quantum_in_bit_segment_2 CAN Time Quantum in bit segment 2
* @{
*/
#define CAN_BS2_1TQ 0x00000000U /*!< 1 time quantum */
#define CAN_BS2_2TQ ((uint32_t)CAN_BTR_TS2_0) /*!< 2 time quantum */
#define CAN_BS2_3TQ ((uint32_t)CAN_BTR_TS2_1) /*!< 3 time quantum */
#define CAN_BS2_4TQ ((uint32_t)(CAN_BTR_TS2_1 | CAN_BTR_TS2_0)) /*!< 4 time quantum */
#define CAN_BS2_5TQ ((uint32_t)CAN_BTR_TS2_2) /*!< 5 time quantum */
#define CAN_BS2_6TQ ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_0)) /*!< 6 time quantum */
#define CAN_BS2_7TQ ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_1)) /*!< 7 time quantum */
#define CAN_BS2_8TQ ((uint32_t)CAN_BTR_TS2) /*!< 8 time quantum */
/**
* @}
*/
/** @defgroup CAN_filter_mode CAN Filter Mode
* @{
*/
#define CAN_FILTERMODE_IDMASK ((uint8_t)0x00) /*!< Identifier mask mode */
#define CAN_FILTERMODE_IDLIST ((uint8_t)0x01) /*!< Identifier list mode */
/**
* @}
*/
/** @defgroup CAN_filter_scale CAN Filter Scale
* @{
*/
#define CAN_FILTERSCALE_16BIT ((uint8_t)0x00) /*!< Two 16-bit filters */
#define CAN_FILTERSCALE_32BIT ((uint8_t)0x01) /*!< One 32-bit filter */
/**
* @}
*/
/** @defgroup CAN_filter_FIFO CAN Filter FIFO
* @{
*/
#define CAN_FILTER_FIFO0 ((uint8_t)0x00) /*!< Filter FIFO 0 assignment for filter x */
#define CAN_FILTER_FIFO1 ((uint8_t)0x01) /*!< Filter FIFO 1 assignment for filter x */
/**
* @}
*/
/** @defgroup CAN_Identifier_Type CAN Identifier Type
* @{
*/
#define CAN_ID_STD 0x00000000U /*!< Standard Id */
#define CAN_ID_EXT 0x00000004U /*!< Extended Id */
/**
* @}
*/
/** @defgroup CAN_remote_transmission_request CAN Remote Transmission Request
* @{
*/
#define CAN_RTR_DATA 0x00000000U /*!< Data frame */
#define CAN_RTR_REMOTE 0x00000002U /*!< Remote frame */
/**
* @}
*/
/** @defgroup CAN_transmit_constants CAN Transmit Constants
* @{
*/
#define CAN_TXSTATUS_NOMAILBOX ((uint8_t)0x04) /*!< CAN cell did not provide CAN_TxStatus_NoMailBox */
/**
* @}
*/
/** @defgroup CAN_receive_FIFO_number_constants CAN Receive FIFO Number
* @{
*/
#define CAN_FIFO0 ((uint8_t)0x00) /*!< CAN FIFO 0 used to receive */
#define CAN_FIFO1 ((uint8_t)0x01) /*!< CAN FIFO 1 used to receive */
/**
* @}
*/
/** @defgroup CAN_flags CAN Flags
* @{
*/
/* If the flag is 0x3XXXXXXX, it means that it can be used with CAN_GetFlagStatus()
and CAN_ClearFlag() functions. */
/* If the flag is 0x1XXXXXXX, it means that it can only be used with
CAN_GetFlagStatus() function. */
/* Transmit Flags */
#define CAN_FLAG_RQCP0 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_RQCP0_BIT_POSITION)) /*!< Request MailBox0 flag */
#define CAN_FLAG_RQCP1 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_RQCP1_BIT_POSITION)) /*!< Request MailBox1 flag */
#define CAN_FLAG_RQCP2 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_RQCP2_BIT_POSITION)) /*!< Request MailBox2 flag */
#define CAN_FLAG_TXOK0 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TXOK0_BIT_POSITION)) /*!< Transmission OK MailBox0 flag */
#define CAN_FLAG_TXOK1 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TXOK1_BIT_POSITION)) /*!< Transmission OK MailBox1 flag */
#define CAN_FLAG_TXOK2 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TXOK2_BIT_POSITION)) /*!< Transmission OK MailBox2 flag */
#define CAN_FLAG_TME0 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TME0_BIT_POSITION)) /*!< Transmit mailbox 0 empty flag */
#define CAN_FLAG_TME1 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TME1_BIT_POSITION)) /*!< Transmit mailbox 0 empty flag */
#define CAN_FLAG_TME2 ((uint32_t)((TSR_REGISTER_INDEX << 8U) | CAN_TSR_TME2_BIT_POSITION)) /*!< Transmit mailbox 0 empty flag */
/* Receive Flags */
#define CAN_FLAG_FF0 ((uint32_t)((RF0R_REGISTER_INDEX << 8U) | CAN_RF0R_FF0_BIT_POSITION)) /*!< FIFO 0 Full flag */
#define CAN_FLAG_FOV0 ((uint32_t)((RF0R_REGISTER_INDEX << 8U) | CAN_RF0R_FOV0_BIT_POSITION)) /*!< FIFO 0 Overrun flag */
#define CAN_FLAG_FF1 ((uint32_t)((RF1R_REGISTER_INDEX << 8U) | CAN_RF1R_FF1_BIT_POSITION)) /*!< FIFO 1 Full flag */
#define CAN_FLAG_FOV1 ((uint32_t)((RF1R_REGISTER_INDEX << 8U) | CAN_RF1R_FOV1_BIT_POSITION)) /*!< FIFO 1 Overrun flag */
/* Operating Mode Flags */
#define CAN_FLAG_WKU ((uint32_t)((MSR_REGISTER_INDEX << 8U) | CAN_MSR_WKU_BIT_POSITION)) /*!< Wake up flag */
#define CAN_FLAG_SLAK ((uint32_t)((MSR_REGISTER_INDEX << 8U) | CAN_MSR_SLAK_BIT_POSITION)) /*!< Sleep acknowledge flag */
#define CAN_FLAG_SLAKI ((uint32_t)((MSR_REGISTER_INDEX << 8U) | CAN_MSR_SLAKI_BIT_POSITION)) /*!< Sleep acknowledge flag */
/* @note When SLAK interrupt is disabled (SLKIE=0), no polling on SLAKI is possible.
In this case the SLAK bit can be polled.*/
/* Error Flags */
#define CAN_FLAG_EWG ((uint32_t)((ESR_REGISTER_INDEX << 8U) | CAN_ESR_EWG_BIT_POSITION)) /*!< Error warning flag */
#define CAN_FLAG_EPV ((uint32_t)((ESR_REGISTER_INDEX << 8U) | CAN_ESR_EPV_BIT_POSITION)) /*!< Error passive flag */
#define CAN_FLAG_BOF ((uint32_t)((ESR_REGISTER_INDEX << 8U) | CAN_ESR_BOF_BIT_POSITION)) /*!< Bus-Off flag */
/**
* @}
*/
/** @defgroup CAN_Interrupts CAN Interrupts
* @{
*/
#define CAN_IT_TME ((uint32_t)CAN_IER_TMEIE) /*!< Transmit mailbox empty interrupt */
/* Receive Interrupts */
#define CAN_IT_FMP0 ((uint32_t)CAN_IER_FMPIE0) /*!< FIFO 0 message pending interrupt */
#define CAN_IT_FF0 ((uint32_t)CAN_IER_FFIE0) /*!< FIFO 0 full interrupt */
#define CAN_IT_FOV0 ((uint32_t)CAN_IER_FOVIE0) /*!< FIFO 0 overrun interrupt */
#define CAN_IT_FMP1 ((uint32_t)CAN_IER_FMPIE1) /*!< FIFO 1 message pending interrupt */
#define CAN_IT_FF1 ((uint32_t)CAN_IER_FFIE1) /*!< FIFO 1 full interrupt */
#define CAN_IT_FOV1 ((uint32_t)CAN_IER_FOVIE1) /*!< FIFO 1 overrun interrupt */
/* Operating Mode Interrupts */
#define CAN_IT_WKU ((uint32_t)CAN_IER_WKUIE) /*!< Wake-up interrupt */
#define CAN_IT_SLK ((uint32_t)CAN_IER_SLKIE) /*!< Sleep acknowledge interrupt */
/* Error Interrupts */
#define CAN_IT_EWG ((uint32_t)CAN_IER_EWGIE) /*!< Error warning interrupt */
#define CAN_IT_EPV ((uint32_t)CAN_IER_EPVIE) /*!< Error passive interrupt */
#define CAN_IT_BOF ((uint32_t)CAN_IER_BOFIE) /*!< Bus-off interrupt */
#define CAN_IT_LEC ((uint32_t)CAN_IER_LECIE) /*!< Last error code interrupt */
#define CAN_IT_ERR ((uint32_t)CAN_IER_ERRIE) /*!< Error Interrupt */
/**
* @}
*/
/**
* @}
*/
/** @defgroup CAN_Private_Constants CAN Private Constants
* @{
*/
/* CAN intermediate shift values used for CAN flags */
#define TSR_REGISTER_INDEX 0x5U
#define RF0R_REGISTER_INDEX 0x2U
#define RF1R_REGISTER_INDEX 0x4U
#define MSR_REGISTER_INDEX 0x1U
#define ESR_REGISTER_INDEX 0x3U
/* CAN flags bits position into their respective register (TSR, RF0R, RF1R or MSR registers) */
/* Transmit Flags */
#define CAN_TSR_RQCP0_BIT_POSITION 0x00000000U
#define CAN_TSR_RQCP1_BIT_POSITION 0x00000008U
#define CAN_TSR_RQCP2_BIT_POSITION 0x00000010U
#define CAN_TSR_TXOK0_BIT_POSITION 0x00000001U
#define CAN_TSR_TXOK1_BIT_POSITION 0x00000009U
#define CAN_TSR_TXOK2_BIT_POSITION 0x00000011U
#define CAN_TSR_TME0_BIT_POSITION 0x0000001AU
#define CAN_TSR_TME1_BIT_POSITION 0x0000001BU
#define CAN_TSR_TME2_BIT_POSITION 0x0000001CU
/* Receive Flags */
#define CAN_RF0R_FF0_BIT_POSITION 0x00000003U
#define CAN_RF0R_FOV0_BIT_POSITION 0x00000004U
#define CAN_RF1R_FF1_BIT_POSITION 0x00000003U
#define CAN_RF1R_FOV1_BIT_POSITION 0x00000004U
/* Operating Mode Flags */
#define CAN_MSR_WKU_BIT_POSITION 0x00000003U
#define CAN_MSR_SLAK_BIT_POSITION 0x00000001U
#define CAN_MSR_SLAKI_BIT_POSITION 0x00000004U
/* Error Flags */
#define CAN_ESR_EWG_BIT_POSITION 0x00000000U
#define CAN_ESR_EPV_BIT_POSITION 0x00000001U
#define CAN_ESR_BOF_BIT_POSITION 0x00000002U
/* Mask used by macro to get/clear CAN flags*/
#define CAN_FLAG_MASK 0x000000FFU
/* Mailboxes definition */
#define CAN_TXMAILBOX_0 ((uint8_t)0x00)
#define CAN_TXMAILBOX_1 ((uint8_t)0x01)
#define CAN_TXMAILBOX_2 ((uint8_t)0x02)
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup CAN_Exported_Macros CAN Exported Macros
* @{
*/
/** @brief Reset CAN handle state
* @param __HANDLE__: CAN handle.
* @retval None
*/
#define __HAL_CAN_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CAN_STATE_RESET)
/**
* @brief Enable the specified CAN interrupts
* @param __HANDLE__: CAN handle.
* @param __INTERRUPT__: CAN Interrupt.
* This parameter can be one of the following values:
* @arg CAN_IT_TME: Transmit mailbox empty interrupt enable
* @arg CAN_IT_FMP0: FIFO 0 message pending interrupt
* @arg CAN_IT_FF0 : FIFO 0 full interrupt
* @arg CAN_IT_FOV0: FIFO 0 overrun interrupt
* @arg CAN_IT_FMP1: FIFO 1 message pending interrupt
* @arg CAN_IT_FF1 : FIFO 1 full interrupt
* @arg CAN_IT_FOV1: FIFO 1 overrun interrupt
* @arg CAN_IT_WKU : Wake-up interrupt
* @arg CAN_IT_SLK : Sleep acknowledge interrupt
* @arg CAN_IT_EWG : Error warning interrupt
* @arg CAN_IT_EPV : Error passive interrupt
* @arg CAN_IT_BOF : Bus-off interrupt
* @arg CAN_IT_LEC : Last error code interrupt
* @arg CAN_IT_ERR : Error Interrupt
* @retval None.
*/
#define __HAL_CAN_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) |= (__INTERRUPT__))
/**
* @brief Disable the specified CAN interrupts
* @param __HANDLE__: CAN handle.
* @param __INTERRUPT__: CAN Interrupt.
* This parameter can be one of the following values:
* @arg CAN_IT_TME: Transmit mailbox empty interrupt enable
* @arg CAN_IT_FMP0: FIFO 0 message pending interrupt
* @arg CAN_IT_FF0 : FIFO 0 full interrupt
* @arg CAN_IT_FOV0: FIFO 0 overrun interrupt
* @arg CAN_IT_FMP1: FIFO 1 message pending interrupt
* @arg CAN_IT_FF1 : FIFO 1 full interrupt
* @arg CAN_IT_FOV1: FIFO 1 overrun interrupt
* @arg CAN_IT_WKU : Wake-up interrupt
* @arg CAN_IT_SLK : Sleep acknowledge interrupt
* @arg CAN_IT_EWG : Error warning interrupt
* @arg CAN_IT_EPV : Error passive interrupt
* @arg CAN_IT_BOF : Bus-off interrupt
* @arg CAN_IT_LEC : Last error code interrupt
* @arg CAN_IT_ERR : Error Interrupt
* @retval None.
*/
#define __HAL_CAN_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) &= ~(__INTERRUPT__))
/**
* @brief Return the number of pending received messages.
* @param __HANDLE__: CAN handle.
* @param __FIFONUMBER__: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @retval The number of pending message.
*/
#define __HAL_CAN_MSG_PENDING(__HANDLE__, __FIFONUMBER__) (((__FIFONUMBER__) == CAN_FIFO0)? \
((uint8_t)((__HANDLE__)->Instance->RF0R & 0x03U)) : ((uint8_t)((__HANDLE__)->Instance->RF1R & 0x03U)))
/** @brief Check whether the specified CAN flag is set or not.
* @param __HANDLE__: specifies the CAN Handle.
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg CAN_TSR_RQCP0: Request MailBox0 Flag
* @arg CAN_TSR_RQCP1: Request MailBox1 Flag
* @arg CAN_TSR_RQCP2: Request MailBox2 Flag
* @arg CAN_FLAG_TXOK0: Transmission OK MailBox0 Flag
* @arg CAN_FLAG_TXOK1: Transmission OK MailBox1 Flag
* @arg CAN_FLAG_TXOK2: Transmission OK MailBox2 Flag
* @arg CAN_FLAG_TME0: Transmit mailbox 0 empty Flag
* @arg CAN_FLAG_TME1: Transmit mailbox 1 empty Flag
* @arg CAN_FLAG_TME2: Transmit mailbox 2 empty Flag
* @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
* @arg CAN_FLAG_FF0: FIFO 0 Full Flag
* @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
* @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
* @arg CAN_FLAG_FF1: FIFO 1 Full Flag
* @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
* @arg CAN_FLAG_WKU: Wake up Flag
* @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
* @arg CAN_FLAG_SLAKI: Sleep acknowledge Flag
* @arg CAN_FLAG_EWG: Error Warning Flag
* @arg CAN_FLAG_EPV: Error Passive Flag
* @arg CAN_FLAG_BOF: Bus-Off Flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_CAN_GET_FLAG(__HANDLE__, __FLAG__) \
((((__FLAG__) >> 8U) == 5U)? ((((__HANDLE__)->Instance->TSR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 2U)? ((((__HANDLE__)->Instance->RF0R) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 4U)? ((((__HANDLE__)->Instance->RF1R) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 1U)? ((((__HANDLE__)->Instance->MSR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
((((__HANDLE__)->Instance->ESR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))))
/** @brief Clear the specified CAN pending flag.
* @param __HANDLE__: specifies the CAN Handle.
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg CAN_TSR_RQCP0: Request MailBox0 Flag
* @arg CAN_TSR_RQCP1: Request MailBox1 Flag
* @arg CAN_TSR_RQCP2: Request MailBox2 Flag
* @arg CAN_FLAG_TXOK0: Transmission OK MailBox0 Flag
* @arg CAN_FLAG_TXOK1: Transmission OK MailBox1 Flag
* @arg CAN_FLAG_TXOK2: Transmission OK MailBox2 Flag
* @arg CAN_FLAG_TME0: Transmit mailbox 0 empty Flag
* @arg CAN_FLAG_TME1: Transmit mailbox 1 empty Flag
* @arg CAN_FLAG_TME2: Transmit mailbox 2 empty Flag
* @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
* @arg CAN_FLAG_FF0: FIFO 0 Full Flag
* @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
* @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
* @arg CAN_FLAG_FF1: FIFO 1 Full Flag
* @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
* @arg CAN_FLAG_WKU: Wake up Flag
* @arg CAN_FLAG_SLAKI: Sleep acknowledge Flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_CAN_CLEAR_FLAG(__HANDLE__, __FLAG__) \
((((__FLAG__) >> 8U) == TSR_REGISTER_INDEX) ? (((__HANDLE__)->Instance->TSR) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == RF0R_REGISTER_INDEX)? (((__HANDLE__)->Instance->RF0R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == RF1R_REGISTER_INDEX)? (((__HANDLE__)->Instance->RF1R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == MSR_REGISTER_INDEX) ? (((__HANDLE__)->Instance->MSR) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): 0U)
/** @brief Check if the specified CAN interrupt source is enabled or disabled.
* @param __HANDLE__: specifies the CAN Handle.
* @param __INTERRUPT__: specifies the CAN interrupt source to check.
* This parameter can be one of the following values:
* @arg CAN_IT_TME: Transmit mailbox empty interrupt enable
* @arg CAN_IT_FMP0: FIFO 0 message pending interrupt
* @arg CAN_IT_FF0 : FIFO 0 full interrupt
* @arg CAN_IT_FOV0: FIFO 0 overrun interrupt
* @arg CAN_IT_FMP1: FIFO 1 message pending interrupt
* @arg CAN_IT_FF1 : FIFO 1 full interrupt
* @arg CAN_IT_FOV1: FIFO 1 overrun interrupt
* @arg CAN_IT_WKU : Wake-up interrupt
* @arg CAN_IT_SLK : Sleep acknowledge interrupt
* @arg CAN_IT_EWG : Error warning interrupt
* @arg CAN_IT_EPV : Error passive interrupt
* @arg CAN_IT_BOF : Bus-off interrupt
* @arg CAN_IT_LEC : Last error code interrupt
* @arg CAN_IT_ERR : Error Interrupt
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_CAN_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->IER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/**
* @brief Check the transmission status of a CAN Frame.
* @param __HANDLE__: specifies the CAN Handle.
* @param __TRANSMITMAILBOX__: the number of the mailbox that is used for transmission.
* @retval The new status of transmission (TRUE or FALSE).
*/
#define __HAL_CAN_TRANSMIT_STATUS(__HANDLE__, __TRANSMITMAILBOX__)\
(((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_0)? ((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP0 | CAN_TSR_TME0)) == (CAN_TSR_RQCP0 | CAN_TSR_TME0)) :\
((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_1)? ((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP1 | CAN_TSR_TME1)) == (CAN_TSR_RQCP1 | CAN_TSR_TME1)) :\
((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP2 | CAN_TSR_TME2)) == (CAN_TSR_RQCP2 | CAN_TSR_TME2)))
/**
* @brief Release the specified receive FIFO.
* @param __HANDLE__: CAN handle.
* @param __FIFONUMBER__: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @retval None.
*/
#define __HAL_CAN_FIFO_RELEASE(__HANDLE__, __FIFONUMBER__) (((__FIFONUMBER__) == CAN_FIFO0)? \
((__HANDLE__)->Instance->RF0R = CAN_RF0R_RFOM0) : ((__HANDLE__)->Instance->RF1R = CAN_RF1R_RFOM1))
/**
* @brief Cancel a transmit request.
* @param __HANDLE__: specifies the CAN Handle.
* @param __TRANSMITMAILBOX__: the number of the mailbox that is used for transmission.
* @retval None.
*/
#define __HAL_CAN_CANCEL_TRANSMIT(__HANDLE__, __TRANSMITMAILBOX__)\
(((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_0)? ((__HANDLE__)->Instance->TSR = CAN_TSR_ABRQ0) :\
((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_1)? ((__HANDLE__)->Instance->TSR = CAN_TSR_ABRQ1) :\
((__HANDLE__)->Instance->TSR = CAN_TSR_ABRQ2))
/**
* @brief Enable or disables the DBG Freeze for CAN.
* @param __HANDLE__: specifies the CAN Handle.
* @param __NEWSTATE__: new state of the CAN peripheral.
* This parameter can be: ENABLE (CAN reception/transmission is frozen
* during debug. Reception FIFOs can still be accessed/controlled normally)
* or DISABLE (CAN is working during debug).
* @retval None
*/
#define __HAL_CAN_DBG_FREEZE(__HANDLE__, __NEWSTATE__) (((__NEWSTATE__) == ENABLE)? \
((__HANDLE__)->Instance->MCR |= CAN_MCR_DBF) : ((__HANDLE__)->Instance->MCR &= ~CAN_MCR_DBF))
/**
* @}
*/
/* Include CAN HAL Extension module */
#include "stm32f1xx_hal_can_ex_legacy.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CAN_Exported_Functions
* @{
*/
/** @addtogroup CAN_Exported_Functions_Group1
* @brief Initialization and Configuration functions
* @{
*/
/* Initialization and de-initialization functions *****************************/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan);
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig);
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan);
void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan);
void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group2
* @brief I/O operation functions
* @{
*/
/* I/O operation functions *****************************************************/
HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef *hcan, uint32_t Timeout);
HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef *hcan, uint8_t FIFONumber, uint32_t Timeout);
HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef *hcan, uint8_t FIFONumber);
HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan);
void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan);
void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan);
void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan);
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group3
* @brief CAN Peripheral State functions
* @{
*/
/* Peripheral State and Error functions ***************************************/
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan);
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan);
/**
* @}
*/
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @defgroup CAN_Private_Macros CAN Private Macros
* @{
*/
#define IS_CAN_MODE(MODE) (((MODE) == CAN_MODE_NORMAL) || \
((MODE) == CAN_MODE_LOOPBACK)|| \
((MODE) == CAN_MODE_SILENT) || \
((MODE) == CAN_MODE_SILENT_LOOPBACK))
#define IS_CAN_SJW(SJW) (((SJW) == CAN_SJW_1TQ) || ((SJW) == CAN_SJW_2TQ)|| \
((SJW) == CAN_SJW_3TQ) || ((SJW) == CAN_SJW_4TQ))
#define IS_CAN_BS1(BS1) ((BS1) <= CAN_BS1_16TQ)
#define IS_CAN_BS2(BS2) ((BS2) <= CAN_BS2_8TQ)
#define IS_CAN_PRESCALER(PRESCALER) (((PRESCALER) >= 1U) && ((PRESCALER) <= 1024U))
#define IS_CAN_FILTER_MODE(MODE) (((MODE) == CAN_FILTERMODE_IDMASK) || \
((MODE) == CAN_FILTERMODE_IDLIST))
#define IS_CAN_FILTER_SCALE(SCALE) (((SCALE) == CAN_FILTERSCALE_16BIT) || \
((SCALE) == CAN_FILTERSCALE_32BIT))
#define IS_CAN_FILTER_FIFO(FIFO) (((FIFO) == CAN_FILTER_FIFO0) || \
((FIFO) == CAN_FILTER_FIFO1))
#define IS_CAN_BANKNUMBER(BANKNUMBER) ((BANKNUMBER) <= 28U)
#define IS_CAN_TRANSMITMAILBOX(TRANSMITMAILBOX) ((TRANSMITMAILBOX) <= ((uint8_t)0x02))
#define IS_CAN_STDID(STDID) ((STDID) <= 0x00007FFU)
#define IS_CAN_EXTID(EXTID) ((EXTID) <= 0x1FFFFFFFU)
#define IS_CAN_DLC(DLC) ((DLC) <= ((uint8_t)0x08))
#define IS_CAN_IDTYPE(IDTYPE) (((IDTYPE) == CAN_ID_STD) || \
((IDTYPE) == CAN_ID_EXT))
#define IS_CAN_RTR(RTR) (((RTR) == CAN_RTR_DATA) || ((RTR) == CAN_RTR_REMOTE))
#define IS_CAN_FIFO(FIFO) (((FIFO) == CAN_FIFO0) || ((FIFO) == CAN_FIFO1))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F103x6) || STM32F103xB || STM32F103xE || STM32F103xG) || STM32F105xC || STM32F107xC */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_CAN_LEGACY_H */

View file

@ -0,0 +1,56 @@
/**
******************************************************************************
* @file stm32_assert.h
* @author MCD Application Team
* @brief STM32 assert template file.
* This file should be copied to the application folder and renamed
* to stm32_assert.h.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32_ASSERT_H
#define __STM32_ASSERT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32_ASSERT_H */

View file

@ -0,0 +1,357 @@
/**
******************************************************************************
* @file stm32f1xx_hal.h
* @author MCD Application Team
* @brief This file contains all the functions prototypes for the HAL
* module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_H
#define __STM32F1xx_HAL_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_conf.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup HAL
* @{
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup HAL_Exported_Constants HAL Exported Constants
* @{
*/
/** @defgroup HAL_TICK_FREQ Tick Frequency
* @{
*/
typedef enum
{
HAL_TICK_FREQ_10HZ = 100U,
HAL_TICK_FREQ_100HZ = 10U,
HAL_TICK_FREQ_1KHZ = 1U,
HAL_TICK_FREQ_DEFAULT = HAL_TICK_FREQ_1KHZ
} HAL_TickFreqTypeDef;
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
extern __IO uint32_t uwTick;
extern uint32_t uwTickPrio;
extern HAL_TickFreqTypeDef uwTickFreq;
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup HAL_Exported_Macros HAL Exported Macros
* @{
*/
/** @defgroup DBGMCU_Freeze_Unfreeze Freeze Unfreeze Peripherals in Debug mode
* @brief Freeze/Unfreeze Peripherals in Debug mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @{
*/
/* Peripherals on APB1 */
/**
* @brief TIM2 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM2() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM2_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM2() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM2_STOP)
/**
* @brief TIM3 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM3() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM3_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM3() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM3_STOP)
#if defined (DBGMCU_CR_DBG_TIM4_STOP)
/**
* @brief TIM4 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM4() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM4_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM4() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM4_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM5_STOP)
/**
* @brief TIM5 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM5() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM5_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM5() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM5_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM6_STOP)
/**
* @brief TIM6 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM6() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM6_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM6() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM6_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM7_STOP)
/**
* @brief TIM7 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM7() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM7_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM7() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM7_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM12_STOP)
/**
* @brief TIM12 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM12() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM12_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM12() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM12_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM13_STOP)
/**
* @brief TIM13 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM13() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM13_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM13() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM13_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM14_STOP)
/**
* @brief TIM14 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM14() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM14_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM14() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM14_STOP)
#endif
/**
* @brief WWDG Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_WWDG() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_WWDG_STOP)
#define __HAL_DBGMCU_UNFREEZE_WWDG() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_WWDG_STOP)
/**
* @brief IWDG Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_IWDG() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_IWDG_STOP)
#define __HAL_DBGMCU_UNFREEZE_IWDG() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_IWDG_STOP)
/**
* @brief I2C1 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT)
#define __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT)
#if defined (DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
/**
* @brief I2C2 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_I2C2_TIMEOUT() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
#define __HAL_DBGMCU_UNFREEZE_I2C2_TIMEOUT() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
#endif
#if defined (DBGMCU_CR_DBG_CAN1_STOP)
/**
* @brief CAN1 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_CAN1() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN1_STOP)
#define __HAL_DBGMCU_UNFREEZE_CAN1() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN1_STOP)
#endif
#if defined (DBGMCU_CR_DBG_CAN2_STOP)
/**
* @brief CAN2 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_CAN2() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN2_STOP)
#define __HAL_DBGMCU_UNFREEZE_CAN2() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN2_STOP)
#endif
/* Peripherals on APB2 */
#if defined (DBGMCU_CR_DBG_TIM1_STOP)
/**
* @brief TIM1 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM1() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM1_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM1() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM1_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM8_STOP)
/**
* @brief TIM8 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM8() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM8_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM8() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM8_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM9_STOP)
/**
* @brief TIM9 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM9() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM9_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM9() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM9_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM10_STOP)
/**
* @brief TIM10 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM10() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM10_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM10() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM10_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM11_STOP)
/**
* @brief TIM11 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM11() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM11_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM11() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM11_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM15_STOP)
/**
* @brief TIM15 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM15() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM15_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM15() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM15_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM16_STOP)
/**
* @brief TIM16 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM16() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM16_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM16() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM16_STOP)
#endif
#if defined (DBGMCU_CR_DBG_TIM17_STOP)
/**
* @brief TIM17 Peripherals Debug mode
*/
#define __HAL_DBGMCU_FREEZE_TIM17() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM17_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM17() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM17_STOP)
#endif
/**
* @}
*/
/** @defgroup HAL_Private_Macros HAL Private Macros
* @{
*/
#define IS_TICKFREQ(FREQ) (((FREQ) == HAL_TICK_FREQ_10HZ) || \
((FREQ) == HAL_TICK_FREQ_100HZ) || \
((FREQ) == HAL_TICK_FREQ_1KHZ))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup HAL_Exported_Functions
* @{
*/
/** @addtogroup HAL_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ******************************/
HAL_StatusTypeDef HAL_Init(void);
HAL_StatusTypeDef HAL_DeInit(void);
void HAL_MspInit(void);
void HAL_MspDeInit(void);
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority);
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_IncTick(void);
void HAL_Delay(uint32_t Delay);
uint32_t HAL_GetTick(void);
uint32_t HAL_GetTickPrio(void);
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq);
HAL_TickFreqTypeDef HAL_GetTickFreq(void);
void HAL_SuspendTick(void);
void HAL_ResumeTick(void);
uint32_t HAL_GetHalVersion(void);
uint32_t HAL_GetREVID(void);
uint32_t HAL_GetDEVID(void);
uint32_t HAL_GetUIDw0(void);
uint32_t HAL_GetUIDw1(void);
uint32_t HAL_GetUIDw2(void);
void HAL_DBGMCU_EnableDBGSleepMode(void);
void HAL_DBGMCU_DisableDBGSleepMode(void);
void HAL_DBGMCU_EnableDBGStopMode(void);
void HAL_DBGMCU_DisableDBGStopMode(void);
void HAL_DBGMCU_EnableDBGStandbyMode(void);
void HAL_DBGMCU_DisableDBGStandbyMode(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup HAL_Private_Variables HAL Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,706 @@
/**
******************************************************************************
* @file stm32f1xx_hal_adc_ex.h
* @author MCD Application Team
* @brief Header file of ADC HAL extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_ADC_EX_H
#define __STM32F1xx_HAL_ADC_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup ADCEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup ADCEx_Exported_Types ADCEx Exported Types
* @{
*/
/**
* @brief ADC Configuration injected Channel structure definition
* @note Parameters of this structure are shared within 2 scopes:
* - Scope channel: InjectedChannel, InjectedRank, InjectedSamplingTime, InjectedOffset
* - Scope injected group (affects all channels of injected group): InjectedNbrOfConversion, InjectedDiscontinuousConvMode,
* AutoInjectedConv, ExternalTrigInjecConvEdge, ExternalTrigInjecConv.
* @note The setting of these parameters with function HAL_ADCEx_InjectedConfigChannel() is conditioned to ADC state.
* ADC state can be either:
* - For all parameters: ADC disabled (this is the only possible ADC state to modify parameter 'ExternalTrigInjecConv')
* - For all except parameters 'ExternalTrigInjecConv': ADC enabled without conversion on going on injected group.
*/
typedef struct
{
uint32_t InjectedChannel; /*!< Selection of ADC channel to configure
This parameter can be a value of @ref ADC_channels
Note: Depending on devices, some channels may not be available on package pins. Refer to device datasheet for channels availability.
Note: On STM32F1 devices with several ADC: Only ADC1 can access internal measurement channels (VrefInt/TempSensor)
Note: On STM32F10xx8 and STM32F10xxB devices: A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the ADC is converting with injection trigger.
It is advised to distribute the analog channels so that Channel 0 is configured as an injected channel.
Refer to errata sheet of these devices for more details. */
uint32_t InjectedRank; /*!< Rank in the injected group sequencer
This parameter must be a value of @ref ADCEx_injected_rank
Note: In case of need to disable a channel or change order of conversion sequencer, rank containing a previous channel setting can be overwritten by the new channel setting (or parameter number of conversions can be adjusted) */
uint32_t InjectedSamplingTime; /*!< Sampling time value to be set for the selected channel.
Unit: ADC clock cycles
Conversion time is the addition of sampling time and processing time (12.5 ADC clock cycles at ADC resolution 12 bits).
This parameter can be a value of @ref ADC_sampling_times
Caution: This parameter updates the parameter property of the channel, that can be used into regular and/or injected groups.
If this same channel has been previously configured in the other group (regular/injected), it will be updated to last setting.
Note: In case of usage of internal measurement channels (VrefInt/TempSensor),
sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting)
Refer to device datasheet for timings values, parameters TS_vrefint, TS_temp (values rough order: 5us to 17.1us min). */
uint32_t InjectedOffset; /*!< Defines the offset to be subtracted from the raw converted data (for channels set on injected group only).
Offset value must be a positive number.
Depending of ADC resolution selected (12, 10, 8 or 6 bits),
this parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF, 0x3FF, 0xFF or 0x3F respectively. */
uint32_t InjectedNbrOfConversion; /*!< Specifies the number of ranks that will be converted within the injected group sequencer.
To use the injected group sequencer and convert several ranks, parameter 'ScanConvMode' must be enabled.
This parameter must be a number between Min_Data = 1 and Max_Data = 4.
Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
configure a channel on injected group can impact the configuration of other channels previously set. */
FunctionalState InjectedDiscontinuousConvMode; /*!< Specifies whether the conversions sequence of injected group is performed in Complete-sequence/Discontinuous-sequence (main sequence subdivided in successive parts).
Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is discarded.
Discontinuous mode can be enabled only if continuous mode is disabled. If continuous mode is enabled, this parameter setting is discarded.
This parameter can be set to ENABLE or DISABLE.
Note: For injected group, number of discontinuous ranks increment is fixed to one-by-one.
Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
configure a channel on injected group can impact the configuration of other channels previously set. */
FunctionalState AutoInjectedConv; /*!< Enables or disables the selected ADC automatic injected group conversion after regular one
This parameter can be set to ENABLE or DISABLE.
Note: To use Automatic injected conversion, discontinuous mode must be disabled ('DiscontinuousConvMode' and 'InjectedDiscontinuousConvMode' set to DISABLE)
Note: To use Automatic injected conversion, injected group external triggers must be disabled ('ExternalTrigInjecConv' set to ADC_SOFTWARE_START)
Note: In case of DMA used with regular group: if DMA configured in normal mode (single shot) JAUTO will be stopped upon DMA transfer complete.
To maintain JAUTO always enabled, DMA must be configured in circular mode.
Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
configure a channel on injected group can impact the configuration of other channels previously set. */
uint32_t ExternalTrigInjecConv; /*!< Selects the external event used to trigger the conversion start of injected group.
If set to ADC_INJECTED_SOFTWARE_START, external triggers are disabled.
If set to external trigger source, triggering is on event rising edge.
This parameter can be a value of @ref ADCEx_External_trigger_source_Injected
Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion).
If ADC is enabled, this parameter setting is bypassed without error reporting (as it can be the expected behaviour in case of another parameter update on the fly)
Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
configure a channel on injected group can impact the configuration of other channels previously set. */
}ADC_InjectionConfTypeDef;
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/**
* @brief Structure definition of ADC multimode
* @note The setting of these parameters with function HAL_ADCEx_MultiModeConfigChannel() is conditioned to ADCs state (both ADCs of the common group).
* State of ADCs of the common group must be: disabled.
*/
typedef struct
{
uint32_t Mode; /*!< Configures the ADC to operate in independent or multi mode.
This parameter can be a value of @ref ADCEx_Common_mode
Note: In dual mode, a change of channel configuration generates a restart that can produce a loss of synchronization. It is recommended to disable dual mode before any configuration change.
Note: In case of simultaneous mode used: Exactly the same sampling time should be configured for the 2 channels that will be sampled simultaneously by ACD1 and ADC2.
Note: In case of interleaved mode used: To avoid overlap between conversions, maximum sampling time allowed is 7 ADC clock cycles for fast interleaved mode and 14 ADC clock cycles for slow interleaved mode.
Note: Some multimode parameters are fixed on STM32F1 and can be configured on other STM32 devices with several ADC (multimode configuration structure can have additional parameters).
The equivalences are:
- Parameter 'DMAAccessMode': On STM32F1, this parameter is fixed to 1 DMA channel (one DMA channel for both ADC, DMA of ADC master). On other STM32 devices with several ADC, this is equivalent to parameter 'ADC_DMAACCESSMODE_12_10_BITS'.
- Parameter 'TwoSamplingDelay': On STM32F1, this parameter is fixed to 7 or 14 ADC clock cycles depending on fast or slow interleaved mode selected. On other STM32 devices with several ADC, this is equivalent to parameter 'ADC_TWOSAMPLINGDELAY_7CYCLES' (for fast interleaved mode). */
}ADC_MultiModeTypeDef;
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup ADCEx_Exported_Constants ADCEx Exported Constants
* @{
*/
/** @defgroup ADCEx_injected_rank ADCEx rank into injected group
* @{
*/
#define ADC_INJECTED_RANK_1 0x00000001U
#define ADC_INJECTED_RANK_2 0x00000002U
#define ADC_INJECTED_RANK_3 0x00000003U
#define ADC_INJECTED_RANK_4 0x00000004U
/**
* @}
*/
/** @defgroup ADCEx_External_trigger_edge_Injected ADCEx external trigger enable for injected group
* @{
*/
#define ADC_EXTERNALTRIGINJECCONV_EDGE_NONE 0x00000000U
#define ADC_EXTERNALTRIGINJECCONV_EDGE_RISING ((uint32_t)ADC_CR2_JEXTTRIG)
/**
* @}
*/
/** @defgroup ADC_External_trigger_source_Regular ADC External trigger selection for regular group
* @{
*/
/*!< List of external triggers with generic trigger name, independently of */
/* ADC target, sorted by trigger name: */
/*!< External triggers of regular group for ADC1&ADC2 only */
#define ADC_EXTERNALTRIGCONV_T1_CC1 ADC1_2_EXTERNALTRIG_T1_CC1
#define ADC_EXTERNALTRIGCONV_T1_CC2 ADC1_2_EXTERNALTRIG_T1_CC2
#define ADC_EXTERNALTRIGCONV_T2_CC2 ADC1_2_EXTERNALTRIG_T2_CC2
#define ADC_EXTERNALTRIGCONV_T3_TRGO ADC1_2_EXTERNALTRIG_T3_TRGO
#define ADC_EXTERNALTRIGCONV_T4_CC4 ADC1_2_EXTERNALTRIG_T4_CC4
#define ADC_EXTERNALTRIGCONV_EXT_IT11 ADC1_2_EXTERNALTRIG_EXT_IT11
#if defined (STM32F103xE) || defined (STM32F103xG)
/*!< External triggers of regular group for ADC3 only */
#define ADC_EXTERNALTRIGCONV_T2_CC3 ADC3_EXTERNALTRIG_T2_CC3
#define ADC_EXTERNALTRIGCONV_T3_CC1 ADC3_EXTERNALTRIG_T3_CC1
#define ADC_EXTERNALTRIGCONV_T5_CC1 ADC3_EXTERNALTRIG_T5_CC1
#define ADC_EXTERNALTRIGCONV_T5_CC3 ADC3_EXTERNALTRIG_T5_CC3
#define ADC_EXTERNALTRIGCONV_T8_CC1 ADC3_EXTERNALTRIG_T8_CC1
#endif /* STM32F103xE || defined STM32F103xG */
/*!< External triggers of regular group for all ADC instances */
#define ADC_EXTERNALTRIGCONV_T1_CC3 ADC1_2_3_EXTERNALTRIG_T1_CC3
#if defined (STM32F101xE) || defined (STM32F103xE) || defined (STM32F103xG) || defined (STM32F105xC) || defined (STM32F107xC)
/*!< Note: TIM8_TRGO is available on ADC1 and ADC2 only in high-density and */
/* XL-density devices. */
/* To use it on ADC or ADC2, a remap of trigger must be done from */
/* EXTI line 11 to TIM8_TRGO with macro: */
/* __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE() */
/* __HAL_AFIO_REMAP_ADC2_ETRGREG_ENABLE() */
/* Note for internal constant value management: If TIM8_TRGO is available, */
/* its definition is set to value for ADC1&ADC2 by default and changed to */
/* value for ADC3 by HAL ADC driver if ADC3 is selected. */
#define ADC_EXTERNALTRIGCONV_T8_TRGO ADC1_2_EXTERNALTRIG_T8_TRGO
#endif /* STM32F101xE || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
#define ADC_SOFTWARE_START ADC1_2_3_SWSTART
/**
* @}
*/
/** @defgroup ADCEx_External_trigger_source_Injected ADCEx External trigger selection for injected group
* @{
*/
/*!< List of external triggers with generic trigger name, independently of */
/* ADC target, sorted by trigger name: */
/*!< External triggers of injected group for ADC1&ADC2 only */
#define ADC_EXTERNALTRIGINJECCONV_T2_TRGO ADC1_2_EXTERNALTRIGINJEC_T2_TRGO
#define ADC_EXTERNALTRIGINJECCONV_T2_CC1 ADC1_2_EXTERNALTRIGINJEC_T2_CC1
#define ADC_EXTERNALTRIGINJECCONV_T3_CC4 ADC1_2_EXTERNALTRIGINJEC_T3_CC4
#define ADC_EXTERNALTRIGINJECCONV_T4_TRGO ADC1_2_EXTERNALTRIGINJEC_T4_TRGO
#define ADC_EXTERNALTRIGINJECCONV_EXT_IT15 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
#if defined (STM32F103xE) || defined (STM32F103xG)
/*!< External triggers of injected group for ADC3 only */
#define ADC_EXTERNALTRIGINJECCONV_T4_CC3 ADC3_EXTERNALTRIGINJEC_T4_CC3
#define ADC_EXTERNALTRIGINJECCONV_T8_CC2 ADC3_EXTERNALTRIGINJEC_T8_CC2
#define ADC_EXTERNALTRIGINJECCONV_T5_TRGO ADC3_EXTERNALTRIGINJEC_T5_TRGO
#define ADC_EXTERNALTRIGINJECCONV_T5_CC4 ADC3_EXTERNALTRIGINJEC_T5_CC4
#endif /* STM32F103xE || defined STM32F103xG */
/*!< External triggers of injected group for all ADC instances */
#define ADC_EXTERNALTRIGINJECCONV_T1_CC4 ADC1_2_3_EXTERNALTRIGINJEC_T1_CC4
#define ADC_EXTERNALTRIGINJECCONV_T1_TRGO ADC1_2_3_EXTERNALTRIGINJEC_T1_TRGO
#if defined (STM32F101xE) || defined (STM32F103xE) || defined (STM32F103xG) || defined (STM32F105xC) || defined (STM32F107xC)
/*!< Note: TIM8_CC4 is available on ADC1 and ADC2 only in high-density and */
/* XL-density devices. */
/* To use it on ADC1 or ADC2, a remap of trigger must be done from */
/* EXTI line 11 to TIM8_CC4 with macro: */
/* __HAL_AFIO_REMAP_ADC1_ETRGINJ_ENABLE() */
/* __HAL_AFIO_REMAP_ADC2_ETRGINJ_ENABLE() */
/* Note for internal constant value management: If TIM8_CC4 is available, */
/* its definition is set to value for ADC1&ADC2 by default and changed to */
/* value for ADC3 by HAL ADC driver if ADC3 is selected. */
#define ADC_EXTERNALTRIGINJECCONV_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_T8_CC4
#endif /* STM32F101xE || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
#define ADC_INJECTED_SOFTWARE_START ADC1_2_3_JSWSTART
/**
* @}
*/
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/** @defgroup ADCEx_Common_mode ADC Extended Dual ADC Mode
* @{
*/
#define ADC_MODE_INDEPENDENT 0x00000000U /*!< ADC dual mode disabled (ADC independent mode) */
#define ADC_DUALMODE_REGSIMULT_INJECSIMULT ((uint32_t)( ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Combined regular simultaneous + injected simultaneous mode, on groups regular and injected */
#define ADC_DUALMODE_REGSIMULT_ALTERTRIG ((uint32_t)( ADC_CR1_DUALMOD_1 )) /*!< ADC dual mode enabled: Combined regular simultaneous + alternate trigger mode, on groups regular and injected */
#define ADC_DUALMODE_INJECSIMULT_INTERLFAST ((uint32_t)( ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Combined injected simultaneous + fast interleaved mode, on groups regular and injected (delay between ADC sampling phases: 7 ADC clock cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
#define ADC_DUALMODE_INJECSIMULT_INTERLSLOW ((uint32_t)( ADC_CR1_DUALMOD_2 )) /*!< ADC dual mode enabled: Combined injected simultaneous + slow Interleaved mode, on groups regular and injected (delay between ADC sampling phases: 14 ADC clock cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
#define ADC_DUALMODE_INJECSIMULT ((uint32_t)( ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Injected simultaneous mode, on group injected */
#define ADC_DUALMODE_REGSIMULT ((uint32_t)( ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1 )) /*!< ADC dual mode enabled: Regular simultaneous mode, on group regular */
#define ADC_DUALMODE_INTERLFAST ((uint32_t)( ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Fast interleaved mode, on group regular (delay between ADC sampling phases: 7 ADC clock cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
#define ADC_DUALMODE_INTERLSLOW ((uint32_t)(ADC_CR1_DUALMOD_3 )) /*!< ADC dual mode enabled: Slow interleaved mode, on group regular (delay between ADC sampling phases: 14 ADC clock cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
#define ADC_DUALMODE_ALTERTRIG ((uint32_t)(ADC_CR1_DUALMOD_3 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Alternate trigger mode, on group injected */
/**
* @}
*/
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup ADCEx_Private_Constants ADCEx Private Constants
* @{
*/
/** @defgroup ADCEx_Internal_HAL_driver_Ext_trig_src_Regular ADC Extended Internal HAL driver trigger selection for regular group
* @{
*/
/* List of external triggers of regular group for ADC1, ADC2, ADC3 (if ADC */
/* instance is available on the selected device). */
/* (used internally by HAL driver. To not use into HAL structure parameters) */
/* External triggers of regular group for ADC1&ADC2 (if ADCx available) */
#define ADC1_2_EXTERNALTRIG_T1_CC1 0x00000000U
#define ADC1_2_EXTERNALTRIG_T1_CC2 ((uint32_t)( ADC_CR2_EXTSEL_0))
#define ADC1_2_EXTERNALTRIG_T2_CC2 ((uint32_t)( ADC_CR2_EXTSEL_1 | ADC_CR2_EXTSEL_0))
#define ADC1_2_EXTERNALTRIG_T3_TRGO ((uint32_t)(ADC_CR2_EXTSEL_2 ))
#define ADC1_2_EXTERNALTRIG_T4_CC4 ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_0))
#define ADC1_2_EXTERNALTRIG_EXT_IT11 ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 ))
#if defined (STM32F101xE) || defined (STM32F103xE) || defined (STM32F103xG)
/* Note: TIM8_TRGO is available on ADC1 and ADC2 only in high-density and */
/* XL-density devices. */
#define ADC1_2_EXTERNALTRIG_T8_TRGO ADC1_2_EXTERNALTRIG_EXT_IT11
#endif
#if defined (STM32F103xE) || defined (STM32F103xG)
/* External triggers of regular group for ADC3 */
#define ADC3_EXTERNALTRIG_T3_CC1 ADC1_2_EXTERNALTRIG_T1_CC1
#define ADC3_EXTERNALTRIG_T2_CC3 ADC1_2_EXTERNALTRIG_T1_CC2
#define ADC3_EXTERNALTRIG_T8_CC1 ADC1_2_EXTERNALTRIG_T2_CC2
#define ADC3_EXTERNALTRIG_T8_TRGO ADC1_2_EXTERNALTRIG_T3_TRGO
#define ADC3_EXTERNALTRIG_T5_CC1 ADC1_2_EXTERNALTRIG_T4_CC4
#define ADC3_EXTERNALTRIG_T5_CC3 ADC1_2_EXTERNALTRIG_EXT_IT11
#endif
/* External triggers of regular group for ADC1&ADC2&ADC3 (if ADCx available) */
#define ADC1_2_3_EXTERNALTRIG_T1_CC3 ((uint32_t)( ADC_CR2_EXTSEL_1 ))
#define ADC1_2_3_SWSTART ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 | ADC_CR2_EXTSEL_0))
/**
* @}
*/
/** @defgroup ADCEx_Internal_HAL_driver_Ext_trig_src_Injected ADC Extended Internal HAL driver trigger selection for injected group
* @{
*/
/* List of external triggers of injected group for ADC1, ADC2, ADC3 (if ADC */
/* instance is available on the selected device). */
/* (used internally by HAL driver. To not use into HAL structure parameters) */
/* External triggers of injected group for ADC1&ADC2 (if ADCx available) */
#define ADC1_2_EXTERNALTRIGINJEC_T2_TRGO ((uint32_t)( ADC_CR2_JEXTSEL_1 ))
#define ADC1_2_EXTERNALTRIGINJEC_T2_CC1 ((uint32_t)( ADC_CR2_JEXTSEL_1 | ADC_CR2_JEXTSEL_0))
#define ADC1_2_EXTERNALTRIGINJEC_T3_CC4 ((uint32_t)(ADC_CR2_JEXTSEL_2 ))
#define ADC1_2_EXTERNALTRIGINJEC_T4_TRGO ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_0))
#define ADC1_2_EXTERNALTRIGINJEC_EXT_IT15 ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_1 ))
#if defined (STM32F101xE) || defined (STM32F103xE) || defined (STM32F103xG)
/* Note: TIM8_CC4 is available on ADC1 and ADC2 only in high-density and */
/* XL-density devices. */
#define ADC1_2_EXTERNALTRIGINJEC_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
#endif
#if defined (STM32F103xE) || defined (STM32F103xG)
/* External triggers of injected group for ADC3 */
#define ADC3_EXTERNALTRIGINJEC_T4_CC3 ADC1_2_EXTERNALTRIGINJEC_T2_TRGO
#define ADC3_EXTERNALTRIGINJEC_T8_CC2 ADC1_2_EXTERNALTRIGINJEC_T2_CC1
#define ADC3_EXTERNALTRIGINJEC_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_T3_CC4
#define ADC3_EXTERNALTRIGINJEC_T5_TRGO ADC1_2_EXTERNALTRIGINJEC_T4_TRGO
#define ADC3_EXTERNALTRIGINJEC_T5_CC4 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
#endif /* STM32F103xE || defined STM32F103xG */
/* External triggers of injected group for ADC1&ADC2&ADC3 (if ADCx available) */
#define ADC1_2_3_EXTERNALTRIGINJEC_T1_TRGO 0x00000000U
#define ADC1_2_3_EXTERNALTRIGINJEC_T1_CC4 ((uint32_t)( ADC_CR2_JEXTSEL_0))
#define ADC1_2_3_JSWSTART ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_1 | ADC_CR2_JEXTSEL_0))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup ADCEx_Private_Macro ADCEx Private Macro
* @{
*/
/* Macro reserved for internal HAL driver usage, not intended to be used in */
/* code of final user. */
/**
* @brief For devices with 3 ADCs: Defines the external trigger source
* for regular group according to ADC into common group ADC1&ADC2 or
* ADC3 (some triggers with same source have different value to
* be programmed into ADC EXTSEL bits of CR2 register).
* For devices with 2 ADCs or less: this macro makes no change.
* @param __HANDLE__: ADC handle
* @param __EXT_TRIG_CONV__: External trigger selected for regular group.
* @retval External trigger to be programmed into EXTSEL bits of CR2 register
*/
#if defined (STM32F103xE) || defined (STM32F103xG)
#define ADC_CFGR_EXTSEL(__HANDLE__, __EXT_TRIG_CONV__) \
(( (((__HANDLE__)->Instance) == ADC3) \
)? \
( ( (__EXT_TRIG_CONV__) == ADC_EXTERNALTRIGCONV_T8_TRGO \
)? \
(ADC3_EXTERNALTRIG_T8_TRGO) \
: \
(__EXT_TRIG_CONV__) \
) \
: \
(__EXT_TRIG_CONV__) \
)
#else
#define ADC_CFGR_EXTSEL(__HANDLE__, __EXT_TRIG_CONV__) \
(__EXT_TRIG_CONV__)
#endif /* STM32F103xE || STM32F103xG */
/**
* @brief For devices with 3 ADCs: Defines the external trigger source
* for injected group according to ADC into common group ADC1&ADC2 or
* ADC3 (some triggers with same source have different value to
* be programmed into ADC JEXTSEL bits of CR2 register).
* For devices with 2 ADCs or less: this macro makes no change.
* @param __HANDLE__: ADC handle
* @param __EXT_TRIG_INJECTCONV__: External trigger selected for injected group.
* @retval External trigger to be programmed into JEXTSEL bits of CR2 register
*/
#if defined (STM32F103xE) || defined (STM32F103xG)
#define ADC_CFGR_JEXTSEL(__HANDLE__, __EXT_TRIG_INJECTCONV__) \
(( (((__HANDLE__)->Instance) == ADC3) \
)? \
( ( (__EXT_TRIG_INJECTCONV__) == ADC_EXTERNALTRIGINJECCONV_T8_CC4 \
)? \
(ADC3_EXTERNALTRIGINJEC_T8_CC4) \
: \
(__EXT_TRIG_INJECTCONV__) \
) \
: \
(__EXT_TRIG_INJECTCONV__) \
)
#else
#define ADC_CFGR_JEXTSEL(__HANDLE__, __EXT_TRIG_INJECTCONV__) \
(__EXT_TRIG_INJECTCONV__)
#endif /* STM32F103xE || STM32F103xG */
/**
* @brief Verification if multimode is enabled for the selected ADC (multimode ADC master or ADC slave) (applicable for devices with several ADCs)
* @param __HANDLE__: ADC handle
* @retval Multimode state: RESET if multimode is disabled, other value if multimode is enabled
*/
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
#define ADC_MULTIMODE_IS_ENABLE(__HANDLE__) \
(( (((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2) \
)? \
(ADC1->CR1 & ADC_CR1_DUALMOD) \
: \
(RESET) \
)
#else
#define ADC_MULTIMODE_IS_ENABLE(__HANDLE__) \
(RESET)
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @brief Verification of condition for ADC start conversion: ADC must be in non-multimode, or multimode with handle of ADC master (applicable for devices with several ADCs)
* @param __HANDLE__: ADC handle
* @retval None
*/
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
#define ADC_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) \
(( (((__HANDLE__)->Instance) == ADC2) \
)? \
((ADC1->CR1 & ADC_CR1_DUALMOD) == RESET) \
: \
(!RESET) \
)
#else
#define ADC_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) \
(!RESET)
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @brief Check ADC multimode setting: In case of multimode, check whether ADC master of the selected ADC has feature auto-injection enabled (applicable for devices with several ADCs)
* @param __HANDLE__: ADC handle
* @retval None
*/
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
#define ADC_MULTIMODE_AUTO_INJECTED(__HANDLE__) \
(( (((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2) \
)? \
(ADC1->CR1 & ADC_CR1_JAUTO) \
: \
(RESET) \
)
#else
#define ADC_MULTIMODE_AUTO_INJECTED(__HANDLE__) \
(RESET)
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/**
* @brief Set handle of the other ADC sharing the common multimode settings
* @param __HANDLE__: ADC handle
* @param __HANDLE_OTHER_ADC__: other ADC handle
* @retval None
*/
#define ADC_COMMON_ADC_OTHER(__HANDLE__, __HANDLE_OTHER_ADC__) \
((__HANDLE_OTHER_ADC__)->Instance = ADC2)
/**
* @brief Set handle of the ADC slave associated to the ADC master
* On STM32F1 devices, ADC slave is always ADC2 (this can be different
* on other STM32 devices)
* @param __HANDLE_MASTER__: ADC master handle
* @param __HANDLE_SLAVE__: ADC slave handle
* @retval None
*/
#define ADC_MULTI_SLAVE(__HANDLE_MASTER__, __HANDLE_SLAVE__) \
((__HANDLE_SLAVE__)->Instance = ADC2)
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
#define IS_ADC_INJECTED_RANK(CHANNEL) (((CHANNEL) == ADC_INJECTED_RANK_1) || \
((CHANNEL) == ADC_INJECTED_RANK_2) || \
((CHANNEL) == ADC_INJECTED_RANK_3) || \
((CHANNEL) == ADC_INJECTED_RANK_4))
#define IS_ADC_EXTTRIGINJEC_EDGE(EDGE) (((EDGE) == ADC_EXTERNALTRIGINJECCONV_EDGE_NONE) || \
((EDGE) == ADC_EXTERNALTRIGINJECCONV_EDGE_RISING))
/** @defgroup ADCEx_injected_nb_conv_verification ADCEx injected nb conv verification
* @{
*/
#define IS_ADC_INJECTED_NB_CONV(LENGTH) (((LENGTH) >= 1U) && ((LENGTH) <= 4U))
/**
* @}
*/
#if defined (STM32F100xB) || defined (STM32F100xE) || defined (STM32F101x6) || defined (STM32F101xB) || defined (STM32F102x6) || defined (STM32F102xB) || defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC)
#define IS_ADC_EXTTRIG(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || \
((REGTRIG) == ADC_SOFTWARE_START))
#endif
#if defined (STM32F101xE)
#define IS_ADC_EXTTRIG(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_TRGO) || \
((REGTRIG) == ADC_SOFTWARE_START))
#endif
#if defined (STM32F101xG)
#define IS_ADC_EXTTRIG(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || \
((REGTRIG) == ADC_SOFTWARE_START))
#endif
#if defined (STM32F103xE) || defined (STM32F103xG)
#define IS_ADC_EXTTRIG(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC3) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T5_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T5_CC3) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC3) || \
((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_TRGO) || \
((REGTRIG) == ADC_SOFTWARE_START))
#endif
#if defined (STM32F100xB) || defined (STM32F100xE) || defined (STM32F101x6) || defined (STM32F101xB) || defined (STM32F102x6) || defined (STM32F102xB) || defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC)
#define IS_ADC_EXTTRIGINJEC(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || \
((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
#endif
#if defined (STM32F101xE)
#define IS_ADC_EXTTRIGINJEC(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC4) || \
((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
#endif
#if defined (STM32F101xG)
#define IS_ADC_EXTTRIGINJEC(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || \
((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
#endif
#if defined (STM32F103xE) || defined (STM32F103xG)
#define IS_ADC_EXTTRIGINJEC(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_CC3) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC2) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || \
((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC4) || \
((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
#endif
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
#define IS_ADC_MODE(MODE) (((MODE) == ADC_MODE_INDEPENDENT) || \
((MODE) == ADC_DUALMODE_REGSIMULT_INJECSIMULT) || \
((MODE) == ADC_DUALMODE_REGSIMULT_ALTERTRIG) || \
((MODE) == ADC_DUALMODE_INJECSIMULT_INTERLFAST) || \
((MODE) == ADC_DUALMODE_INJECSIMULT_INTERLSLOW) || \
((MODE) == ADC_DUALMODE_INJECSIMULT) || \
((MODE) == ADC_DUALMODE_REGSIMULT) || \
((MODE) == ADC_DUALMODE_INTERLFAST) || \
((MODE) == ADC_DUALMODE_INTERLSLOW) || \
((MODE) == ADC_DUALMODE_ALTERTRIG) )
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup ADCEx_Exported_Functions
* @{
*/
/* IO operation functions *****************************************************/
/** @addtogroup ADCEx_Exported_Functions_Group1
* @{
*/
/* ADC calibration */
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc);
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout);
/* Non-blocking mode: Interruption */
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc);
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/* ADC multimode */
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length);
HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc);
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/* ADC retrieve conversion value intended to be used with polling or interruption */
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank);
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc);
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption) */
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc);
/**
* @}
*/
/* Peripheral Control functions ***********************************************/
/** @addtogroup ADCEx_Exported_Functions_Group2
* @{
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc,ADC_InjectionConfTypeDef* sConfigInjected);
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode);
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_ADC_EX_H */

View file

@ -0,0 +1,855 @@
/**
******************************************************************************
* @file stm32f1xx_hal_can.h
* @author MCD Application Team
* @brief Header file of CAN HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_CAN_H
#define STM32F1xx_HAL_CAN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#if defined (CAN1)
/** @addtogroup CAN
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CAN_Exported_Types CAN Exported Types
* @{
*/
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_CAN_STATE_RESET = 0x00U, /*!< CAN not yet initialized or disabled */
HAL_CAN_STATE_READY = 0x01U, /*!< CAN initialized and ready for use */
HAL_CAN_STATE_LISTENING = 0x02U, /*!< CAN receive process is ongoing */
HAL_CAN_STATE_SLEEP_PENDING = 0x03U, /*!< CAN sleep request is pending */
HAL_CAN_STATE_SLEEP_ACTIVE = 0x04U, /*!< CAN sleep mode is active */
HAL_CAN_STATE_ERROR = 0x05U /*!< CAN error state */
} HAL_CAN_StateTypeDef;
/**
* @brief CAN init structure definition
*/
typedef struct
{
uint32_t Prescaler; /*!< Specifies the length of a time quantum.
This parameter must be a number between Min_Data = 1 and Max_Data = 1024. */
uint32_t Mode; /*!< Specifies the CAN operating mode.
This parameter can be a value of @ref CAN_operating_mode */
uint32_t SyncJumpWidth; /*!< Specifies the maximum number of time quanta the CAN hardware
is allowed to lengthen or shorten a bit to perform resynchronization.
This parameter can be a value of @ref CAN_synchronisation_jump_width */
uint32_t TimeSeg1; /*!< Specifies the number of time quanta in Bit Segment 1.
This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_1 */
uint32_t TimeSeg2; /*!< Specifies the number of time quanta in Bit Segment 2.
This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_2 */
FunctionalState TimeTriggeredMode; /*!< Enable or disable the time triggered communication mode.
This parameter can be set to ENABLE or DISABLE. */
FunctionalState AutoBusOff; /*!< Enable or disable the automatic bus-off management.
This parameter can be set to ENABLE or DISABLE. */
FunctionalState AutoWakeUp; /*!< Enable or disable the automatic wake-up mode.
This parameter can be set to ENABLE or DISABLE. */
FunctionalState AutoRetransmission; /*!< Enable or disable the non-automatic retransmission mode.
This parameter can be set to ENABLE or DISABLE. */
FunctionalState ReceiveFifoLocked; /*!< Enable or disable the Receive FIFO Locked mode.
This parameter can be set to ENABLE or DISABLE. */
FunctionalState TransmitFifoPriority;/*!< Enable or disable the transmit FIFO priority.
This parameter can be set to ENABLE or DISABLE. */
} CAN_InitTypeDef;
/**
* @brief CAN filter configuration structure definition
*/
typedef struct
{
uint32_t FilterIdHigh; /*!< Specifies the filter identification number (MSBs for a 32-bit
configuration, first one for a 16-bit configuration).
This parameter must be a number between
Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterIdLow; /*!< Specifies the filter identification number (LSBs for a 32-bit
configuration, second one for a 16-bit configuration).
This parameter must be a number between
Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterMaskIdHigh; /*!< Specifies the filter mask number or identification number,
according to the mode (MSBs for a 32-bit configuration,
first one for a 16-bit configuration).
This parameter must be a number between
Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterMaskIdLow; /*!< Specifies the filter mask number or identification number,
according to the mode (LSBs for a 32-bit configuration,
second one for a 16-bit configuration).
This parameter must be a number between
Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t FilterFIFOAssignment; /*!< Specifies the FIFO (0 or 1U) which will be assigned to the filter.
This parameter can be a value of @ref CAN_filter_FIFO */
uint32_t FilterBank; /*!< Specifies the filter bank which will be initialized.
For single CAN instance(14 dedicated filter banks),
this parameter must be a number between Min_Data = 0 and Max_Data = 13.
For dual CAN instances(28 filter banks shared),
this parameter must be a number between Min_Data = 0 and Max_Data = 27. */
uint32_t FilterMode; /*!< Specifies the filter mode to be initialized.
This parameter can be a value of @ref CAN_filter_mode */
uint32_t FilterScale; /*!< Specifies the filter scale.
This parameter can be a value of @ref CAN_filter_scale */
uint32_t FilterActivation; /*!< Enable or disable the filter.
This parameter can be a value of @ref CAN_filter_activation */
uint32_t SlaveStartFilterBank; /*!< Select the start filter bank for the slave CAN instance.
For single CAN instances, this parameter is meaningless.
For dual CAN instances, all filter banks with lower index are assigned to master
CAN instance, whereas all filter banks with greater index are assigned to slave
CAN instance.
This parameter must be a number between Min_Data = 0 and Max_Data = 27. */
} CAN_FilterTypeDef;
/**
* @brief CAN Tx message header structure definition
*/
typedef struct
{
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF. */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF. */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will be transmitted.
This parameter can be a value of @ref CAN_identifier_type */
uint32_t RTR; /*!< Specifies the type of frame for the message that will be transmitted.
This parameter can be a value of @ref CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be transmitted.
This parameter must be a number between Min_Data = 0 and Max_Data = 8. */
FunctionalState TransmitGlobalTime; /*!< Specifies whether the timestamp counter value captured on start
of frame transmission, is sent in DATA6 and DATA7 replacing pData[6] and pData[7].
@note: Time Triggered Communication Mode must be enabled.
@note: DLC must be programmed as 8 bytes, in order these 2 bytes are sent.
This parameter can be set to ENABLE or DISABLE. */
} CAN_TxHeaderTypeDef;
/**
* @brief CAN Rx message header structure definition
*/
typedef struct
{
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF. */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF. */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will be transmitted.
This parameter can be a value of @ref CAN_identifier_type */
uint32_t RTR; /*!< Specifies the type of frame for the message that will be transmitted.
This parameter can be a value of @ref CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be transmitted.
This parameter must be a number between Min_Data = 0 and Max_Data = 8. */
uint32_t Timestamp; /*!< Specifies the timestamp counter value captured on start of frame reception.
@note: Time Triggered Communication Mode must be enabled.
This parameter must be a number between Min_Data = 0 and Max_Data = 0xFFFF. */
uint32_t FilterMatchIndex; /*!< Specifies the index of matching acceptance filter element.
This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF. */
} CAN_RxHeaderTypeDef;
/**
* @brief CAN handle Structure definition
*/
typedef struct __CAN_HandleTypeDef
{
CAN_TypeDef *Instance; /*!< Register base address */
CAN_InitTypeDef Init; /*!< CAN required parameters */
__IO HAL_CAN_StateTypeDef State; /*!< CAN communication state */
__IO uint32_t ErrorCode; /*!< CAN Error code.
This parameter can be a value of @ref CAN_Error_Code */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
void (* TxMailbox0CompleteCallback)(struct __CAN_HandleTypeDef *hcan);/*!< CAN Tx Mailbox 0 complete callback */
void (* TxMailbox1CompleteCallback)(struct __CAN_HandleTypeDef *hcan);/*!< CAN Tx Mailbox 1 complete callback */
void (* TxMailbox2CompleteCallback)(struct __CAN_HandleTypeDef *hcan);/*!< CAN Tx Mailbox 2 complete callback */
void (* TxMailbox0AbortCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Tx Mailbox 0 abort callback */
void (* TxMailbox1AbortCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Tx Mailbox 1 abort callback */
void (* TxMailbox2AbortCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Tx Mailbox 2 abort callback */
void (* RxFifo0MsgPendingCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Rx FIFO 0 msg pending callback */
void (* RxFifo0FullCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Rx FIFO 0 full callback */
void (* RxFifo1MsgPendingCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Rx FIFO 1 msg pending callback */
void (* RxFifo1FullCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Rx FIFO 1 full callback */
void (* SleepCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Sleep callback */
void (* WakeUpFromRxMsgCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Wake Up from Rx msg callback */
void (* ErrorCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Error callback */
void (* MspInitCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Msp Init callback */
void (* MspDeInitCallback)(struct __CAN_HandleTypeDef *hcan); /*!< CAN Msp DeInit callback */
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
} CAN_HandleTypeDef;
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/**
* @brief HAL CAN common Callback ID enumeration definition
*/
typedef enum
{
HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID = 0x00U, /*!< CAN Tx Mailbox 0 complete callback ID */
HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID = 0x01U, /*!< CAN Tx Mailbox 1 complete callback ID */
HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID = 0x02U, /*!< CAN Tx Mailbox 2 complete callback ID */
HAL_CAN_TX_MAILBOX0_ABORT_CB_ID = 0x03U, /*!< CAN Tx Mailbox 0 abort callback ID */
HAL_CAN_TX_MAILBOX1_ABORT_CB_ID = 0x04U, /*!< CAN Tx Mailbox 1 abort callback ID */
HAL_CAN_TX_MAILBOX2_ABORT_CB_ID = 0x05U, /*!< CAN Tx Mailbox 2 abort callback ID */
HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID = 0x06U, /*!< CAN Rx FIFO 0 message pending callback ID */
HAL_CAN_RX_FIFO0_FULL_CB_ID = 0x07U, /*!< CAN Rx FIFO 0 full callback ID */
HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID = 0x08U, /*!< CAN Rx FIFO 1 message pending callback ID */
HAL_CAN_RX_FIFO1_FULL_CB_ID = 0x09U, /*!< CAN Rx FIFO 1 full callback ID */
HAL_CAN_SLEEP_CB_ID = 0x0AU, /*!< CAN Sleep callback ID */
HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID = 0x0BU, /*!< CAN Wake Up from Rx msg callback ID */
HAL_CAN_ERROR_CB_ID = 0x0CU, /*!< CAN Error callback ID */
HAL_CAN_MSPINIT_CB_ID = 0x0DU, /*!< CAN MspInit callback ID */
HAL_CAN_MSPDEINIT_CB_ID = 0x0EU, /*!< CAN MspDeInit callback ID */
} HAL_CAN_CallbackIDTypeDef;
/**
* @brief HAL CAN Callback pointer definition
*/
typedef void (*pCAN_CallbackTypeDef)(CAN_HandleTypeDef *hcan); /*!< pointer to a CAN callback function */
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CAN_Exported_Constants CAN Exported Constants
* @{
*/
/** @defgroup CAN_Error_Code CAN Error Code
* @{
*/
#define HAL_CAN_ERROR_NONE (0x00000000U) /*!< No error */
#define HAL_CAN_ERROR_EWG (0x00000001U) /*!< Protocol Error Warning */
#define HAL_CAN_ERROR_EPV (0x00000002U) /*!< Error Passive */
#define HAL_CAN_ERROR_BOF (0x00000004U) /*!< Bus-off error */
#define HAL_CAN_ERROR_STF (0x00000008U) /*!< Stuff error */
#define HAL_CAN_ERROR_FOR (0x00000010U) /*!< Form error */
#define HAL_CAN_ERROR_ACK (0x00000020U) /*!< Acknowledgment error */
#define HAL_CAN_ERROR_BR (0x00000040U) /*!< Bit recessive error */
#define HAL_CAN_ERROR_BD (0x00000080U) /*!< Bit dominant error */
#define HAL_CAN_ERROR_CRC (0x00000100U) /*!< CRC error */
#define HAL_CAN_ERROR_RX_FOV0 (0x00000200U) /*!< Rx FIFO0 overrun error */
#define HAL_CAN_ERROR_RX_FOV1 (0x00000400U) /*!< Rx FIFO1 overrun error */
#define HAL_CAN_ERROR_TX_ALST0 (0x00000800U) /*!< TxMailbox 0 transmit failure due to arbitration lost */
#define HAL_CAN_ERROR_TX_TERR0 (0x00001000U) /*!< TxMailbox 0 transmit failure due to transmit error */
#define HAL_CAN_ERROR_TX_ALST1 (0x00002000U) /*!< TxMailbox 1 transmit failure due to arbitration lost */
#define HAL_CAN_ERROR_TX_TERR1 (0x00004000U) /*!< TxMailbox 1 transmit failure due to transmit error */
#define HAL_CAN_ERROR_TX_ALST2 (0x00008000U) /*!< TxMailbox 2 transmit failure due to arbitration lost */
#define HAL_CAN_ERROR_TX_TERR2 (0x00010000U) /*!< TxMailbox 2 transmit failure due to transmit error */
#define HAL_CAN_ERROR_TIMEOUT (0x00020000U) /*!< Timeout error */
#define HAL_CAN_ERROR_NOT_INITIALIZED (0x00040000U) /*!< Peripheral not initialized */
#define HAL_CAN_ERROR_NOT_READY (0x00080000U) /*!< Peripheral not ready */
#define HAL_CAN_ERROR_NOT_STARTED (0x00100000U) /*!< Peripheral not started */
#define HAL_CAN_ERROR_PARAM (0x00200000U) /*!< Parameter error */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
#define HAL_CAN_ERROR_INVALID_CALLBACK (0x00400000U) /*!< Invalid Callback error */
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
#define HAL_CAN_ERROR_INTERNAL (0x00800000U) /*!< Internal error */
/**
* @}
*/
/** @defgroup CAN_InitStatus CAN InitStatus
* @{
*/
#define CAN_INITSTATUS_FAILED (0x00000000U) /*!< CAN initialization failed */
#define CAN_INITSTATUS_SUCCESS (0x00000001U) /*!< CAN initialization OK */
/**
* @}
*/
/** @defgroup CAN_operating_mode CAN Operating Mode
* @{
*/
#define CAN_MODE_NORMAL (0x00000000U) /*!< Normal mode */
#define CAN_MODE_LOOPBACK ((uint32_t)CAN_BTR_LBKM) /*!< Loopback mode */
#define CAN_MODE_SILENT ((uint32_t)CAN_BTR_SILM) /*!< Silent mode */
#define CAN_MODE_SILENT_LOOPBACK ((uint32_t)(CAN_BTR_LBKM | CAN_BTR_SILM)) /*!< Loopback combined with
silent mode */
/**
* @}
*/
/** @defgroup CAN_synchronisation_jump_width CAN Synchronization Jump Width
* @{
*/
#define CAN_SJW_1TQ (0x00000000U) /*!< 1 time quantum */
#define CAN_SJW_2TQ ((uint32_t)CAN_BTR_SJW_0) /*!< 2 time quantum */
#define CAN_SJW_3TQ ((uint32_t)CAN_BTR_SJW_1) /*!< 3 time quantum */
#define CAN_SJW_4TQ ((uint32_t)CAN_BTR_SJW) /*!< 4 time quantum */
/**
* @}
*/
/** @defgroup CAN_time_quantum_in_bit_segment_1 CAN Time Quantum in Bit Segment 1
* @{
*/
#define CAN_BS1_1TQ (0x00000000U) /*!< 1 time quantum */
#define CAN_BS1_2TQ ((uint32_t)CAN_BTR_TS1_0) /*!< 2 time quantum */
#define CAN_BS1_3TQ ((uint32_t)CAN_BTR_TS1_1) /*!< 3 time quantum */
#define CAN_BS1_4TQ ((uint32_t)(CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 4 time quantum */
#define CAN_BS1_5TQ ((uint32_t)CAN_BTR_TS1_2) /*!< 5 time quantum */
#define CAN_BS1_6TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_0)) /*!< 6 time quantum */
#define CAN_BS1_7TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1)) /*!< 7 time quantum */
#define CAN_BS1_8TQ ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 8 time quantum */
#define CAN_BS1_9TQ ((uint32_t)CAN_BTR_TS1_3) /*!< 9 time quantum */
#define CAN_BS1_10TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_0)) /*!< 10 time quantum */
#define CAN_BS1_11TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1)) /*!< 11 time quantum */
#define CAN_BS1_12TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0)) /*!< 12 time quantum */
#define CAN_BS1_13TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2)) /*!< 13 time quantum */
#define CAN_BS1_14TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_0)) /*!< 14 time quantum */
#define CAN_BS1_15TQ ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_1)) /*!< 15 time quantum */
#define CAN_BS1_16TQ ((uint32_t)CAN_BTR_TS1) /*!< 16 time quantum */
/**
* @}
*/
/** @defgroup CAN_time_quantum_in_bit_segment_2 CAN Time Quantum in Bit Segment 2
* @{
*/
#define CAN_BS2_1TQ (0x00000000U) /*!< 1 time quantum */
#define CAN_BS2_2TQ ((uint32_t)CAN_BTR_TS2_0) /*!< 2 time quantum */
#define CAN_BS2_3TQ ((uint32_t)CAN_BTR_TS2_1) /*!< 3 time quantum */
#define CAN_BS2_4TQ ((uint32_t)(CAN_BTR_TS2_1 | CAN_BTR_TS2_0)) /*!< 4 time quantum */
#define CAN_BS2_5TQ ((uint32_t)CAN_BTR_TS2_2) /*!< 5 time quantum */
#define CAN_BS2_6TQ ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_0)) /*!< 6 time quantum */
#define CAN_BS2_7TQ ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_1)) /*!< 7 time quantum */
#define CAN_BS2_8TQ ((uint32_t)CAN_BTR_TS2) /*!< 8 time quantum */
/**
* @}
*/
/** @defgroup CAN_filter_mode CAN Filter Mode
* @{
*/
#define CAN_FILTERMODE_IDMASK (0x00000000U) /*!< Identifier mask mode */
#define CAN_FILTERMODE_IDLIST (0x00000001U) /*!< Identifier list mode */
/**
* @}
*/
/** @defgroup CAN_filter_scale CAN Filter Scale
* @{
*/
#define CAN_FILTERSCALE_16BIT (0x00000000U) /*!< Two 16-bit filters */
#define CAN_FILTERSCALE_32BIT (0x00000001U) /*!< One 32-bit filter */
/**
* @}
*/
/** @defgroup CAN_filter_activation CAN Filter Activation
* @{
*/
#define CAN_FILTER_DISABLE (0x00000000U) /*!< Disable filter */
#define CAN_FILTER_ENABLE (0x00000001U) /*!< Enable filter */
/**
* @}
*/
/** @defgroup CAN_filter_FIFO CAN Filter FIFO
* @{
*/
#define CAN_FILTER_FIFO0 (0x00000000U) /*!< Filter FIFO 0 assignment for filter x */
#define CAN_FILTER_FIFO1 (0x00000001U) /*!< Filter FIFO 1 assignment for filter x */
/**
* @}
*/
/** @defgroup CAN_identifier_type CAN Identifier Type
* @{
*/
#define CAN_ID_STD (0x00000000U) /*!< Standard Id */
#define CAN_ID_EXT (0x00000004U) /*!< Extended Id */
/**
* @}
*/
/** @defgroup CAN_remote_transmission_request CAN Remote Transmission Request
* @{
*/
#define CAN_RTR_DATA (0x00000000U) /*!< Data frame */
#define CAN_RTR_REMOTE (0x00000002U) /*!< Remote frame */
/**
* @}
*/
/** @defgroup CAN_receive_FIFO_number CAN Receive FIFO Number
* @{
*/
#define CAN_RX_FIFO0 (0x00000000U) /*!< CAN receive FIFO 0 */
#define CAN_RX_FIFO1 (0x00000001U) /*!< CAN receive FIFO 1 */
/**
* @}
*/
/** @defgroup CAN_Tx_Mailboxes CAN Tx Mailboxes
* @{
*/
#define CAN_TX_MAILBOX0 (0x00000001U) /*!< Tx Mailbox 0 */
#define CAN_TX_MAILBOX1 (0x00000002U) /*!< Tx Mailbox 1 */
#define CAN_TX_MAILBOX2 (0x00000004U) /*!< Tx Mailbox 2 */
/**
* @}
*/
/** @defgroup CAN_flags CAN Flags
* @{
*/
/* Transmit Flags */
#define CAN_FLAG_RQCP0 (0x00000500U) /*!< Request complete MailBox 0 flag */
#define CAN_FLAG_TXOK0 (0x00000501U) /*!< Transmission OK MailBox 0 flag */
#define CAN_FLAG_ALST0 (0x00000502U) /*!< Arbitration Lost MailBox 0 flag */
#define CAN_FLAG_TERR0 (0x00000503U) /*!< Transmission error MailBox 0 flag */
#define CAN_FLAG_RQCP1 (0x00000508U) /*!< Request complete MailBox1 flag */
#define CAN_FLAG_TXOK1 (0x00000509U) /*!< Transmission OK MailBox 1 flag */
#define CAN_FLAG_ALST1 (0x0000050AU) /*!< Arbitration Lost MailBox 1 flag */
#define CAN_FLAG_TERR1 (0x0000050BU) /*!< Transmission error MailBox 1 flag */
#define CAN_FLAG_RQCP2 (0x00000510U) /*!< Request complete MailBox2 flag */
#define CAN_FLAG_TXOK2 (0x00000511U) /*!< Transmission OK MailBox 2 flag */
#define CAN_FLAG_ALST2 (0x00000512U) /*!< Arbitration Lost MailBox 2 flag */
#define CAN_FLAG_TERR2 (0x00000513U) /*!< Transmission error MailBox 2 flag */
#define CAN_FLAG_TME0 (0x0000051AU) /*!< Transmit mailbox 0 empty flag */
#define CAN_FLAG_TME1 (0x0000051BU) /*!< Transmit mailbox 1 empty flag */
#define CAN_FLAG_TME2 (0x0000051CU) /*!< Transmit mailbox 2 empty flag */
#define CAN_FLAG_LOW0 (0x0000051DU) /*!< Lowest priority mailbox 0 flag */
#define CAN_FLAG_LOW1 (0x0000051EU) /*!< Lowest priority mailbox 1 flag */
#define CAN_FLAG_LOW2 (0x0000051FU) /*!< Lowest priority mailbox 2 flag */
/* Receive Flags */
#define CAN_FLAG_FF0 (0x00000203U) /*!< RX FIFO 0 Full flag */
#define CAN_FLAG_FOV0 (0x00000204U) /*!< RX FIFO 0 Overrun flag */
#define CAN_FLAG_FF1 (0x00000403U) /*!< RX FIFO 1 Full flag */
#define CAN_FLAG_FOV1 (0x00000404U) /*!< RX FIFO 1 Overrun flag */
/* Operating Mode Flags */
#define CAN_FLAG_INAK (0x00000100U) /*!< Initialization acknowledge flag */
#define CAN_FLAG_SLAK (0x00000101U) /*!< Sleep acknowledge flag */
#define CAN_FLAG_ERRI (0x00000102U) /*!< Error flag */
#define CAN_FLAG_WKU (0x00000103U) /*!< Wake up interrupt flag */
#define CAN_FLAG_SLAKI (0x00000104U) /*!< Sleep acknowledge interrupt flag */
/* Error Flags */
#define CAN_FLAG_EWG (0x00000300U) /*!< Error warning flag */
#define CAN_FLAG_EPV (0x00000301U) /*!< Error passive flag */
#define CAN_FLAG_BOF (0x00000302U) /*!< Bus-Off flag */
/**
* @}
*/
/** @defgroup CAN_Interrupts CAN Interrupts
* @{
*/
/* Transmit Interrupt */
#define CAN_IT_TX_MAILBOX_EMPTY ((uint32_t)CAN_IER_TMEIE) /*!< Transmit mailbox empty interrupt */
/* Receive Interrupts */
#define CAN_IT_RX_FIFO0_MSG_PENDING ((uint32_t)CAN_IER_FMPIE0) /*!< FIFO 0 message pending interrupt */
#define CAN_IT_RX_FIFO0_FULL ((uint32_t)CAN_IER_FFIE0) /*!< FIFO 0 full interrupt */
#define CAN_IT_RX_FIFO0_OVERRUN ((uint32_t)CAN_IER_FOVIE0) /*!< FIFO 0 overrun interrupt */
#define CAN_IT_RX_FIFO1_MSG_PENDING ((uint32_t)CAN_IER_FMPIE1) /*!< FIFO 1 message pending interrupt */
#define CAN_IT_RX_FIFO1_FULL ((uint32_t)CAN_IER_FFIE1) /*!< FIFO 1 full interrupt */
#define CAN_IT_RX_FIFO1_OVERRUN ((uint32_t)CAN_IER_FOVIE1) /*!< FIFO 1 overrun interrupt */
/* Operating Mode Interrupts */
#define CAN_IT_WAKEUP ((uint32_t)CAN_IER_WKUIE) /*!< Wake-up interrupt */
#define CAN_IT_SLEEP_ACK ((uint32_t)CAN_IER_SLKIE) /*!< Sleep acknowledge interrupt */
/* Error Interrupts */
#define CAN_IT_ERROR_WARNING ((uint32_t)CAN_IER_EWGIE) /*!< Error warning interrupt */
#define CAN_IT_ERROR_PASSIVE ((uint32_t)CAN_IER_EPVIE) /*!< Error passive interrupt */
#define CAN_IT_BUSOFF ((uint32_t)CAN_IER_BOFIE) /*!< Bus-off interrupt */
#define CAN_IT_LAST_ERROR_CODE ((uint32_t)CAN_IER_LECIE) /*!< Last error code interrupt */
#define CAN_IT_ERROR ((uint32_t)CAN_IER_ERRIE) /*!< Error Interrupt */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup CAN_Exported_Macros CAN Exported Macros
* @{
*/
/** @brief Reset CAN handle state
* @param __HANDLE__ CAN handle.
* @retval None
*/
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
#define __HAL_CAN_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_CAN_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_CAN_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CAN_STATE_RESET)
#endif /*USE_HAL_CAN_REGISTER_CALLBACKS */
/**
* @brief Enable the specified CAN interrupts.
* @param __HANDLE__ CAN handle.
* @param __INTERRUPT__ CAN Interrupt sources to enable.
* This parameter can be any combination of @arg CAN_Interrupts
* @retval None
*/
#define __HAL_CAN_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) |= (__INTERRUPT__))
/**
* @brief Disable the specified CAN interrupts.
* @param __HANDLE__ CAN handle.
* @param __INTERRUPT__ CAN Interrupt sources to disable.
* This parameter can be any combination of @arg CAN_Interrupts
* @retval None
*/
#define __HAL_CAN_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) &= ~(__INTERRUPT__))
/** @brief Check if the specified CAN interrupt source is enabled or disabled.
* @param __HANDLE__ specifies the CAN Handle.
* @param __INTERRUPT__ specifies the CAN interrupt source to check.
* This parameter can be a value of @arg CAN_Interrupts
* @retval The state of __IT__ (TRUE or FALSE).
*/
#define __HAL_CAN_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) & (__INTERRUPT__))
/** @brief Check whether the specified CAN flag is set or not.
* @param __HANDLE__ specifies the CAN Handle.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of @arg CAN_flags
* @retval The state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_CAN_GET_FLAG(__HANDLE__, __FLAG__) \
((((__FLAG__) >> 8U) == 5U)? ((((__HANDLE__)->Instance->TSR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 2U)? ((((__HANDLE__)->Instance->RF0R) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 4U)? ((((__HANDLE__)->Instance->RF1R) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 1U)? ((((__HANDLE__)->Instance->MSR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 3U)? ((((__HANDLE__)->Instance->ESR) & (1U << ((__FLAG__) & CAN_FLAG_MASK))) == (1U << ((__FLAG__) & CAN_FLAG_MASK))): 0U)
/** @brief Clear the specified CAN pending flag.
* @param __HANDLE__ specifies the CAN Handle.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg CAN_FLAG_RQCP0: Request complete MailBox 0 Flag
* @arg CAN_FLAG_TXOK0: Transmission OK MailBox 0 Flag
* @arg CAN_FLAG_ALST0: Arbitration Lost MailBox 0 Flag
* @arg CAN_FLAG_TERR0: Transmission error MailBox 0 Flag
* @arg CAN_FLAG_RQCP1: Request complete MailBox 1 Flag
* @arg CAN_FLAG_TXOK1: Transmission OK MailBox 1 Flag
* @arg CAN_FLAG_ALST1: Arbitration Lost MailBox 1 Flag
* @arg CAN_FLAG_TERR1: Transmission error MailBox 1 Flag
* @arg CAN_FLAG_RQCP2: Request complete MailBox 2 Flag
* @arg CAN_FLAG_TXOK2: Transmission OK MailBox 2 Flag
* @arg CAN_FLAG_ALST2: Arbitration Lost MailBox 2 Flag
* @arg CAN_FLAG_TERR2: Transmission error MailBox 2 Flag
* @arg CAN_FLAG_FF0: RX FIFO 0 Full Flag
* @arg CAN_FLAG_FOV0: RX FIFO 0 Overrun Flag
* @arg CAN_FLAG_FF1: RX FIFO 1 Full Flag
* @arg CAN_FLAG_FOV1: RX FIFO 1 Overrun Flag
* @arg CAN_FLAG_WKUI: Wake up Interrupt Flag
* @arg CAN_FLAG_SLAKI: Sleep acknowledge Interrupt Flag
* @retval None
*/
#define __HAL_CAN_CLEAR_FLAG(__HANDLE__, __FLAG__) \
((((__FLAG__) >> 8U) == 5U)? (((__HANDLE__)->Instance->TSR) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 2U)? (((__HANDLE__)->Instance->RF0R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 4U)? (((__HANDLE__)->Instance->RF1R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
(((__FLAG__) >> 8U) == 1U)? (((__HANDLE__)->Instance->MSR) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): 0U)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CAN_Exported_Functions CAN Exported Functions
* @{
*/
/** @addtogroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
* @{
*/
/* Initialization and de-initialization functions *****************************/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan);
void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan);
void HAL_CAN_MspDeInit(CAN_HandleTypeDef *hcan);
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Callbacks Register/UnRegister functions ***********************************/
HAL_StatusTypeDef HAL_CAN_RegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID,
void (* pCallback)(CAN_HandleTypeDef *_hcan));
HAL_StatusTypeDef HAL_CAN_UnRegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID);
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group2 Configuration functions
* @brief Configuration functions
* @{
*/
/* Configuration functions ****************************************************/
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef *hcan, const CAN_FilterTypeDef *sFilterConfig);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group3 Control functions
* @brief Control functions
* @{
*/
/* Control functions **********************************************************/
HAL_StatusTypeDef HAL_CAN_Start(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_Stop(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan);
uint32_t HAL_CAN_IsSleepActive(const CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan, const CAN_TxHeaderTypeDef *pHeader,
const uint8_t aData[], uint32_t *pTxMailbox);
HAL_StatusTypeDef HAL_CAN_AbortTxRequest(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes);
uint32_t HAL_CAN_GetTxMailboxesFreeLevel(const CAN_HandleTypeDef *hcan);
uint32_t HAL_CAN_IsTxMessagePending(const CAN_HandleTypeDef *hcan, uint32_t TxMailboxes);
uint32_t HAL_CAN_GetTxTimestamp(const CAN_HandleTypeDef *hcan, uint32_t TxMailbox);
HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo,
CAN_RxHeaderTypeDef *pHeader, uint8_t aData[]);
uint32_t HAL_CAN_GetRxFifoFillLevel(const CAN_HandleTypeDef *hcan, uint32_t RxFifo);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group4 Interrupts management
* @brief Interrupts management
* @{
*/
/* Interrupts management ******************************************************/
HAL_StatusTypeDef HAL_CAN_ActivateNotification(CAN_HandleTypeDef *hcan, uint32_t ActiveITs);
HAL_StatusTypeDef HAL_CAN_DeactivateNotification(CAN_HandleTypeDef *hcan, uint32_t InactiveITs);
void HAL_CAN_IRQHandler(CAN_HandleTypeDef *hcan);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group5 Callback functions
* @brief Callback functions
* @{
*/
/* Callbacks functions ********************************************************/
void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_TxMailbox0AbortCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_TxMailbox1AbortCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_TxMailbox2AbortCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_RxFifo0FullCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_RxFifo1FullCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_SleepCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_WakeUpFromRxMsgCallback(CAN_HandleTypeDef *hcan);
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan);
/**
* @}
*/
/** @addtogroup CAN_Exported_Functions_Group6 Peripheral State and Error functions
* @brief CAN Peripheral State functions
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_CAN_StateTypeDef HAL_CAN_GetState(const CAN_HandleTypeDef *hcan);
uint32_t HAL_CAN_GetError(const CAN_HandleTypeDef *hcan);
HAL_StatusTypeDef HAL_CAN_ResetError(CAN_HandleTypeDef *hcan);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/** @defgroup CAN_Private_Types CAN Private Types
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup CAN_Private_Variables CAN Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup CAN_Private_Constants CAN Private Constants
* @{
*/
#define CAN_FLAG_MASK (0x000000FFU)
/**
* @}
*/
/* Private Macros -----------------------------------------------------------*/
/** @defgroup CAN_Private_Macros CAN Private Macros
* @{
*/
#define IS_CAN_MODE(MODE) (((MODE) == CAN_MODE_NORMAL) || \
((MODE) == CAN_MODE_LOOPBACK)|| \
((MODE) == CAN_MODE_SILENT) || \
((MODE) == CAN_MODE_SILENT_LOOPBACK))
#define IS_CAN_SJW(SJW) (((SJW) == CAN_SJW_1TQ) || ((SJW) == CAN_SJW_2TQ) || \
((SJW) == CAN_SJW_3TQ) || ((SJW) == CAN_SJW_4TQ))
#define IS_CAN_BS1(BS1) (((BS1) == CAN_BS1_1TQ) || ((BS1) == CAN_BS1_2TQ) || \
((BS1) == CAN_BS1_3TQ) || ((BS1) == CAN_BS1_4TQ) || \
((BS1) == CAN_BS1_5TQ) || ((BS1) == CAN_BS1_6TQ) || \
((BS1) == CAN_BS1_7TQ) || ((BS1) == CAN_BS1_8TQ) || \
((BS1) == CAN_BS1_9TQ) || ((BS1) == CAN_BS1_10TQ)|| \
((BS1) == CAN_BS1_11TQ)|| ((BS1) == CAN_BS1_12TQ)|| \
((BS1) == CAN_BS1_13TQ)|| ((BS1) == CAN_BS1_14TQ)|| \
((BS1) == CAN_BS1_15TQ)|| ((BS1) == CAN_BS1_16TQ))
#define IS_CAN_BS2(BS2) (((BS2) == CAN_BS2_1TQ) || ((BS2) == CAN_BS2_2TQ) || \
((BS2) == CAN_BS2_3TQ) || ((BS2) == CAN_BS2_4TQ) || \
((BS2) == CAN_BS2_5TQ) || ((BS2) == CAN_BS2_6TQ) || \
((BS2) == CAN_BS2_7TQ) || ((BS2) == CAN_BS2_8TQ))
#define IS_CAN_PRESCALER(PRESCALER) (((PRESCALER) >= 1U) && ((PRESCALER) <= 1024U))
#define IS_CAN_FILTER_ID_HALFWORD(HALFWORD) ((HALFWORD) <= 0xFFFFU)
#if defined(CAN2)
#define IS_CAN_FILTER_BANK_DUAL(BANK) ((BANK) <= 27U)
#endif
#define IS_CAN_FILTER_BANK_SINGLE(BANK) ((BANK) <= 13U)
#define IS_CAN_FILTER_MODE(MODE) (((MODE) == CAN_FILTERMODE_IDMASK) || \
((MODE) == CAN_FILTERMODE_IDLIST))
#define IS_CAN_FILTER_SCALE(SCALE) (((SCALE) == CAN_FILTERSCALE_16BIT) || \
((SCALE) == CAN_FILTERSCALE_32BIT))
#define IS_CAN_FILTER_ACTIVATION(ACTIVATION) (((ACTIVATION) == CAN_FILTER_DISABLE) || \
((ACTIVATION) == CAN_FILTER_ENABLE))
#define IS_CAN_FILTER_FIFO(FIFO) (((FIFO) == CAN_FILTER_FIFO0) || \
((FIFO) == CAN_FILTER_FIFO1))
#define IS_CAN_TX_MAILBOX(TRANSMITMAILBOX) (((TRANSMITMAILBOX) == CAN_TX_MAILBOX0 ) || \
((TRANSMITMAILBOX) == CAN_TX_MAILBOX1 ) || \
((TRANSMITMAILBOX) == CAN_TX_MAILBOX2 ))
#define IS_CAN_TX_MAILBOX_LIST(TRANSMITMAILBOX) ((TRANSMITMAILBOX) <= (CAN_TX_MAILBOX0 | CAN_TX_MAILBOX1 | \
CAN_TX_MAILBOX2))
#define IS_CAN_STDID(STDID) ((STDID) <= 0x7FFU)
#define IS_CAN_EXTID(EXTID) ((EXTID) <= 0x1FFFFFFFU)
#define IS_CAN_DLC(DLC) ((DLC) <= 8U)
#define IS_CAN_IDTYPE(IDTYPE) (((IDTYPE) == CAN_ID_STD) || \
((IDTYPE) == CAN_ID_EXT))
#define IS_CAN_RTR(RTR) (((RTR) == CAN_RTR_DATA) || ((RTR) == CAN_RTR_REMOTE))
#define IS_CAN_RX_FIFO(FIFO) (((FIFO) == CAN_RX_FIFO0) || ((FIFO) == CAN_RX_FIFO1))
#define IS_CAN_IT(IT) ((IT) <= (CAN_IT_TX_MAILBOX_EMPTY | CAN_IT_RX_FIFO0_MSG_PENDING | \
CAN_IT_RX_FIFO0_FULL | CAN_IT_RX_FIFO0_OVERRUN | \
CAN_IT_RX_FIFO1_MSG_PENDING | CAN_IT_RX_FIFO1_FULL | \
CAN_IT_RX_FIFO1_OVERRUN | CAN_IT_WAKEUP | \
CAN_IT_SLEEP_ACK | CAN_IT_ERROR_WARNING | \
CAN_IT_ERROR_PASSIVE | CAN_IT_BUSOFF | \
CAN_IT_LAST_ERROR_CODE | CAN_IT_ERROR))
/**
* @}
*/
/* End of private macros -----------------------------------------------------*/
/**
* @}
*/
#endif /* CAN1 */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_CAN_H */

View file

@ -0,0 +1,559 @@
/**
******************************************************************************
* @file stm32f1xx_hal_cec.h
* @author MCD Application Team
* @brief Header file of CEC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_CEC_H
#define __STM32F1xx_HAL_CEC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined (CEC)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup CEC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CEC_Exported_Types CEC Exported Types
* @{
*/
/**
* @brief CEC Init Structure definition
*/
typedef struct
{
uint32_t TimingErrorFree; /*!< Configures the CEC Bit Timing Error Mode.
This parameter can be a value of CEC_BitTimingErrorMode */
uint32_t PeriodErrorFree; /*!< Configures the CEC Bit Period Error Mode.
This parameter can be a value of CEC_BitPeriodErrorMode */
uint16_t OwnAddress; /*!< Own addresses configuration
This parameter can be a value of @ref CEC_OWN_ADDRESS */
uint8_t *RxBuffer; /*!< CEC Rx buffer pointer */
} CEC_InitTypeDef;
/**
* @brief HAL CEC State definition
* @note HAL CEC State value is a combination of 2 different substates: gState and RxState
(see @ref CEC_State_Definition).
* - gState contains CEC state information related to global Handle management
* and also information related to Tx operations.
* gState value coding follow below described bitmap :
* b7 (not used)
* x : Should be set to 0
* b6 Error information
* 0 : No Error
* 1 : Error
* b5 CEC peripheral initialization status
* 0 : Reset (peripheral not initialized)
* 1 : Init done (peripheral initialized. HAL CEC Init function already called)
* b4-b3 (not used)
* xx : Should be set to 00
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (peripheral busy with some configuration or internal operations)
* b1 (not used)
* x : Should be set to 0
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
* - RxState contains information related to Rx operations.
* RxState value coding follow below described bitmap :
* b7-b6 (not used)
* xx : Should be set to 00
* b5 CEC peripheral initialization status
* 0 : Reset (peripheral not initialized)
* 1 : Init done (peripheral initialized)
* b4-b2 (not used)
* xxx : Should be set to 000
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 (not used)
* x : Should be set to 0.
*/
typedef enum
{
HAL_CEC_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized
Value is allowed for gState and RxState */
HAL_CEC_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use
Value is allowed for gState and RxState */
HAL_CEC_STATE_BUSY = 0x24U, /*!< an internal process is ongoing
Value is allowed for gState only */
HAL_CEC_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing
Value is allowed for RxState only */
HAL_CEC_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing
Value is allowed for gState only */
HAL_CEC_STATE_BUSY_RX_TX = 0x23U, /*!< an internal process is ongoing
Value is allowed for gState only */
HAL_CEC_STATE_ERROR = 0x60U /*!< Error Value is allowed for gState only */
} HAL_CEC_StateTypeDef;
/**
* @brief CEC handle Structure definition
*/
typedef struct __CEC_HandleTypeDef
{
CEC_TypeDef *Instance; /*!< CEC registers base address */
CEC_InitTypeDef Init; /*!< CEC communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to CEC Tx transfer Buffer */
uint16_t TxXferCount; /*!< CEC Tx Transfer Counter */
uint16_t RxXferSize; /*!< CEC Rx Transfer size, 0: header received only */
HAL_LockTypeDef Lock; /*!< Locking object */
HAL_CEC_StateTypeDef gState; /*!< CEC state information related to global Handle management
and also related to Tx operations.
This parameter can be a value of @ref HAL_CEC_StateTypeDef */
HAL_CEC_StateTypeDef RxState; /*!< CEC state information related to Rx operations.
This parameter can be a value of @ref HAL_CEC_StateTypeDef */
uint32_t ErrorCode; /*!< For errors handling purposes, copy of ISR register
in case error is reported */
#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1)
void (* TxCpltCallback)(struct __CEC_HandleTypeDef *hcec); /*!< CEC Tx Transfer completed callback */
void (* RxCpltCallback)(struct __CEC_HandleTypeDef *hcec,
uint32_t RxFrameSize); /*!< CEC Rx Transfer completed callback */
void (* ErrorCallback)(struct __CEC_HandleTypeDef *hcec); /*!< CEC error callback */
void (* MspInitCallback)(struct __CEC_HandleTypeDef *hcec); /*!< CEC Msp Init callback */
void (* MspDeInitCallback)(struct __CEC_HandleTypeDef *hcec); /*!< CEC Msp DeInit callback */
#endif /* (USE_HAL_CEC_REGISTER_CALLBACKS) */
} CEC_HandleTypeDef;
#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1)
/**
* @brief HAL CEC Callback ID enumeration definition
*/
typedef enum
{
HAL_CEC_TX_CPLT_CB_ID = 0x00U, /*!< CEC Tx Transfer completed callback ID */
HAL_CEC_RX_CPLT_CB_ID = 0x01U, /*!< CEC Rx Transfer completed callback ID */
HAL_CEC_ERROR_CB_ID = 0x02U, /*!< CEC error callback ID */
HAL_CEC_MSPINIT_CB_ID = 0x03U, /*!< CEC Msp Init callback ID */
HAL_CEC_MSPDEINIT_CB_ID = 0x04U /*!< CEC Msp DeInit callback ID */
} HAL_CEC_CallbackIDTypeDef;
/**
* @brief HAL CEC Callback pointer definition
*/
typedef void (*pCEC_CallbackTypeDef)(CEC_HandleTypeDef *hcec); /*!< pointer to an CEC callback function */
typedef void (*pCEC_RxCallbackTypeDef)(CEC_HandleTypeDef *hcec,
uint32_t RxFrameSize); /*!< pointer to an Rx Transfer completed
callback function */
#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CEC_Exported_Constants CEC Exported Constants
* @{
*/
/** @defgroup CEC_Error_Code CEC Error Code
* @{
*/
#define HAL_CEC_ERROR_NONE 0x00000000U /*!< no error */
#define HAL_CEC_ERROR_BTE CEC_ESR_BTE /*!< Bit Timing Error */
#define HAL_CEC_ERROR_BPE CEC_ESR_BPE /*!< Bit Period Error */
#define HAL_CEC_ERROR_RBTFE CEC_ESR_RBTFE /*!< Rx Block Transfer Finished Error */
#define HAL_CEC_ERROR_SBE CEC_ESR_SBE /*!< Start Bit Error */
#define HAL_CEC_ERROR_ACKE CEC_ESR_ACKE /*!< Block Acknowledge Error */
#define HAL_CEC_ERROR_LINE CEC_ESR_LINE /*!< Line Error */
#define HAL_CEC_ERROR_TBTFE CEC_ESR_TBTFE /*!< Tx Block Transfer Finished Error */
#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1)
#define HAL_CEC_ERROR_INVALID_CALLBACK ((uint32_t)0x00000080U) /*!< Invalid Callback Error */
#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup CEC_BitTimingErrorMode Bit Timing Error Mode
* @{
*/
#define CEC_BIT_TIMING_ERROR_MODE_STANDARD 0x00000000U /*!< Bit timing error Standard Mode */
#define CEC_BIT_TIMING_ERROR_MODE_ERRORFREE CEC_CFGR_BTEM /*!< Bit timing error Free Mode */
/**
* @}
*/
/** @defgroup CEC_BitPeriodErrorMode Bit Period Error Mode
* @{
*/
#define CEC_BIT_PERIOD_ERROR_MODE_STANDARD 0x00000000U /*!< Bit period error Standard Mode */
#define CEC_BIT_PERIOD_ERROR_MODE_FLEXIBLE CEC_CFGR_BPEM /*!< Bit period error Flexible Mode */
/**
* @}
*/
/** @defgroup CEC_Initiator_Position CEC Initiator logical address position in message header
* @{
*/
#define CEC_INITIATOR_LSB_POS 4U
/**
* @}
*/
/** @defgroup CEC_OWN_ADDRESS CEC Own Address
* @{
*/
#define CEC_OWN_ADDRESS_NONE CEC_OWN_ADDRESS_0 /* Reset value */
#define CEC_OWN_ADDRESS_0 ((uint16_t)0x0000U) /* Logical Address 0 */
#define CEC_OWN_ADDRESS_1 ((uint16_t)0x0001U) /* Logical Address 1 */
#define CEC_OWN_ADDRESS_2 ((uint16_t)0x0002U) /* Logical Address 2 */
#define CEC_OWN_ADDRESS_3 ((uint16_t)0x0003U) /* Logical Address 3 */
#define CEC_OWN_ADDRESS_4 ((uint16_t)0x0004U) /* Logical Address 4 */
#define CEC_OWN_ADDRESS_5 ((uint16_t)0x0005U) /* Logical Address 5 */
#define CEC_OWN_ADDRESS_6 ((uint16_t)0x0006U) /* Logical Address 6 */
#define CEC_OWN_ADDRESS_7 ((uint16_t)0x0007U) /* Logical Address 7 */
#define CEC_OWN_ADDRESS_8 ((uint16_t)0x0008U) /* Logical Address 8 */
#define CEC_OWN_ADDRESS_9 ((uint16_t)0x0009U) /* Logical Address 9 */
#define CEC_OWN_ADDRESS_10 ((uint16_t)0x000AU) /* Logical Address 10 */
#define CEC_OWN_ADDRESS_11 ((uint16_t)0x000BU) /* Logical Address 11 */
#define CEC_OWN_ADDRESS_12 ((uint16_t)0x000CU) /* Logical Address 12 */
#define CEC_OWN_ADDRESS_13 ((uint16_t)0x000DU) /* Logical Address 13 */
#define CEC_OWN_ADDRESS_14 ((uint16_t)0x000EU) /* Logical Address 14 */
#define CEC_OWN_ADDRESS_15 ((uint16_t)0x000FU) /* Logical Address 15 */
/**
* @}
*/
/** @defgroup CEC_Interrupts_Definitions Interrupts definition
* @{
*/
#define CEC_IT_IE CEC_CFGR_IE
/**
* @}
*/
/** @defgroup CEC_Flags_Definitions Flags definition
* @{
*/
#define CEC_FLAG_TSOM CEC_CSR_TSOM
#define CEC_FLAG_TEOM CEC_CSR_TEOM
#define CEC_FLAG_TERR CEC_CSR_TERR
#define CEC_FLAG_TBTRF CEC_CSR_TBTRF
#define CEC_FLAG_RSOM CEC_CSR_RSOM
#define CEC_FLAG_REOM CEC_CSR_REOM
#define CEC_FLAG_RERR CEC_CSR_RERR
#define CEC_FLAG_RBTF CEC_CSR_RBTF
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup CEC_Exported_Macros CEC Exported Macros
* @{
*/
/** @brief Reset CEC handle gstate & RxState
* @param __HANDLE__ CEC handle.
* @retval None
*/
#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1)
#define __HAL_CEC_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_CEC_STATE_RESET; \
(__HANDLE__)->RxState = HAL_CEC_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_CEC_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_CEC_STATE_RESET; \
(__HANDLE__)->RxState = HAL_CEC_STATE_RESET; \
} while(0)
#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */
/** @brief Checks whether or not the specified CEC interrupt flag is set.
* @param __HANDLE__ specifies the CEC Handle.
* @param __FLAG__ specifies the flag to check.
* @arg CEC_FLAG_TERR: Tx Error
* @arg CEC_FLAG_TBTRF:Tx Block Transfer Finished
* @arg CEC_FLAG_RERR: Rx Error
* @arg CEC_FLAG_RBTF: Rx Block Transfer Finished
* @retval ITStatus
*/
#define __HAL_CEC_GET_FLAG(__HANDLE__, __FLAG__) READ_BIT((__HANDLE__)->Instance->CSR,(__FLAG__))
/** @brief Clears the CEC's pending flags.
* @param __HANDLE__ specifies the CEC Handle.
* @param __FLAG__ specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg CEC_CSR_TERR: Tx Error
* @arg CEC_FLAG_TBTRF: Tx Block Transfer Finished
* @arg CEC_CSR_RERR: Rx Error
* @arg CEC_CSR_RBTF: Rx Block Transfer Finished
* @retval none
*/
#define __HAL_CEC_CLEAR_FLAG(__HANDLE__, __FLAG__) \
do { \
uint32_t tmp = 0x0U; \
tmp = (__HANDLE__)->Instance->CSR & 0x00000002U; \
(__HANDLE__)->Instance->CSR &= (uint32_t)(((~(uint32_t)(__FLAG__)) & 0xFFFFFFFCU) | tmp);\
} while(0U)
/** @brief Enables the specified CEC interrupt.
* @param __HANDLE__ specifies the CEC Handle.
* @param __INTERRUPT__ specifies the CEC interrupt to enable.
* This parameter can be one of the following values:
* @arg CEC_IT_IE : Interrupt Enable.
* @retval none
*/
#define __HAL_CEC_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CFGR, (__INTERRUPT__))
/** @brief Disables the specified CEC interrupt.
* @param __HANDLE__ specifies the CEC Handle.
* @param __INTERRUPT__ specifies the CEC interrupt to disable.
* This parameter can be one of the following values:
* @arg CEC_IT_IE : Interrupt Enable
* @retval none
*/
#define __HAL_CEC_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CFGR, (__INTERRUPT__))
/** @brief Checks whether or not the specified CEC interrupt is enabled.
* @param __HANDLE__ specifies the CEC Handle.
* @param __INTERRUPT__ specifies the CEC interrupt to check.
* This parameter can be one of the following values:
* @arg CEC_IT_IE : Interrupt Enable
* @retval FlagStatus
*/
#define __HAL_CEC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) READ_BIT((__HANDLE__)->Instance->CFGR, (__INTERRUPT__))
/** @brief Enables the CEC device
* @param __HANDLE__ specifies the CEC Handle.
* @retval none
*/
#define __HAL_CEC_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CFGR, CEC_CFGR_PE)
/** @brief Disables the CEC device
* @param __HANDLE__ specifies the CEC Handle.
* @retval none
*/
#define __HAL_CEC_DISABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CFGR, CEC_CFGR_PE)
/** @brief Set Transmission Start flag
* @param __HANDLE__ specifies the CEC Handle.
* @retval none
*/
#define __HAL_CEC_FIRST_BYTE_TX_SET(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CSR, CEC_CSR_TSOM)
/** @brief Set Transmission End flag
* @param __HANDLE__ specifies the CEC Handle.
* @retval none
*/
#define __HAL_CEC_LAST_BYTE_TX_SET(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CSR, CEC_CSR_TEOM)
/** @brief Get Transmission Start flag
* @param __HANDLE__ specifies the CEC Handle.
* @retval FlagStatus
*/
#define __HAL_CEC_GET_TRANSMISSION_START_FLAG(__HANDLE__) READ_BIT((__HANDLE__)->Instance->CSR, CEC_CSR_TSOM)
/** @brief Get Transmission End flag
* @param __HANDLE__ specifies the CEC Handle.
* @retval FlagStatus
*/
#define __HAL_CEC_GET_TRANSMISSION_END_FLAG(__HANDLE__) READ_BIT((__HANDLE__)->Instance->CSR, CEC_CSR_TEOM)
/** @brief Clear OAR register
* @param __HANDLE__ specifies the CEC Handle.
* @retval none
*/
#define __HAL_CEC_CLEAR_OAR(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->OAR, CEC_OAR_OA)
/** @brief Set OAR register
* @param __HANDLE__ specifies the CEC Handle.
* @param __ADDRESS__ Own Address value.
* @retval none
*/
#define __HAL_CEC_SET_OAR(__HANDLE__,__ADDRESS__) MODIFY_REG((__HANDLE__)->Instance->OAR, CEC_OAR_OA, (__ADDRESS__));
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CEC_Exported_Functions CEC Exported Functions
* @{
*/
/** @addtogroup CEC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
* @{
*/
/* Initialization and de-initialization functions ****************************/
HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec);
HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec);
HAL_StatusTypeDef HAL_CEC_SetDeviceAddress(CEC_HandleTypeDef *hcec, uint16_t CEC_OwnAddress);
void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec);
void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec);
#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_CEC_RegisterCallback(CEC_HandleTypeDef *hcec, HAL_CEC_CallbackIDTypeDef CallbackID,
pCEC_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_CEC_UnRegisterCallback(CEC_HandleTypeDef *hcec, HAL_CEC_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_CEC_RegisterRxCpltCallback(CEC_HandleTypeDef *hcec, pCEC_RxCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_CEC_UnRegisterRxCpltCallback(CEC_HandleTypeDef *hcec);
#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup CEC_Exported_Functions_Group2 Input and Output operation functions
* @brief CEC Transmit/Receive functions
* @{
*/
/* I/O operation functions ***************************************************/
HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t InitiatorAddress, uint8_t DestinationAddress,
const uint8_t *pData, uint32_t Size);
uint32_t HAL_CEC_GetLastReceivedFrameSize(const CEC_HandleTypeDef *hcec);
void HAL_CEC_ChangeRxBuffer(CEC_HandleTypeDef *hcec, uint8_t *Rxbuffer);
void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec);
void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec);
void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec, uint32_t RxFrameSize);
void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec);
/**
* @}
*/
/** @defgroup CEC_Exported_Functions_Group3 Peripheral Control functions
* @brief CEC control functions
* @{
*/
/* Peripheral State functions ************************************************/
HAL_CEC_StateTypeDef HAL_CEC_GetState(const CEC_HandleTypeDef *hcec);
uint32_t HAL_CEC_GetError(const CEC_HandleTypeDef *hcec);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/** @defgroup CEC_Private_Types CEC Private Types
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup CEC_Private_Variables CEC Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup CEC_Private_Constants CEC Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup CEC_Private_Macros CEC Private Macros
* @{
*/
#define IS_CEC_BIT_TIMING_ERROR_MODE(MODE) (((MODE) == CEC_BIT_TIMING_ERROR_MODE_STANDARD) || \
((MODE) == CEC_BIT_TIMING_ERROR_MODE_ERRORFREE))
#define IS_CEC_BIT_PERIOD_ERROR_MODE(MODE) (((MODE) == CEC_BIT_PERIOD_ERROR_MODE_STANDARD) || \
((MODE) == CEC_BIT_PERIOD_ERROR_MODE_FLEXIBLE))
/** @brief Check CEC message size.
* The message size is the payload size: without counting the header,
* it varies from 0 byte (ping operation, one header only, no payload) to
* 15 bytes (1 opcode and up to 14 operands following the header).
* @param __SIZE__ CEC message size.
* @retval Test result (TRUE or FALSE).
*/
#define IS_CEC_MSGSIZE(__SIZE__) ((__SIZE__) <= 0x10U)
/** @brief Check CEC device Own Address Register (OAR) setting.
* @param __ADDRESS__ CEC own address.
* @retval Test result (TRUE or FALSE).
*/
#define IS_CEC_OWN_ADDRESS(__ADDRESS__) ((__ADDRESS__) <= 0x0000000FU)
/** @brief Check CEC initiator or destination logical address setting.
* Initiator and destination addresses are coded over 4 bits.
* @param __ADDRESS__ CEC initiator or logical address.
* @retval Test result (TRUE or FALSE).
*/
#define IS_CEC_ADDRESS(__ADDRESS__) ((__ADDRESS__) <= 0x0000000FU)
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup CEC_Private_Functions CEC Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* CEC */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_CEC_H */

View file

@ -0,0 +1,398 @@
/**
******************************************************************************
* @file stm32f1xx_hal_conf.h
* @author MCD Application Team
* @brief HAL configuration template file.
* This file should be copied to the application folder and renamed
* to stm32f1xx_hal_conf.h.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_CONF_H
#define __STM32F1xx_HAL_CONF_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* ########################## Module Selection ############################## */
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
#define HAL_ADC_MODULE_ENABLED
#define HAL_CAN_MODULE_ENABLED
/* #define HAL_CAN_LEGACY_MODULE_ENABLED */
#define HAL_CEC_MODULE_ENABLED
#define HAL_CORTEX_MODULE_ENABLED
#define HAL_CRC_MODULE_ENABLED
#define HAL_DAC_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_ETH_MODULE_ENABLED
#define HAL_EXTI_MODULE_ENABLED
#define HAL_FLASH_MODULE_ENABLED
#define HAL_GPIO_MODULE_ENABLED
#define HAL_HCD_MODULE_ENABLED
#define HAL_I2C_MODULE_ENABLED
#define HAL_I2S_MODULE_ENABLED
#define HAL_IRDA_MODULE_ENABLED
#define HAL_IWDG_MODULE_ENABLED
#define HAL_NAND_MODULE_ENABLED
#define HAL_NOR_MODULE_ENABLED
#define HAL_PCCARD_MODULE_ENABLED
#define HAL_PCD_MODULE_ENABLED
#define HAL_PWR_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
#define HAL_RTC_MODULE_ENABLED
#define HAL_SD_MODULE_ENABLED
#define HAL_SMARTCARD_MODULE_ENABLED
#define HAL_SPI_MODULE_ENABLED
#define HAL_SRAM_MODULE_ENABLED
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
#define HAL_USART_MODULE_ENABLED
#define HAL_WWDG_MODULE_ENABLED
#define HAL_MMC_MODULE_ENABLED
/* ########################## Oscillator Values adaptation ####################*/
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#if defined(USE_STM3210C_EVAL)
#define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */
#else
#define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */
#endif
#endif /* HSE_VALUE */
#if !defined (HSE_STARTUP_TIMEOUT)
#define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/**
* @brief Internal High Speed oscillator (HSI) value.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSI is used as system clock source, directly or through the PLL).
*/
#if !defined (HSI_VALUE)
#define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */
#endif /* HSI_VALUE */
/**
* @brief Internal Low Speed oscillator (LSI) value.
*/
#if !defined (LSI_VALUE)
#define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */
#endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz
The real value may vary depending on the variations
in voltage and temperature. */
/**
* @brief External Low Speed oscillator (LSE) value.
* This value is used by the UART, RTC HAL module to compute the system frequency
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the External Low Speed oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */
#endif /* LSE_STARTUP_TIMEOUT */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE 3300U /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */
#define USE_RTOS 0U
#define PREFETCH_ENABLE 1U
#define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */
#define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */
#define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */
#define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */
#define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */
#define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */
#define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */
#define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */
#define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */
#define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */
#define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */
#define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */
#define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */
#define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */
#define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */
#define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */
#define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */
#define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */
#define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */
#define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */
#define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */
#define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */
#define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* ################## Ethernet peripheral configuration ##################### */
/* Section 1 : Ethernet peripheral configuration */
/* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */
#define MAC_ADDR0 2U
#define MAC_ADDR1 0U
#define MAC_ADDR2 0U
#define MAC_ADDR3 0U
#define MAC_ADDR4 0U
#define MAC_ADDR5 0U
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */
#define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */
/* Section 2: PHY configuration section */
/* DP83848 PHY Address*/
#define DP83848_PHY_ADDRESS 0x01U
/* PHY Reset delay these values are based on a 1 ms Systick interrupt*/
#define PHY_RESET_DELAY 0x000000FFU
/* PHY Configuration delay */
#define PHY_CONFIG_DELAY 0x00000FFFU
#define PHY_READ_TO 0x0000FFFFU
#define PHY_WRITE_TO 0x0000FFFFU
/* Section 3: Common PHY Registers */
#define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */
#define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */
#define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */
#define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */
#define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */
#define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */
#define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */
#define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */
#define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */
#define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */
#define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */
#define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */
#define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */
#define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */
#define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */
#define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */
#define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */
#define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */
#define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */
#define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */
#define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */
/* ################## SPI peripheral configuration ########################## */
/* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver
* Activated: CRC code is present inside driver
* Deactivated: CRC code cleaned from driver
*/
#define USE_SPI_CRC 1U
/* Includes ------------------------------------------------------------------*/
/**
* @brief Include module's header file
*/
#ifdef HAL_RCC_MODULE_ENABLED
#include "stm32f1xx_hal_rcc.h"
#endif /* HAL_RCC_MODULE_ENABLED */
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32f1xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_EXTI_MODULE_ENABLED
#include "stm32f1xx_hal_exti.h"
#endif /* HAL_EXTI_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f1xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32f1xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_CAN_MODULE_ENABLED
#include "stm32f1xx_hal_can.h"
#endif /* HAL_CAN_MODULE_ENABLED */
#ifdef HAL_CAN_LEGACY_MODULE_ENABLED
#include "Legacy/stm32f1xx_hal_can_legacy.h"
#endif /* HAL_CAN_LEGACY_MODULE_ENABLED */
#ifdef HAL_CEC_MODULE_ENABLED
#include "stm32f1xx_hal_cec.h"
#endif /* HAL_CEC_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f1xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
#include "stm32f1xx_hal_adc.h"
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_CRC_MODULE_ENABLED
#include "stm32f1xx_hal_crc.h"
#endif /* HAL_CRC_MODULE_ENABLED */
#ifdef HAL_DAC_MODULE_ENABLED
#include "stm32f1xx_hal_dac.h"
#endif /* HAL_DAC_MODULE_ENABLED */
#ifdef HAL_FLASH_MODULE_ENABLED
#include "stm32f1xx_hal_flash.h"
#endif /* HAL_FLASH_MODULE_ENABLED */
#ifdef HAL_SRAM_MODULE_ENABLED
#include "stm32f1xx_hal_sram.h"
#endif /* HAL_SRAM_MODULE_ENABLED */
#ifdef HAL_NOR_MODULE_ENABLED
#include "stm32f1xx_hal_nor.h"
#endif /* HAL_NOR_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
#include "stm32f1xx_hal_i2c.h"
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_I2S_MODULE_ENABLED
#include "stm32f1xx_hal_i2s.h"
#endif /* HAL_I2S_MODULE_ENABLED */
#ifdef HAL_IWDG_MODULE_ENABLED
#include "stm32f1xx_hal_iwdg.h"
#endif /* HAL_IWDG_MODULE_ENABLED */
#ifdef HAL_PWR_MODULE_ENABLED
#include "stm32f1xx_hal_pwr.h"
#endif /* HAL_PWR_MODULE_ENABLED */
#ifdef HAL_RTC_MODULE_ENABLED
#include "stm32f1xx_hal_rtc.h"
#endif /* HAL_RTC_MODULE_ENABLED */
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f1xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32f1xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32f1xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32f1xx_hal_spi.h"
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_TIM_MODULE_ENABLED
#include "stm32f1xx_hal_tim.h"
#endif /* HAL_TIM_MODULE_ENABLED */
#ifdef HAL_UART_MODULE_ENABLED
#include "stm32f1xx_hal_uart.h"
#endif /* HAL_UART_MODULE_ENABLED */
#ifdef HAL_USART_MODULE_ENABLED
#include "stm32f1xx_hal_usart.h"
#endif /* HAL_USART_MODULE_ENABLED */
#ifdef HAL_IRDA_MODULE_ENABLED
#include "stm32f1xx_hal_irda.h"
#endif /* HAL_IRDA_MODULE_ENABLED */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
#include "stm32f1xx_hal_smartcard.h"
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
#ifdef HAL_WWDG_MODULE_ENABLED
#include "stm32f1xx_hal_wwdg.h"
#endif /* HAL_WWDG_MODULE_ENABLED */
#ifdef HAL_PCD_MODULE_ENABLED
#include "stm32f1xx_hal_pcd.h"
#endif /* HAL_PCD_MODULE_ENABLED */
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f1xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_MMC_MODULE_ENABLED
#include "stm32f1xx_hal_mmc.h"
#endif /* HAL_MMC_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_CONF_H */

View file

@ -0,0 +1,408 @@
/**
******************************************************************************
* @file stm32f1xx_hal_cortex.h
* @author MCD Application Team
* @brief Header file of CORTEX HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_CORTEX_H
#define __STM32F1xx_HAL_CORTEX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup CORTEX
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Types Cortex Exported Types
* @{
*/
#if (__MPU_PRESENT == 1U)
/** @defgroup CORTEX_MPU_Region_Initialization_Structure_definition MPU Region Initialization Structure Definition
* @brief MPU Region initialization structure
* @{
*/
typedef struct
{
uint8_t Enable; /*!< Specifies the status of the region.
This parameter can be a value of @ref CORTEX_MPU_Region_Enable */
uint8_t Number; /*!< Specifies the number of the region to protect.
This parameter can be a value of @ref CORTEX_MPU_Region_Number */
uint32_t BaseAddress; /*!< Specifies the base address of the region to protect. */
uint8_t Size; /*!< Specifies the size of the region to protect.
This parameter can be a value of @ref CORTEX_MPU_Region_Size */
uint8_t SubRegionDisable; /*!< Specifies the number of the subregion protection to disable.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
uint8_t TypeExtField; /*!< Specifies the TEX field level.
This parameter can be a value of @ref CORTEX_MPU_TEX_Levels */
uint8_t AccessPermission; /*!< Specifies the region access permission type.
This parameter can be a value of @ref CORTEX_MPU_Region_Permission_Attributes */
uint8_t DisableExec; /*!< Specifies the instruction access status.
This parameter can be a value of @ref CORTEX_MPU_Instruction_Access */
uint8_t IsShareable; /*!< Specifies the shareability status of the protected region.
This parameter can be a value of @ref CORTEX_MPU_Access_Shareable */
uint8_t IsCacheable; /*!< Specifies the cacheable status of the region protected.
This parameter can be a value of @ref CORTEX_MPU_Access_Cacheable */
uint8_t IsBufferable; /*!< Specifies the bufferable status of the protected region.
This parameter can be a value of @ref CORTEX_MPU_Access_Bufferable */
}MPU_Region_InitTypeDef;
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Constants CORTEX Exported Constants
* @{
*/
/** @defgroup CORTEX_Preemption_Priority_Group CORTEX Preemption Priority Group
* @{
*/
#define NVIC_PRIORITYGROUP_0 0x00000007U /*!< 0 bits for pre-emption priority
4 bits for subpriority */
#define NVIC_PRIORITYGROUP_1 0x00000006U /*!< 1 bits for pre-emption priority
3 bits for subpriority */
#define NVIC_PRIORITYGROUP_2 0x00000005U /*!< 2 bits for pre-emption priority
2 bits for subpriority */
#define NVIC_PRIORITYGROUP_3 0x00000004U /*!< 3 bits for pre-emption priority
1 bits for subpriority */
#define NVIC_PRIORITYGROUP_4 0x00000003U /*!< 4 bits for pre-emption priority
0 bits for subpriority */
/**
* @}
*/
/** @defgroup CORTEX_SysTick_clock_source CORTEX _SysTick clock source
* @{
*/
#define SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U
#define SYSTICK_CLKSOURCE_HCLK 0x00000004U
/**
* @}
*/
#if (__MPU_PRESENT == 1)
/** @defgroup CORTEX_MPU_HFNMI_PRIVDEF_Control MPU HFNMI and PRIVILEGED Access control
* @{
*/
#define MPU_HFNMI_PRIVDEF_NONE 0x00000000U
#define MPU_HARDFAULT_NMI MPU_CTRL_HFNMIENA_Msk
#define MPU_PRIVILEGED_DEFAULT MPU_CTRL_PRIVDEFENA_Msk
#define MPU_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Enable CORTEX MPU Region Enable
* @{
*/
#define MPU_REGION_ENABLE ((uint8_t)0x01)
#define MPU_REGION_DISABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Instruction_Access CORTEX MPU Instruction Access
* @{
*/
#define MPU_INSTRUCTION_ACCESS_ENABLE ((uint8_t)0x00)
#define MPU_INSTRUCTION_ACCESS_DISABLE ((uint8_t)0x01)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Shareable CORTEX MPU Instruction Access Shareable
* @{
*/
#define MPU_ACCESS_SHAREABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_SHAREABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Cacheable CORTEX MPU Instruction Access Cacheable
* @{
*/
#define MPU_ACCESS_CACHEABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_CACHEABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Bufferable CORTEX MPU Instruction Access Bufferable
* @{
*/
#define MPU_ACCESS_BUFFERABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_BUFFERABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_TEX_Levels MPU TEX Levels
* @{
*/
#define MPU_TEX_LEVEL0 ((uint8_t)0x00)
#define MPU_TEX_LEVEL1 ((uint8_t)0x01)
#define MPU_TEX_LEVEL2 ((uint8_t)0x02)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Size CORTEX MPU Region Size
* @{
*/
#define MPU_REGION_SIZE_32B ((uint8_t)0x04)
#define MPU_REGION_SIZE_64B ((uint8_t)0x05)
#define MPU_REGION_SIZE_128B ((uint8_t)0x06)
#define MPU_REGION_SIZE_256B ((uint8_t)0x07)
#define MPU_REGION_SIZE_512B ((uint8_t)0x08)
#define MPU_REGION_SIZE_1KB ((uint8_t)0x09)
#define MPU_REGION_SIZE_2KB ((uint8_t)0x0A)
#define MPU_REGION_SIZE_4KB ((uint8_t)0x0B)
#define MPU_REGION_SIZE_8KB ((uint8_t)0x0C)
#define MPU_REGION_SIZE_16KB ((uint8_t)0x0D)
#define MPU_REGION_SIZE_32KB ((uint8_t)0x0E)
#define MPU_REGION_SIZE_64KB ((uint8_t)0x0F)
#define MPU_REGION_SIZE_128KB ((uint8_t)0x10)
#define MPU_REGION_SIZE_256KB ((uint8_t)0x11)
#define MPU_REGION_SIZE_512KB ((uint8_t)0x12)
#define MPU_REGION_SIZE_1MB ((uint8_t)0x13)
#define MPU_REGION_SIZE_2MB ((uint8_t)0x14)
#define MPU_REGION_SIZE_4MB ((uint8_t)0x15)
#define MPU_REGION_SIZE_8MB ((uint8_t)0x16)
#define MPU_REGION_SIZE_16MB ((uint8_t)0x17)
#define MPU_REGION_SIZE_32MB ((uint8_t)0x18)
#define MPU_REGION_SIZE_64MB ((uint8_t)0x19)
#define MPU_REGION_SIZE_128MB ((uint8_t)0x1A)
#define MPU_REGION_SIZE_256MB ((uint8_t)0x1B)
#define MPU_REGION_SIZE_512MB ((uint8_t)0x1C)
#define MPU_REGION_SIZE_1GB ((uint8_t)0x1D)
#define MPU_REGION_SIZE_2GB ((uint8_t)0x1E)
#define MPU_REGION_SIZE_4GB ((uint8_t)0x1F)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Permission_Attributes CORTEX MPU Region Permission Attributes
* @{
*/
#define MPU_REGION_NO_ACCESS ((uint8_t)0x00)
#define MPU_REGION_PRIV_RW ((uint8_t)0x01)
#define MPU_REGION_PRIV_RW_URO ((uint8_t)0x02)
#define MPU_REGION_FULL_ACCESS ((uint8_t)0x03)
#define MPU_REGION_PRIV_RO ((uint8_t)0x05)
#define MPU_REGION_PRIV_RO_URO ((uint8_t)0x06)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Number CORTEX MPU Region Number
* @{
*/
#define MPU_REGION_NUMBER0 ((uint8_t)0x00)
#define MPU_REGION_NUMBER1 ((uint8_t)0x01)
#define MPU_REGION_NUMBER2 ((uint8_t)0x02)
#define MPU_REGION_NUMBER3 ((uint8_t)0x03)
#define MPU_REGION_NUMBER4 ((uint8_t)0x04)
#define MPU_REGION_NUMBER5 ((uint8_t)0x05)
#define MPU_REGION_NUMBER6 ((uint8_t)0x06)
#define MPU_REGION_NUMBER7 ((uint8_t)0x07)
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported Macros -----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CORTEX_Exported_Functions
* @{
*/
/** @addtogroup CORTEX_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions *****************************/
void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup);
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority);
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn);
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn);
void HAL_NVIC_SystemReset(void);
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb);
/**
* @}
*/
/** @addtogroup CORTEX_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ***********************************************/
uint32_t HAL_NVIC_GetPriorityGrouping(void);
void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority);
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn);
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn);
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn);
uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn);
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource);
void HAL_SYSTICK_IRQHandler(void);
void HAL_SYSTICK_Callback(void);
#if (__MPU_PRESENT == 1U)
void HAL_MPU_Enable(uint32_t MPU_Control);
void HAL_MPU_Disable(void);
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init);
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup CORTEX_Private_Macros CORTEX Private Macros
* @{
*/
#define IS_NVIC_PRIORITY_GROUP(GROUP) (((GROUP) == NVIC_PRIORITYGROUP_0) || \
((GROUP) == NVIC_PRIORITYGROUP_1) || \
((GROUP) == NVIC_PRIORITYGROUP_2) || \
((GROUP) == NVIC_PRIORITYGROUP_3) || \
((GROUP) == NVIC_PRIORITYGROUP_4))
#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
#define IS_NVIC_SUB_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
#define IS_NVIC_DEVICE_IRQ(IRQ) ((IRQ) >= (IRQn_Type)0x00U)
#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SYSTICK_CLKSOURCE_HCLK) || \
((SOURCE) == SYSTICK_CLKSOURCE_HCLK_DIV8))
#if (__MPU_PRESENT == 1U)
#define IS_MPU_REGION_ENABLE(STATE) (((STATE) == MPU_REGION_ENABLE) || \
((STATE) == MPU_REGION_DISABLE))
#define IS_MPU_INSTRUCTION_ACCESS(STATE) (((STATE) == MPU_INSTRUCTION_ACCESS_ENABLE) || \
((STATE) == MPU_INSTRUCTION_ACCESS_DISABLE))
#define IS_MPU_ACCESS_SHAREABLE(STATE) (((STATE) == MPU_ACCESS_SHAREABLE) || \
((STATE) == MPU_ACCESS_NOT_SHAREABLE))
#define IS_MPU_ACCESS_CACHEABLE(STATE) (((STATE) == MPU_ACCESS_CACHEABLE) || \
((STATE) == MPU_ACCESS_NOT_CACHEABLE))
#define IS_MPU_ACCESS_BUFFERABLE(STATE) (((STATE) == MPU_ACCESS_BUFFERABLE) || \
((STATE) == MPU_ACCESS_NOT_BUFFERABLE))
#define IS_MPU_TEX_LEVEL(TYPE) (((TYPE) == MPU_TEX_LEVEL0) || \
((TYPE) == MPU_TEX_LEVEL1) || \
((TYPE) == MPU_TEX_LEVEL2))
#define IS_MPU_REGION_PERMISSION_ATTRIBUTE(TYPE) (((TYPE) == MPU_REGION_NO_ACCESS) || \
((TYPE) == MPU_REGION_PRIV_RW) || \
((TYPE) == MPU_REGION_PRIV_RW_URO) || \
((TYPE) == MPU_REGION_FULL_ACCESS) || \
((TYPE) == MPU_REGION_PRIV_RO) || \
((TYPE) == MPU_REGION_PRIV_RO_URO))
#define IS_MPU_REGION_NUMBER(NUMBER) (((NUMBER) == MPU_REGION_NUMBER0) || \
((NUMBER) == MPU_REGION_NUMBER1) || \
((NUMBER) == MPU_REGION_NUMBER2) || \
((NUMBER) == MPU_REGION_NUMBER3) || \
((NUMBER) == MPU_REGION_NUMBER4) || \
((NUMBER) == MPU_REGION_NUMBER5) || \
((NUMBER) == MPU_REGION_NUMBER6) || \
((NUMBER) == MPU_REGION_NUMBER7))
#define IS_MPU_REGION_SIZE(SIZE) (((SIZE) == MPU_REGION_SIZE_32B) || \
((SIZE) == MPU_REGION_SIZE_64B) || \
((SIZE) == MPU_REGION_SIZE_128B) || \
((SIZE) == MPU_REGION_SIZE_256B) || \
((SIZE) == MPU_REGION_SIZE_512B) || \
((SIZE) == MPU_REGION_SIZE_1KB) || \
((SIZE) == MPU_REGION_SIZE_2KB) || \
((SIZE) == MPU_REGION_SIZE_4KB) || \
((SIZE) == MPU_REGION_SIZE_8KB) || \
((SIZE) == MPU_REGION_SIZE_16KB) || \
((SIZE) == MPU_REGION_SIZE_32KB) || \
((SIZE) == MPU_REGION_SIZE_64KB) || \
((SIZE) == MPU_REGION_SIZE_128KB) || \
((SIZE) == MPU_REGION_SIZE_256KB) || \
((SIZE) == MPU_REGION_SIZE_512KB) || \
((SIZE) == MPU_REGION_SIZE_1MB) || \
((SIZE) == MPU_REGION_SIZE_2MB) || \
((SIZE) == MPU_REGION_SIZE_4MB) || \
((SIZE) == MPU_REGION_SIZE_8MB) || \
((SIZE) == MPU_REGION_SIZE_16MB) || \
((SIZE) == MPU_REGION_SIZE_32MB) || \
((SIZE) == MPU_REGION_SIZE_64MB) || \
((SIZE) == MPU_REGION_SIZE_128MB) || \
((SIZE) == MPU_REGION_SIZE_256MB) || \
((SIZE) == MPU_REGION_SIZE_512MB) || \
((SIZE) == MPU_REGION_SIZE_1GB) || \
((SIZE) == MPU_REGION_SIZE_2GB) || \
((SIZE) == MPU_REGION_SIZE_4GB))
#define IS_MPU_SUB_REGION_DISABLE(SUBREGION) ((SUBREGION) < (uint16_t)0x00FF)
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_CORTEX_H */

View file

@ -0,0 +1,181 @@
/**
******************************************************************************
* @file stm32f1xx_hal_crc.h
* @author MCD Application Team
* @brief Header file of CRC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_CRC_H
#define STM32F1xx_HAL_CRC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup CRC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CRC_Exported_Types CRC Exported Types
* @{
*/
/**
* @brief CRC HAL State Structure definition
*/
typedef enum
{
HAL_CRC_STATE_RESET = 0x00U, /*!< CRC not yet initialized or disabled */
HAL_CRC_STATE_READY = 0x01U, /*!< CRC initialized and ready for use */
HAL_CRC_STATE_BUSY = 0x02U, /*!< CRC internal process is ongoing */
HAL_CRC_STATE_TIMEOUT = 0x03U, /*!< CRC timeout state */
HAL_CRC_STATE_ERROR = 0x04U /*!< CRC error state */
} HAL_CRC_StateTypeDef;
/**
* @brief CRC Handle Structure definition
*/
typedef struct
{
CRC_TypeDef *Instance; /*!< Register base address */
HAL_LockTypeDef Lock; /*!< CRC Locking object */
__IO HAL_CRC_StateTypeDef State; /*!< CRC communication state */
} CRC_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRC_Exported_Constants CRC Exported Constants
* @{
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup CRC_Exported_Macros CRC Exported Macros
* @{
*/
/** @brief Reset CRC handle state.
* @param __HANDLE__ CRC handle.
* @retval None
*/
#define __HAL_CRC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CRC_STATE_RESET)
/**
* @brief Reset CRC Data Register.
* @param __HANDLE__ CRC handle
* @retval None
*/
#define __HAL_CRC_DR_RESET(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRC_CR_RESET)
/**
* @brief Store data in the Independent Data (ID) register.
* @param __HANDLE__ CRC handle
* @param __VALUE__ Value to be stored in the ID register
* @note Refer to the Reference Manual to get the authorized __VALUE__ length in bits
* @retval None
*/
#define __HAL_CRC_SET_IDR(__HANDLE__, __VALUE__) (WRITE_REG((__HANDLE__)->Instance->IDR, (__VALUE__)))
/**
* @brief Return the data stored in the Independent Data (ID) register.
* @param __HANDLE__ CRC handle
* @note Refer to the Reference Manual to get the authorized __VALUE__ length in bits
* @retval Value of the ID register
*/
#define __HAL_CRC_GET_IDR(__HANDLE__) (((__HANDLE__)->Instance->IDR) & CRC_IDR_IDR)
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @defgroup CRC_Private_Macros CRC Private Macros
* @{
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRC_Exported_Functions CRC Exported Functions
* @{
*/
/* Initialization and de-initialization functions ****************************/
/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc);
HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc);
void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc);
void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc);
/**
* @}
*/
/* Peripheral Control functions ***********************************************/
/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions
* @{
*/
uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
/**
* @}
*/
/* Peripheral State and Error functions ***************************************/
/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions
* @{
*/
HAL_CRC_StateTypeDef HAL_CRC_GetState(const CRC_HandleTypeDef *hcrc);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_CRC_H */

View file

@ -0,0 +1,457 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dac.h
* @author MCD Application Team
* @brief Header file of DAC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_DAC_H
#define STM32F1xx_HAL_DAC_H
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined(DAC)
/** @addtogroup DAC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup DAC_Exported_Types DAC Exported Types
* @{
*/
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_DAC_STATE_RESET = 0x00U, /*!< DAC not yet initialized or disabled */
HAL_DAC_STATE_READY = 0x01U, /*!< DAC initialized and ready for use */
HAL_DAC_STATE_BUSY = 0x02U, /*!< DAC internal processing is ongoing */
HAL_DAC_STATE_TIMEOUT = 0x03U, /*!< DAC timeout state */
HAL_DAC_STATE_ERROR = 0x04U /*!< DAC error state */
} HAL_DAC_StateTypeDef;
/**
* @brief DAC handle Structure definition
*/
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
typedef struct __DAC_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
{
DAC_TypeDef *Instance; /*!< Register base address */
__IO HAL_DAC_StateTypeDef State; /*!< DAC communication state */
HAL_LockTypeDef Lock; /*!< DAC locking object */
DMA_HandleTypeDef *DMA_Handle1; /*!< Pointer DMA handler for channel 1 */
DMA_HandleTypeDef *DMA_Handle2; /*!< Pointer DMA handler for channel 2 */
__IO uint32_t ErrorCode; /*!< DAC Error code */
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
void (* ConvCpltCallbackCh1)(struct __DAC_HandleTypeDef *hdac);
void (* ConvHalfCpltCallbackCh1)(struct __DAC_HandleTypeDef *hdac);
void (* ErrorCallbackCh1)(struct __DAC_HandleTypeDef *hdac);
void (* DMAUnderrunCallbackCh1)(struct __DAC_HandleTypeDef *hdac);
void (* ConvCpltCallbackCh2)(struct __DAC_HandleTypeDef *hdac);
void (* ConvHalfCpltCallbackCh2)(struct __DAC_HandleTypeDef *hdac);
void (* ErrorCallbackCh2)(struct __DAC_HandleTypeDef *hdac);
void (* DMAUnderrunCallbackCh2)(struct __DAC_HandleTypeDef *hdac);
void (* MspInitCallback)(struct __DAC_HandleTypeDef *hdac);
void (* MspDeInitCallback)(struct __DAC_HandleTypeDef *hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
} DAC_HandleTypeDef;
/**
* @brief DAC Configuration regular Channel structure definition
*/
typedef struct
{
uint32_t DAC_Trigger; /*!< Specifies the external trigger for the selected DAC channel.
This parameter can be a value of @ref DAC_trigger_selection */
uint32_t DAC_OutputBuffer; /*!< Specifies whether the DAC channel output buffer is enabled or disabled.
This parameter can be a value of @ref DAC_output_buffer */
} DAC_ChannelConfTypeDef;
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
/**
* @brief HAL DAC Callback ID enumeration definition
*/
typedef enum
{
HAL_DAC_CH1_COMPLETE_CB_ID = 0x00U, /*!< DAC CH1 Complete Callback ID */
HAL_DAC_CH1_HALF_COMPLETE_CB_ID = 0x01U, /*!< DAC CH1 half Complete Callback ID */
HAL_DAC_CH1_ERROR_ID = 0x02U, /*!< DAC CH1 error Callback ID */
HAL_DAC_CH1_UNDERRUN_CB_ID = 0x03U, /*!< DAC CH1 underrun Callback ID */
HAL_DAC_CH2_COMPLETE_CB_ID = 0x04U, /*!< DAC CH2 Complete Callback ID */
HAL_DAC_CH2_HALF_COMPLETE_CB_ID = 0x05U, /*!< DAC CH2 half Complete Callback ID */
HAL_DAC_CH2_ERROR_ID = 0x06U, /*!< DAC CH2 error Callback ID */
HAL_DAC_CH2_UNDERRUN_CB_ID = 0x07U, /*!< DAC CH2 underrun Callback ID */
HAL_DAC_MSPINIT_CB_ID = 0x08U, /*!< DAC MspInit Callback ID */
HAL_DAC_MSPDEINIT_CB_ID = 0x09U, /*!< DAC MspDeInit Callback ID */
HAL_DAC_ALL_CB_ID = 0x0AU /*!< DAC All ID */
} HAL_DAC_CallbackIDTypeDef;
/**
* @brief HAL DAC Callback pointer definition
*/
typedef void (*pDAC_CallbackTypeDef)(DAC_HandleTypeDef *hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DAC_Exported_Constants DAC Exported Constants
* @{
*/
/** @defgroup DAC_Error_Code DAC Error Code
* @{
*/
#define HAL_DAC_ERROR_NONE 0x00U /*!< No error */
#define HAL_DAC_ERROR_DMAUNDERRUNCH1 0x01U /*!< DAC channel1 DMA underrun error */
#define HAL_DAC_ERROR_DMAUNDERRUNCH2 0x02U /*!< DAC channel2 DMA underrun error */
#define HAL_DAC_ERROR_DMA 0x04U /*!< DMA error */
#define HAL_DAC_ERROR_TIMEOUT 0x08U /*!< Timeout error */
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
#define HAL_DAC_ERROR_INVALID_CALLBACK 0x10U /*!< Invalid callback error */
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup DAC_output_buffer DAC output buffer
* @{
*/
#define DAC_OUTPUTBUFFER_ENABLE 0x00000000U
#define DAC_OUTPUTBUFFER_DISABLE (DAC_CR_BOFF1)
/**
* @}
*/
/** @defgroup DAC_Channel_selection DAC Channel selection
* @{
*/
#define DAC_CHANNEL_1 0x00000000U
#define DAC_CHANNEL_2 0x00000010U
/**
* @}
*/
/** @defgroup DAC_data_alignment DAC data alignment
* @{
*/
#define DAC_ALIGN_12B_R 0x00000000U
#define DAC_ALIGN_12B_L 0x00000004U
#define DAC_ALIGN_8B_R 0x00000008U
/**
* @}
*/
/** @defgroup DAC_flags_definition DAC flags definition
* @{
*/
#define DAC_FLAG_DMAUDR1 (DAC_SR_DMAUDR1)
#define DAC_FLAG_DMAUDR2 (DAC_SR_DMAUDR2)
/**
* @}
*/
/** @defgroup DAC_IT_definition DAC IT definition
* @{
*/
#define DAC_IT_DMAUDR1 (DAC_SR_DMAUDR1)
#define DAC_IT_DMAUDR2 (DAC_SR_DMAUDR2)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup DAC_Exported_Macros DAC Exported Macros
* @{
*/
/** @brief Reset DAC handle state.
* @param __HANDLE__ specifies the DAC handle.
* @retval None
*/
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
#define __HAL_DAC_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_DAC_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_DAC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DAC_STATE_RESET)
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
/** @brief Enable the DAC channel.
* @param __HANDLE__ specifies the DAC handle.
* @param __DAC_Channel__ specifies the DAC channel
* @retval None
*/
#define __HAL_DAC_ENABLE(__HANDLE__, __DAC_Channel__) \
((__HANDLE__)->Instance->CR |= (DAC_CR_EN1 << ((__DAC_Channel__) & 0x10UL)))
/** @brief Disable the DAC channel.
* @param __HANDLE__ specifies the DAC handle
* @param __DAC_Channel__ specifies the DAC channel.
* @retval None
*/
#define __HAL_DAC_DISABLE(__HANDLE__, __DAC_Channel__) \
((__HANDLE__)->Instance->CR &= ~(DAC_CR_EN1 << ((__DAC_Channel__) & 0x10UL)))
/** @brief Set DHR12R1 alignment.
* @param __ALIGNMENT__ specifies the DAC alignment
* @retval None
*/
#define DAC_DHR12R1_ALIGNMENT(__ALIGNMENT__) (0x00000008UL + (__ALIGNMENT__))
/** @brief Set DHR12R2 alignment.
* @param __ALIGNMENT__ specifies the DAC alignment
* @retval None
*/
#define DAC_DHR12R2_ALIGNMENT(__ALIGNMENT__) (0x00000014UL + (__ALIGNMENT__))
/** @brief Set DHR12RD alignment.
* @param __ALIGNMENT__ specifies the DAC alignment
* @retval None
*/
#define DAC_DHR12RD_ALIGNMENT(__ALIGNMENT__) (0x00000020UL + (__ALIGNMENT__))
/** @brief Enable the DAC interrupt.
* @param __HANDLE__ specifies the DAC handle
* @param __INTERRUPT__ specifies the DAC interrupt.
* This parameter can be any combination of the following values:
* @arg DAC_IT_DMAUDR1 DAC channel 1 DMA underrun interrupt
* @arg DAC_IT_DMAUDR2 DAC channel 2 DMA underrun interrupt
* @retval None
*/
#define __HAL_DAC_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR) |= (__INTERRUPT__))
/** @brief Disable the DAC interrupt.
* @param __HANDLE__ specifies the DAC handle
* @param __INTERRUPT__ specifies the DAC interrupt.
* This parameter can be any combination of the following values:
* @arg DAC_IT_DMAUDR1 DAC channel 1 DMA underrun interrupt
* @arg DAC_IT_DMAUDR2 DAC channel 2 DMA underrun interrupt
* @retval None
*/
#define __HAL_DAC_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR) &= ~(__INTERRUPT__))
/** @brief Check whether the specified DAC interrupt source is enabled or not.
* @param __HANDLE__ DAC handle
* @param __INTERRUPT__ DAC interrupt source to check
* This parameter can be any combination of the following values:
* @arg DAC_IT_DMAUDR1 DAC channel 1 DMA underrun interrupt
* @arg DAC_IT_DMAUDR2 DAC channel 2 DMA underrun interrupt
* @retval State of interruption (SET or RESET)
*/
#define __HAL_DAC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR\
& (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Get the selected DAC's flag status.
* @param __HANDLE__ specifies the DAC handle.
* @param __FLAG__ specifies the DAC flag to get.
* This parameter can be any combination of the following values:
* @arg DAC_FLAG_DMAUDR1 DAC channel 1 DMA underrun flag
* @arg DAC_FLAG_DMAUDR2 DAC channel 2 DMA underrun flag
* @retval None
*/
#define __HAL_DAC_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
/** @brief Clear the DAC's flag.
* @param __HANDLE__ specifies the DAC handle.
* @param __FLAG__ specifies the DAC flag to clear.
* This parameter can be any combination of the following values:
* @arg DAC_FLAG_DMAUDR1 DAC channel 1 DMA underrun flag
* @arg DAC_FLAG_DMAUDR2 DAC channel 2 DMA underrun flag
* @retval None
*/
#define __HAL_DAC_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR) = (__FLAG__))
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup DAC_Private_Macros DAC Private Macros
* @{
*/
#define IS_DAC_OUTPUT_BUFFER_STATE(STATE) (((STATE) == DAC_OUTPUTBUFFER_ENABLE) || \
((STATE) == DAC_OUTPUTBUFFER_DISABLE))
#define IS_DAC_CHANNEL(CHANNEL) (((CHANNEL) == DAC_CHANNEL_1) || \
((CHANNEL) == DAC_CHANNEL_2))
#define IS_DAC_ALIGN(ALIGN) (((ALIGN) == DAC_ALIGN_12B_R) || \
((ALIGN) == DAC_ALIGN_12B_L) || \
((ALIGN) == DAC_ALIGN_8B_R))
#define IS_DAC_DATA(DATA) ((DATA) <= 0xFFF0UL)
/**
* @}
*/
/* Include DAC HAL Extended module */
#include "stm32f1xx_hal_dac_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DAC_Exported_Functions
* @{
*/
/** @addtogroup DAC_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions *****************************/
HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef *hdac);
HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef *hdac);
void HAL_DAC_MspInit(DAC_HandleTypeDef *hdac);
void HAL_DAC_MspDeInit(DAC_HandleTypeDef *hdac);
/**
* @}
*/
/** @addtogroup DAC_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef *hdac, uint32_t Channel);
HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef *hdac, uint32_t Channel);
HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel, const uint32_t *pData, uint32_t Length,
uint32_t Alignment);
HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel);
void HAL_DAC_IRQHandler(DAC_HandleTypeDef *hdac);
HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data);
void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef *hdac);
void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef *hdac);
void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac);
void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac);
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
/* DAC callback registering/unregistering */
HAL_StatusTypeDef HAL_DAC_RegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID,
pDAC_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_DAC_UnRegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup DAC_Exported_Functions_Group3
* @{
*/
/* Peripheral Control functions ***********************************************/
uint32_t HAL_DAC_GetValue(const DAC_HandleTypeDef *hdac, uint32_t Channel);
HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef *hdac,
const DAC_ChannelConfTypeDef *sConfig, uint32_t Channel);
/**
* @}
*/
/** @addtogroup DAC_Exported_Functions_Group4
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_DAC_StateTypeDef HAL_DAC_GetState(const DAC_HandleTypeDef *hdac);
uint32_t HAL_DAC_GetError(const DAC_HandleTypeDef *hdac);
/**
* @}
*/
/**
* @}
*/
/** @defgroup DAC_Private_Functions DAC Private Functions
* @{
*/
void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma);
void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma);
void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/**
* @}
*/
#endif /* DAC */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_DAC_H */

View file

@ -0,0 +1,276 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dac_ex.h
* @author MCD Application Team
* @brief Header file of DAC HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_DAC_EX_H
#define STM32F1xx_HAL_DAC_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined(DAC)
/** @addtogroup DACEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief HAL State structures definition
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DACEx_Exported_Constants DACEx Exported Constants
* @{
*/
/** @defgroup DACEx_lfsrunmask_triangleamplitude DACEx lfsrunmask triangle amplitude
* @{
*/
#define DAC_LFSRUNMASK_BIT0 0x00000000UL /*!< Unmask DAC channel LFSR bit0 for noise wave generation */
#define DAC_LFSRUNMASK_BITS1_0 ( DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[1:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS2_0 ( DAC_CR_MAMP1_1 ) /*!< Unmask DAC channel LFSR bit[2:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS3_0 ( DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[3:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS4_0 ( DAC_CR_MAMP1_2 ) /*!< Unmask DAC channel LFSR bit[4:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS5_0 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[5:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS6_0 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 ) /*!< Unmask DAC channel LFSR bit[6:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS7_0 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[7:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS8_0 (DAC_CR_MAMP1_3 ) /*!< Unmask DAC channel LFSR bit[8:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS9_0 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[9:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS10_0 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 ) /*!< Unmask DAC channel LFSR bit[10:0] for noise wave generation */
#define DAC_LFSRUNMASK_BITS11_0 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[11:0] for noise wave generation */
#define DAC_TRIANGLEAMPLITUDE_1 0x00000000UL /*!< Select max triangle amplitude of 1 */
#define DAC_TRIANGLEAMPLITUDE_3 ( DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 3 */
#define DAC_TRIANGLEAMPLITUDE_7 ( DAC_CR_MAMP1_1 ) /*!< Select max triangle amplitude of 7 */
#define DAC_TRIANGLEAMPLITUDE_15 ( DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 15 */
#define DAC_TRIANGLEAMPLITUDE_31 ( DAC_CR_MAMP1_2 ) /*!< Select max triangle amplitude of 31 */
#define DAC_TRIANGLEAMPLITUDE_63 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 63 */
#define DAC_TRIANGLEAMPLITUDE_127 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 ) /*!< Select max triangle amplitude of 127 */
#define DAC_TRIANGLEAMPLITUDE_255 ( DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 255 */
#define DAC_TRIANGLEAMPLITUDE_511 (DAC_CR_MAMP1_3 ) /*!< Select max triangle amplitude of 511 */
#define DAC_TRIANGLEAMPLITUDE_1023 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 1023 */
#define DAC_TRIANGLEAMPLITUDE_2047 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 ) /*!< Select max triangle amplitude of 2047 */
#define DAC_TRIANGLEAMPLITUDE_4095 (DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 4095 */
/**
* @}
*/
/** @defgroup DACEx_trigger_selection DAC trigger selection
* @{
*/
#define DAC_TRIGGER_NONE 0x00000000U /*!< Conversion is automatic once the DAC1_DHRxxxx register
has been loaded, and not by external trigger */
#define DAC_TRIGGER_T6_TRGO ((uint32_t) DAC_CR_TEN1) /*!< TIM6 TRGO selected as external conversion trigger for DAC channel */
#define DAC_TRIGGER_T7_TRGO ((uint32_t)( DAC_CR_TSEL1_1 | DAC_CR_TEN1)) /*!< TIM7 TRGO selected as external conversion trigger for DAC channel */
#define DAC_TRIGGER_T2_TRGO ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TEN1)) /*!< TIM2 TRGO selected as external conversion trigger for DAC channel */
#define DAC_TRIGGER_T4_TRGO ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM4 TRGO selected as external conversion trigger for DAC channel */
#define DAC_TRIGGER_EXT_IT9 ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TSEL1_1 | DAC_CR_TEN1)) /*!< EXTI Line9 event selected as external conversion trigger for DAC channel */
#define DAC_TRIGGER_SOFTWARE ((uint32_t)(DAC_CR_TSEL1 | DAC_CR_TEN1)) /*!< Conversion started by software trigger for DAC channel */
#if defined (STM32F101xE) || defined (STM32F101xG) || defined (STM32F103xE) || defined (STM32F103xG)
/* For STM32F10x high-density and XL-density devices: TIM8 */
#define DAC_TRIGGER_T8_TRGO ((uint32_t) DAC_CR_TSEL1_0 | DAC_CR_TEN1) /*!< TIM8 TRGO selected as external conversion trigger for DAC channel */
#endif /* STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
#if defined (STM32F100xB) || defined (STM32F100xE) || defined (STM32F105xC) || defined (STM32F107xC)
/* For STM32F10x connectivity line devices and STM32F100x devices: TIM3 */
#define DAC_TRIGGER_T3_TRGO ((uint32_t) DAC_CR_TSEL1_0 | DAC_CR_TEN1) /*!< TIM3 TRGO selected as external conversion trigger for DAC channel */
#endif /* STM32F100xB || STM32F100xE || STM32F105xC || STM32F107xC */
/* Availability of trigger from TIM5 and TIM15: */
/* - For STM32F10x value line devices STM32F100xB: */
/* trigger from TIM15 is available, TIM5 not available. */
/* - For STM32F10x value line devices STM32F100xE: */
/* trigger from TIM15 and TIM5 are both available, */
/* selection depends on remap (with TIM5 as default configuration). */
/* - Other STM32F1 devices: */
/* trigger from TIM5 is available, TIM15 not available. */
#if defined (STM32F100xB)
#define DAC_TRIGGER_T15_TRGO ((uint32_t)( DAC_CR_TSEL1_1 | DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM15 TRGO selected as external conversion trigger for DAC channel */
#else
#define DAC_TRIGGER_T5_TRGO ((uint32_t)( DAC_CR_TSEL1_1 | DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM5 TRGO selected as external conversion trigger for DAC channel */
#if defined (STM32F100xE)
/*!< DAC trigger availability depending on STM32F1 devices:
For STM32F100x high-density value line devices, the TIM15 TRGO event can be selected
as replacement of TIM5 TRGO if the MISC_REMAP bit in the AFIO_MAPR2 register is set.
Refer to macro "__HAL_AFIO_REMAP_MISC_ENABLE()/__HAL_AFIO_REMAP_MISC_DISABLE()".
Otherwise, TIM5 TRGO is used and TIM15 TRGO is not used (default case).
For more details please refer to the AFIO section. */
#define DAC_TRIGGER_T15_TRGO DAC_TRIGGER_T5_TRGO
#endif /* STM32F100xE */
#endif /* STM32F100xB */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup DACEx_Private_Macros DACEx Private Macros
* @{
*/
#if defined (STM32F101xE) || defined (STM32F101xG) || defined (STM32F103xE) || defined (STM32F103xG)
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_TRIGGER_NONE) || \
((TRIGGER) == DAC_TRIGGER_T6_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T8_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T7_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T5_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T2_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T4_TRGO) || \
((TRIGGER) == DAC_TRIGGER_EXT_IT9) || \
((TRIGGER) == DAC_TRIGGER_SOFTWARE))
#endif /* STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
#if defined (STM32F100xE) || defined (STM32F105xC) || defined (STM32F107xC)
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_TRIGGER_NONE) || \
((TRIGGER) == DAC_TRIGGER_T6_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T3_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T7_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T5_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T2_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T4_TRGO) || \
((TRIGGER) == DAC_TRIGGER_EXT_IT9) || \
((TRIGGER) == DAC_TRIGGER_SOFTWARE))
#endif /* STM32F100xE || STM32F105xC || STM32F107xC */
#if defined (STM32F100xB)
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_TRIGGER_NONE) || \
((TRIGGER) == DAC_TRIGGER_T6_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T3_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T7_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T15_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T2_TRGO) || \
((TRIGGER) == DAC_TRIGGER_T4_TRGO) || \
((TRIGGER) == DAC_TRIGGER_EXT_IT9) || \
((TRIGGER) == DAC_TRIGGER_SOFTWARE))
#endif /* STM32F100xB */
#define IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(VALUE) (((VALUE) == DAC_LFSRUNMASK_BIT0) || \
((VALUE) == DAC_LFSRUNMASK_BITS1_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS2_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS3_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS4_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS5_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS6_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS7_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS8_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS9_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS10_0) || \
((VALUE) == DAC_LFSRUNMASK_BITS11_0) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_1) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_3) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_7) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_15) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_31) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_63) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_127) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_255) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_511) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_1023) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_2047) || \
((VALUE) == DAC_TRIANGLEAMPLITUDE_4095))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/* Extended features functions ***********************************************/
/** @addtogroup DACEx_Exported_Functions
* @{
*/
/** @addtogroup DACEx_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude);
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude);
HAL_StatusTypeDef HAL_DACEx_DualStart(DAC_HandleTypeDef *hdac);
HAL_StatusTypeDef HAL_DACEx_DualStop(DAC_HandleTypeDef *hdac);
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef *hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2);
uint32_t HAL_DACEx_DualGetValue(const DAC_HandleTypeDef *hdac);
void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef *hdac);
void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef *hdac);
void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac);
void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/** @addtogroup DACEx_Private_Functions
* @{
*/
/* DAC_DMAConvCpltCh2 / DAC_DMAErrorCh2 / DAC_DMAHalfConvCpltCh2 */
/* are called by HAL_DAC_Start_DMA */
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma);
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma);
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/**
* @}
*/
#endif /* DAC */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_DAC_EX_H */

View file

@ -0,0 +1,211 @@
/**
******************************************************************************
* @file stm32f1xx_hal_def.h
* @author MCD Application Team
* @brief This file contains HAL common defines, enumeration, macros and
* structures definitions.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_DEF
#define __STM32F1xx_HAL_DEF
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
#include "Legacy/stm32_hal_legacy.h"
#include <stddef.h>
/* Exported types ------------------------------------------------------------*/
/**
* @brief HAL Status structures definition
*/
typedef enum
{
HAL_OK = 0x00U,
HAL_ERROR = 0x01U,
HAL_BUSY = 0x02U,
HAL_TIMEOUT = 0x03U
} HAL_StatusTypeDef;
/**
* @brief HAL Lock structures definition
*/
typedef enum
{
HAL_UNLOCKED = 0x00U,
HAL_LOCKED = 0x01U
} HAL_LockTypeDef;
/* Exported macro ------------------------------------------------------------*/
#define HAL_MAX_DELAY 0xFFFFFFFFU
#define HAL_IS_BIT_SET(REG, BIT) (((REG) & (BIT)) != 0U)
#define HAL_IS_BIT_CLR(REG, BIT) (((REG) & (BIT)) == 0U)
#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD__, __DMA_HANDLE__) \
do{ \
(__HANDLE__)->__PPP_DMA_FIELD__ = &(__DMA_HANDLE__); \
(__DMA_HANDLE__).Parent = (__HANDLE__); \
} while(0U)
#if !defined(UNUSED)
#define UNUSED(X) (void)X /* To avoid gcc/g++ warnings */
#endif /* UNUSED */
/** @brief Reset the Handle's State field.
* @param __HANDLE__ specifies the Peripheral Handle.
* @note This macro can be used for the following purpose:
* - When the Handle is declared as local variable; before passing it as parameter
* to HAL_PPP_Init() for the first time, it is mandatory to use this macro
* to set to 0 the Handle's "State" field.
* Otherwise, "State" field may have any random value and the first time the function
* HAL_PPP_Init() is called, the low level hardware initialization will be missed
* (i.e. HAL_PPP_MspInit() will not be executed).
* - When there is a need to reconfigure the low level hardware: instead of calling
* HAL_PPP_DeInit() then HAL_PPP_Init(), user can make a call to this macro then HAL_PPP_Init().
* In this later function, when the Handle's "State" field is set to 0, it will execute the function
* HAL_PPP_MspInit() which will reconfigure the low level hardware.
* @retval None
*/
#define __HAL_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = 0U)
#if (USE_RTOS == 1U)
/* Reserved for future use */
#error "USE_RTOS should be 0 in the current HAL release"
#else
#define __HAL_LOCK(__HANDLE__) \
do{ \
if((__HANDLE__)->Lock == HAL_LOCKED) \
{ \
return HAL_BUSY; \
} \
else \
{ \
(__HANDLE__)->Lock = HAL_LOCKED; \
} \
}while (0U)
#define __HAL_UNLOCK(__HANDLE__) \
do{ \
(__HANDLE__)->Lock = HAL_UNLOCKED; \
}while (0U)
#endif /* USE_RTOS */
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
#ifndef __weak
#define __weak __attribute__((weak))
#endif
#ifndef __packed
#define __packed __attribute__((packed))
#endif
#elif defined ( __GNUC__ ) && !defined (__CC_ARM) /* GNU Compiler */
#ifndef __weak
#define __weak __attribute__((weak))
#endif /* __weak */
#ifndef __packed
#define __packed __attribute__((__packed__))
#endif /* __packed */
#endif /* __GNUC__ */
/* Macro to get variable aligned on 4-bytes, for __ICCARM__ the directive "#pragma data_alignment=4" must be used instead */
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
#ifndef __ALIGN_BEGIN
#define __ALIGN_BEGIN
#endif
#ifndef __ALIGN_END
#define __ALIGN_END __attribute__ ((aligned (4)))
#endif
#elif defined ( __GNUC__ ) && !defined (__CC_ARM) /* GNU Compiler */
#ifndef __ALIGN_END
#define __ALIGN_END __attribute__ ((aligned (4)))
#endif /* __ALIGN_END */
#ifndef __ALIGN_BEGIN
#define __ALIGN_BEGIN
#endif /* __ALIGN_BEGIN */
#else
#ifndef __ALIGN_END
#define __ALIGN_END
#endif /* __ALIGN_END */
#ifndef __ALIGN_BEGIN
#if defined (__CC_ARM) /* ARM Compiler V5*/
#define __ALIGN_BEGIN __align(4)
#elif defined (__ICCARM__) /* IAR Compiler */
#define __ALIGN_BEGIN
#endif /* __CC_ARM */
#endif /* __ALIGN_BEGIN */
#endif /* __GNUC__ */
/**
* @brief __RAM_FUNC definition
*/
#if defined ( __CC_ARM ) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
/* ARM Compiler V4/V5 and V6
--------------------------
RAM functions are defined using the toolchain options.
Functions that are executed in RAM should reside in a separate source module.
Using the 'Options for File' dialog you can simply change the 'Code / Const'
area of a module to a memory space in physical RAM.
Available memory areas are declared in the 'Target' tab of the 'Options for Target'
dialog.
*/
#define __RAM_FUNC
#elif defined ( __ICCARM__ )
/* ICCARM Compiler
---------------
RAM functions are defined using a specific toolchain keyword "__ramfunc".
*/
#define __RAM_FUNC __ramfunc
#elif defined ( __GNUC__ )
/* GNU Compiler
------------
RAM functions are defined using a specific toolchain attribute
"__attribute__((section(".RamFunc")))".
*/
#define __RAM_FUNC __attribute__((section(".RamFunc")))
#endif
/**
* @brief __NOINLINE definition
*/
#if defined ( __CC_ARM ) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) || defined ( __GNUC__ )
/* ARM V4/V5 and V6 & GNU Compiler
-------------------------------
*/
#define __NOINLINE __attribute__ ( (noinline) )
#elif defined ( __ICCARM__ )
/* ICCARM Compiler
---------------
*/
#define __NOINLINE _Pragma("optimize = no_inline")
#endif
#ifdef __cplusplus
}
#endif
#endif /* ___STM32F1xx_HAL_DEF */

View file

@ -0,0 +1,455 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dma.h
* @author MCD Application Team
* @brief Header file of DMA HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_DMA_H
#define __STM32F1xx_HAL_DMA_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup DMA
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup DMA_Exported_Types DMA Exported Types
* @{
*/
/**
* @brief DMA Configuration Structure definition
*/
typedef struct
{
uint32_t Direction; /*!< Specifies if the data will be transferred from memory to peripheral,
from memory to memory or from peripheral to memory.
This parameter can be a value of @ref DMA_Data_transfer_direction */
uint32_t PeriphInc; /*!< Specifies whether the Peripheral address register should be incremented or not.
This parameter can be a value of @ref DMA_Peripheral_incremented_mode */
uint32_t MemInc; /*!< Specifies whether the memory address register should be incremented or not.
This parameter can be a value of @ref DMA_Memory_incremented_mode */
uint32_t PeriphDataAlignment; /*!< Specifies the Peripheral data width.
This parameter can be a value of @ref DMA_Peripheral_data_size */
uint32_t MemDataAlignment; /*!< Specifies the Memory data width.
This parameter can be a value of @ref DMA_Memory_data_size */
uint32_t Mode; /*!< Specifies the operation mode of the DMAy Channelx.
This parameter can be a value of @ref DMA_mode
@note The circular buffer mode cannot be used if the memory-to-memory
data transfer is configured on the selected Channel */
uint32_t Priority; /*!< Specifies the software priority for the DMAy Channelx.
This parameter can be a value of @ref DMA_Priority_level */
} DMA_InitTypeDef;
/**
* @brief HAL DMA State structures definition
*/
typedef enum
{
HAL_DMA_STATE_RESET = 0x00U, /*!< DMA not yet initialized or disabled */
HAL_DMA_STATE_READY = 0x01U, /*!< DMA initialized and ready for use */
HAL_DMA_STATE_BUSY = 0x02U, /*!< DMA process is ongoing */
HAL_DMA_STATE_TIMEOUT = 0x03U /*!< DMA timeout state */
}HAL_DMA_StateTypeDef;
/**
* @brief HAL DMA Error Code structure definition
*/
typedef enum
{
HAL_DMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */
HAL_DMA_HALF_TRANSFER = 0x01U /*!< Half Transfer */
}HAL_DMA_LevelCompleteTypeDef;
/**
* @brief HAL DMA Callback ID structure definition
*/
typedef enum
{
HAL_DMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */
HAL_DMA_XFER_HALFCPLT_CB_ID = 0x01U, /*!< Half transfer */
HAL_DMA_XFER_ERROR_CB_ID = 0x02U, /*!< Error */
HAL_DMA_XFER_ABORT_CB_ID = 0x03U, /*!< Abort */
HAL_DMA_XFER_ALL_CB_ID = 0x04U /*!< All */
}HAL_DMA_CallbackIDTypeDef;
/**
* @brief DMA handle Structure definition
*/
typedef struct __DMA_HandleTypeDef
{
DMA_Channel_TypeDef *Instance; /*!< Register base address */
DMA_InitTypeDef Init; /*!< DMA communication parameters */
HAL_LockTypeDef Lock; /*!< DMA locking object */
__IO HAL_DMA_StateTypeDef State; /*!< DMA transfer state */
void *Parent; /*!< Parent object state */
void (* XferCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer complete callback */
void (* XferHalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA Half transfer complete callback */
void (* XferErrorCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer error callback */
void (* XferAbortCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer abort callback */
__IO uint32_t ErrorCode; /*!< DMA Error code */
DMA_TypeDef *DmaBaseAddress; /*!< DMA Channel Base Address */
uint32_t ChannelIndex; /*!< DMA Channel Index */
} DMA_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DMA_Exported_Constants DMA Exported Constants
* @{
*/
/** @defgroup DMA_Error_Code DMA Error Code
* @{
*/
#define HAL_DMA_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_DMA_ERROR_TE 0x00000001U /*!< Transfer error */
#define HAL_DMA_ERROR_NO_XFER 0x00000004U /*!< no ongoing transfer */
#define HAL_DMA_ERROR_TIMEOUT 0x00000020U /*!< Timeout error */
#define HAL_DMA_ERROR_NOT_SUPPORTED 0x00000100U /*!< Not supported mode */
/**
* @}
*/
/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction
* @{
*/
#define DMA_PERIPH_TO_MEMORY 0x00000000U /*!< Peripheral to memory direction */
#define DMA_MEMORY_TO_PERIPH ((uint32_t)DMA_CCR_DIR) /*!< Memory to peripheral direction */
#define DMA_MEMORY_TO_MEMORY ((uint32_t)DMA_CCR_MEM2MEM) /*!< Memory to memory direction */
/**
* @}
*/
/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode
* @{
*/
#define DMA_PINC_ENABLE ((uint32_t)DMA_CCR_PINC) /*!< Peripheral increment mode Enable */
#define DMA_PINC_DISABLE 0x00000000U /*!< Peripheral increment mode Disable */
/**
* @}
*/
/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode
* @{
*/
#define DMA_MINC_ENABLE ((uint32_t)DMA_CCR_MINC) /*!< Memory increment mode Enable */
#define DMA_MINC_DISABLE 0x00000000U /*!< Memory increment mode Disable */
/**
* @}
*/
/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size
* @{
*/
#define DMA_PDATAALIGN_BYTE 0x00000000U /*!< Peripheral data alignment: Byte */
#define DMA_PDATAALIGN_HALFWORD ((uint32_t)DMA_CCR_PSIZE_0) /*!< Peripheral data alignment: HalfWord */
#define DMA_PDATAALIGN_WORD ((uint32_t)DMA_CCR_PSIZE_1) /*!< Peripheral data alignment: Word */
/**
* @}
*/
/** @defgroup DMA_Memory_data_size DMA Memory data size
* @{
*/
#define DMA_MDATAALIGN_BYTE 0x00000000U /*!< Memory data alignment: Byte */
#define DMA_MDATAALIGN_HALFWORD ((uint32_t)DMA_CCR_MSIZE_0) /*!< Memory data alignment: HalfWord */
#define DMA_MDATAALIGN_WORD ((uint32_t)DMA_CCR_MSIZE_1) /*!< Memory data alignment: Word */
/**
* @}
*/
/** @defgroup DMA_mode DMA mode
* @{
*/
#define DMA_NORMAL 0x00000000U /*!< Normal mode */
#define DMA_CIRCULAR ((uint32_t)DMA_CCR_CIRC) /*!< Circular mode */
/**
* @}
*/
/** @defgroup DMA_Priority_level DMA Priority level
* @{
*/
#define DMA_PRIORITY_LOW 0x00000000U /*!< Priority level : Low */
#define DMA_PRIORITY_MEDIUM ((uint32_t)DMA_CCR_PL_0) /*!< Priority level : Medium */
#define DMA_PRIORITY_HIGH ((uint32_t)DMA_CCR_PL_1) /*!< Priority level : High */
#define DMA_PRIORITY_VERY_HIGH ((uint32_t)DMA_CCR_PL) /*!< Priority level : Very_High */
/**
* @}
*/
/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions
* @{
*/
#define DMA_IT_TC ((uint32_t)DMA_CCR_TCIE)
#define DMA_IT_HT ((uint32_t)DMA_CCR_HTIE)
#define DMA_IT_TE ((uint32_t)DMA_CCR_TEIE)
/**
* @}
*/
/** @defgroup DMA_flag_definitions DMA flag definitions
* @{
*/
#define DMA_FLAG_GL1 0x00000001U
#define DMA_FLAG_TC1 0x00000002U
#define DMA_FLAG_HT1 0x00000004U
#define DMA_FLAG_TE1 0x00000008U
#define DMA_FLAG_GL2 0x00000010U
#define DMA_FLAG_TC2 0x00000020U
#define DMA_FLAG_HT2 0x00000040U
#define DMA_FLAG_TE2 0x00000080U
#define DMA_FLAG_GL3 0x00000100U
#define DMA_FLAG_TC3 0x00000200U
#define DMA_FLAG_HT3 0x00000400U
#define DMA_FLAG_TE3 0x00000800U
#define DMA_FLAG_GL4 0x00001000U
#define DMA_FLAG_TC4 0x00002000U
#define DMA_FLAG_HT4 0x00004000U
#define DMA_FLAG_TE4 0x00008000U
#define DMA_FLAG_GL5 0x00010000U
#define DMA_FLAG_TC5 0x00020000U
#define DMA_FLAG_HT5 0x00040000U
#define DMA_FLAG_TE5 0x00080000U
#define DMA_FLAG_GL6 0x00100000U
#define DMA_FLAG_TC6 0x00200000U
#define DMA_FLAG_HT6 0x00400000U
#define DMA_FLAG_TE6 0x00800000U
#define DMA_FLAG_GL7 0x01000000U
#define DMA_FLAG_TC7 0x02000000U
#define DMA_FLAG_HT7 0x04000000U
#define DMA_FLAG_TE7 0x08000000U
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup DMA_Exported_Macros DMA Exported Macros
* @{
*/
/** @brief Reset DMA handle state.
* @param __HANDLE__: DMA handle
* @retval None
*/
#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET)
/**
* @brief Enable the specified DMA Channel.
* @param __HANDLE__: DMA handle
* @retval None
*/
#define __HAL_DMA_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
/**
* @brief Disable the specified DMA Channel.
* @param __HANDLE__: DMA handle
* @retval None
*/
#define __HAL_DMA_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
/* Interrupt & Flag management */
/**
* @brief Enables the specified DMA Channel interrupts.
* @param __HANDLE__: DMA handle
* @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval None
*/
#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) (SET_BIT((__HANDLE__)->Instance->CCR, (__INTERRUPT__)))
/**
* @brief Disable the specified DMA Channel interrupts.
* @param __HANDLE__: DMA handle
* @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval None
*/
#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) (CLEAR_BIT((__HANDLE__)->Instance->CCR , (__INTERRUPT__)))
/**
* @brief Check whether the specified DMA Channel interrupt is enabled or not.
* @param __HANDLE__: DMA handle
* @param __INTERRUPT__: specifies the DMA interrupt source to check.
* This parameter can be one of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval The state of DMA_IT (SET or RESET).
*/
#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CCR & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/**
* @brief Return the number of remaining data units in the current DMA Channel transfer.
* @param __HANDLE__: DMA handle
* @retval The number of remaining data units in the current DMA Channel transfer.
*/
#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)
/**
* @}
*/
/* Include DMA HAL Extension module */
#include "stm32f1xx_hal_dma_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DMA_Exported_Functions
* @{
*/
/** @addtogroup DMA_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions *****************************/
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_DeInit (DMA_HandleTypeDef *hdma);
/**
* @}
*/
/** @addtogroup DMA_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_DMA_Start (DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout);
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma));
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID);
/**
* @}
*/
/** @addtogroup DMA_Exported_Functions_Group3
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma);
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup DMA_Private_Macros DMA Private Macros
* @{
*/
#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY ) || \
((DIRECTION) == DMA_MEMORY_TO_PERIPH) || \
((DIRECTION) == DMA_MEMORY_TO_MEMORY))
#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x1U) && ((SIZE) < 0x10000U))
#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || \
((STATE) == DMA_PINC_DISABLE))
#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE) || \
((STATE) == DMA_MINC_DISABLE))
#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE) || \
((SIZE) == DMA_PDATAALIGN_HALFWORD) || \
((SIZE) == DMA_PDATAALIGN_WORD))
#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE) || \
((SIZE) == DMA_MDATAALIGN_HALFWORD) || \
((SIZE) == DMA_MDATAALIGN_WORD ))
#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL ) || \
((MODE) == DMA_CIRCULAR))
#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW ) || \
((PRIORITY) == DMA_PRIORITY_MEDIUM) || \
((PRIORITY) == DMA_PRIORITY_HIGH) || \
((PRIORITY) == DMA_PRIORITY_VERY_HIGH))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_DMA_H */

View file

@ -0,0 +1,275 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dma_ex.h
* @author MCD Application Team
* @brief Header file of DMA HAL extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_DMA_EX_H
#define __STM32F1xx_HAL_DMA_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup DMAEx DMAEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup DMAEx_Exported_Macros DMA Extended Exported Macros
* @{
*/
/* Interrupt & Flag management */
#if defined (STM32F100xE) || defined (STM32F101xE) || defined (STM32F101xG) || defined (STM32F103xE) || \
defined (STM32F103xG) || defined (STM32F105xC) || defined (STM32F107xC)
/** @defgroup DMAEx_High_density_XL_density_Product_devices DMAEx High density and XL density product devices
* @{
*/
/**
* @brief Returns the current DMA Channel transfer complete flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer complete flag index.
*/
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_TC7 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TC4 :\
DMA_FLAG_TC5)
/**
* @brief Returns the current DMA Channel half transfer complete flag.
* @param __HANDLE__: DMA handle
* @retval The specified half transfer complete flag index.
*/
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_HT7 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_HT4 :\
DMA_FLAG_HT5)
/**
* @brief Returns the current DMA Channel transfer error flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer error flag index.
*/
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_TE7 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TE4 :\
DMA_FLAG_TE5)
/**
* @brief Return the current DMA Channel Global interrupt flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer error flag index.
*/
#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_GL1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_GL2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_GL3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_GL4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_GL5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_GL6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_GL7 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_GL1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_GL2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_GL3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_GL4 :\
DMA_FLAG_GL5)
/**
* @brief Get the DMA Channel pending flags.
* @param __HANDLE__: DMA handle
* @param __FLAG__: Get the specified flag.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* Where x can be 1_7 or 1_5 (depending on DMA1 or DMA2) to select the DMA Channel flag.
* @retval The state of FLAG (SET or RESET).
*/
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)\
(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7)? (DMA2->ISR & (__FLAG__)) :\
(DMA1->ISR & (__FLAG__)))
/**
* @brief Clears the DMA Channel pending flags.
* @param __HANDLE__: DMA handle
* @param __FLAG__: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* Where x can be 1_7 or 1_5 (depending on DMA1 or DMA2) to select the DMA Channel flag.
* @retval None
*/
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) \
(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7)? (DMA2->IFCR = (__FLAG__)) :\
(DMA1->IFCR = (__FLAG__)))
/**
* @}
*/
#else
/** @defgroup DMA_Low_density_Medium_density_Product_devices DMA Low density and Medium density product devices
* @{
*/
/**
* @brief Returns the current DMA Channel transfer complete flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer complete flag index.
*/
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
DMA_FLAG_TC7)
/**
* @brief Return the current DMA Channel half transfer complete flag.
* @param __HANDLE__: DMA handle
* @retval The specified half transfer complete flag index.
*/
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
DMA_FLAG_HT7)
/**
* @brief Return the current DMA Channel transfer error flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer error flag index.
*/
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
DMA_FLAG_TE7)
/**
* @brief Return the current DMA Channel Global interrupt flag.
* @param __HANDLE__: DMA handle
* @retval The specified transfer error flag index.
*/
#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_GL1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_GL2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_GL3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_GL4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_GL5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_GL6 :\
DMA_FLAG_GL7)
/**
* @brief Get the DMA Channel pending flags.
* @param __HANDLE__: DMA handle
* @param __FLAG__: Get the specified flag.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* @arg DMA_FLAG_GLx: Global interrupt flag
* Where x can be 1_7 to select the DMA Channel flag.
* @retval The state of FLAG (SET or RESET).
*/
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (DMA1->ISR & (__FLAG__))
/**
* @brief Clear the DMA Channel pending flags.
* @param __HANDLE__: DMA handle
* @param __FLAG__: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* @arg DMA_FLAG_GLx: Global interrupt flag
* Where x can be 1_7 to select the DMA Channel flag.
* @retval None
*/
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (DMA1->IFCR = (__FLAG__))
/**
* @}
*/
#endif
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || */
/* STM32F103xG || STM32F105xC || STM32F107xC */
#endif /* __STM32F1xx_HAL_DMA_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,318 @@
/**
******************************************************************************
* @file stm32f1xx_hal_exti.h
* @author MCD Application Team
* @brief Header file of EXTI HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_EXTI_H
#define STM32F1xx_HAL_EXTI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup EXTI EXTI
* @brief EXTI HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup EXTI_Exported_Types EXTI Exported Types
* @{
*/
/**
* @brief HAL EXTI common Callback ID enumeration definition
*/
typedef enum
{
HAL_EXTI_COMMON_CB_ID = 0x00U
} EXTI_CallbackIDTypeDef;
/**
* @brief EXTI Handle structure definition
*/
typedef struct
{
uint32_t Line; /*!< Exti line number */
void (* PendingCallback)(void); /*!< Exti pending callback */
} EXTI_HandleTypeDef;
/**
* @brief EXTI Configuration structure definition
*/
typedef struct
{
uint32_t Line; /*!< The Exti line to be configured. This parameter
can be a value of @ref EXTI_Line */
uint32_t Mode; /*!< The Exit Mode to be configured for a core.
This parameter can be a combination of @ref EXTI_Mode */
uint32_t Trigger; /*!< The Exti Trigger to be configured. This parameter
can be a value of @ref EXTI_Trigger */
uint32_t GPIOSel; /*!< The Exti GPIO multiplexer selection to be configured.
This parameter is only possible for line 0 to 15. It
can be a value of @ref EXTI_GPIOSel */
} EXTI_ConfigTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup EXTI_Exported_Constants EXTI Exported Constants
* @{
*/
/** @defgroup EXTI_Line EXTI Line
* @{
*/
#define EXTI_LINE_0 (EXTI_GPIO | 0x00u) /*!< External interrupt line 0 */
#define EXTI_LINE_1 (EXTI_GPIO | 0x01u) /*!< External interrupt line 1 */
#define EXTI_LINE_2 (EXTI_GPIO | 0x02u) /*!< External interrupt line 2 */
#define EXTI_LINE_3 (EXTI_GPIO | 0x03u) /*!< External interrupt line 3 */
#define EXTI_LINE_4 (EXTI_GPIO | 0x04u) /*!< External interrupt line 4 */
#define EXTI_LINE_5 (EXTI_GPIO | 0x05u) /*!< External interrupt line 5 */
#define EXTI_LINE_6 (EXTI_GPIO | 0x06u) /*!< External interrupt line 6 */
#define EXTI_LINE_7 (EXTI_GPIO | 0x07u) /*!< External interrupt line 7 */
#define EXTI_LINE_8 (EXTI_GPIO | 0x08u) /*!< External interrupt line 8 */
#define EXTI_LINE_9 (EXTI_GPIO | 0x09u) /*!< External interrupt line 9 */
#define EXTI_LINE_10 (EXTI_GPIO | 0x0Au) /*!< External interrupt line 10 */
#define EXTI_LINE_11 (EXTI_GPIO | 0x0Bu) /*!< External interrupt line 11 */
#define EXTI_LINE_12 (EXTI_GPIO | 0x0Cu) /*!< External interrupt line 12 */
#define EXTI_LINE_13 (EXTI_GPIO | 0x0Du) /*!< External interrupt line 13 */
#define EXTI_LINE_14 (EXTI_GPIO | 0x0Eu) /*!< External interrupt line 14 */
#define EXTI_LINE_15 (EXTI_GPIO | 0x0Fu) /*!< External interrupt line 15 */
#define EXTI_LINE_16 (EXTI_CONFIG | 0x10u) /*!< External interrupt line 16 Connected to the PVD Output */
#define EXTI_LINE_17 (EXTI_CONFIG | 0x11u) /*!< External interrupt line 17 Connected to the RTC Alarm event */
#if defined(EXTI_IMR_IM18)
#define EXTI_LINE_18 (EXTI_CONFIG | 0x12u) /*!< External interrupt line 18 Connected to the USB Wakeup from suspend event */
#endif /* EXTI_IMR_IM18 */
#if defined(EXTI_IMR_IM19)
#define EXTI_LINE_19 (EXTI_CONFIG | 0x13u) /*!< External interrupt line 19 Connected to the Ethernet Wakeup event */
#endif /* EXTI_IMR_IM19 */
/**
* @}
*/
/** @defgroup EXTI_Mode EXTI Mode
* @{
*/
#define EXTI_MODE_NONE 0x00000000u
#define EXTI_MODE_INTERRUPT 0x00000001u
#define EXTI_MODE_EVENT 0x00000002u
/**
* @}
*/
/** @defgroup EXTI_Trigger EXTI Trigger
* @{
*/
#define EXTI_TRIGGER_NONE 0x00000000u
#define EXTI_TRIGGER_RISING 0x00000001u
#define EXTI_TRIGGER_FALLING 0x00000002u
#define EXTI_TRIGGER_RISING_FALLING (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
/**
* @}
*/
/** @defgroup EXTI_GPIOSel EXTI GPIOSel
* @brief
* @{
*/
#define EXTI_GPIOA 0x00000000u
#define EXTI_GPIOB 0x00000001u
#define EXTI_GPIOC 0x00000002u
#define EXTI_GPIOD 0x00000003u
#if defined (GPIOE)
#define EXTI_GPIOE 0x00000004u
#endif /* GPIOE */
#if defined (GPIOF)
#define EXTI_GPIOF 0x00000005u
#endif /* GPIOF */
#if defined (GPIOG)
#define EXTI_GPIOG 0x00000006u
#endif /* GPIOG */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup EXTI_Exported_Macros EXTI Exported Macros
* @{
*/
/**
* @}
*/
/* Private constants --------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
/**
* @brief EXTI Line property definition
*/
#define EXTI_PROPERTY_SHIFT 24u
#define EXTI_CONFIG (0x02uL << EXTI_PROPERTY_SHIFT)
#define EXTI_GPIO ((0x04uL << EXTI_PROPERTY_SHIFT) | EXTI_CONFIG)
#define EXTI_PROPERTY_MASK (EXTI_CONFIG | EXTI_GPIO)
/**
* @brief EXTI bit usage
*/
#define EXTI_PIN_MASK 0x0000001Fu
/**
* @brief EXTI Mask for interrupt & event mode
*/
#define EXTI_MODE_MASK (EXTI_MODE_EVENT | EXTI_MODE_INTERRUPT)
/**
* @brief EXTI Mask for trigger possibilities
*/
#define EXTI_TRIGGER_MASK (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
/**
* @brief EXTI Line number
*/
#if defined(EXTI_IMR_IM19)
#define EXTI_LINE_NB 20UL
#elif defined(EXTI_IMR_IM18)
#define EXTI_LINE_NB 19UL
#else /* EXTI_IMR_IM17 */
#define EXTI_LINE_NB 18UL
#endif /* EXTI_IMR_IM19 */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup EXTI_Private_Macros EXTI Private Macros
* @{
*/
#define IS_EXTI_LINE(__EXTI_LINE__) ((((__EXTI_LINE__) & ~(EXTI_PROPERTY_MASK | EXTI_PIN_MASK)) == 0x00u) && \
((((__EXTI_LINE__) & EXTI_PROPERTY_MASK) == EXTI_CONFIG) || \
(((__EXTI_LINE__) & EXTI_PROPERTY_MASK) == EXTI_GPIO)) && \
(((__EXTI_LINE__) & EXTI_PIN_MASK) < EXTI_LINE_NB))
#define IS_EXTI_MODE(__EXTI_LINE__) ((((__EXTI_LINE__) & EXTI_MODE_MASK) != 0x00u) && \
(((__EXTI_LINE__) & ~EXTI_MODE_MASK) == 0x00u))
#define IS_EXTI_TRIGGER(__EXTI_LINE__) (((__EXTI_LINE__) & ~EXTI_TRIGGER_MASK) == 0x00u)
#define IS_EXTI_PENDING_EDGE(__EXTI_LINE__) ((__EXTI_LINE__) == EXTI_TRIGGER_RISING_FALLING)
#define IS_EXTI_CONFIG_LINE(__EXTI_LINE__) (((__EXTI_LINE__) & EXTI_CONFIG) != 0x00u)
#if defined (GPIOG)
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOD) || \
((__PORT__) == EXTI_GPIOE) || \
((__PORT__) == EXTI_GPIOF) || \
((__PORT__) == EXTI_GPIOG))
#elif defined (GPIOF)
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOD) || \
((__PORT__) == EXTI_GPIOE) || \
((__PORT__) == EXTI_GPIOF))
#elif defined (GPIOE)
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOD) || \
((__PORT__) == EXTI_GPIOE))
#else
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOD))
#endif /* GPIOG */
#define IS_EXTI_GPIO_PIN(__PIN__) ((__PIN__) < 16u)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup EXTI_Exported_Functions EXTI Exported Functions
* @brief EXTI Exported Functions
* @{
*/
/** @defgroup EXTI_Exported_Functions_Group1 Configuration functions
* @brief Configuration functions
* @{
*/
/* Configuration functions ****************************************************/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti);
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void));
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine);
/**
* @}
*/
/** @defgroup EXTI_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
* @{
*/
/* IO operation functions *****************************************************/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti);
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_EXTI_H */

View file

@ -0,0 +1,325 @@
/**
******************************************************************************
* @file stm32f1xx_hal_flash.h
* @author MCD Application Team
* @brief Header file of Flash HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_FLASH_H
#define __STM32F1xx_HAL_FLASH_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup FLASH
* @{
*/
/** @addtogroup FLASH_Private_Constants
* @{
*/
#define FLASH_TIMEOUT_VALUE 50000U /* 50 s */
/**
* @}
*/
/** @addtogroup FLASH_Private_Macros
* @{
*/
#define IS_FLASH_TYPEPROGRAM(VALUE) (((VALUE) == FLASH_TYPEPROGRAM_HALFWORD) || \
((VALUE) == FLASH_TYPEPROGRAM_WORD) || \
((VALUE) == FLASH_TYPEPROGRAM_DOUBLEWORD))
#if defined(FLASH_ACR_LATENCY)
#define IS_FLASH_LATENCY(__LATENCY__) (((__LATENCY__) == FLASH_LATENCY_0) || \
((__LATENCY__) == FLASH_LATENCY_1) || \
((__LATENCY__) == FLASH_LATENCY_2))
#else
#define IS_FLASH_LATENCY(__LATENCY__) ((__LATENCY__) == FLASH_LATENCY_0)
#endif /* FLASH_ACR_LATENCY */
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup FLASH_Exported_Types FLASH Exported Types
* @{
*/
/**
* @brief FLASH Procedure structure definition
*/
typedef enum
{
FLASH_PROC_NONE = 0U,
FLASH_PROC_PAGEERASE = 1U,
FLASH_PROC_MASSERASE = 2U,
FLASH_PROC_PROGRAMHALFWORD = 3U,
FLASH_PROC_PROGRAMWORD = 4U,
FLASH_PROC_PROGRAMDOUBLEWORD = 5U
} FLASH_ProcedureTypeDef;
/**
* @brief FLASH handle Structure definition
*/
typedef struct
{
__IO FLASH_ProcedureTypeDef ProcedureOnGoing; /*!< Internal variable to indicate which procedure is ongoing or not in IT context */
__IO uint32_t DataRemaining; /*!< Internal variable to save the remaining pages to erase or half-word to program in IT context */
__IO uint32_t Address; /*!< Internal variable to save address selected for program or erase */
__IO uint64_t Data; /*!< Internal variable to save data to be programmed */
HAL_LockTypeDef Lock; /*!< FLASH locking object */
__IO uint32_t ErrorCode; /*!< FLASH error code
This parameter can be a value of @ref FLASH_Error_Codes */
} FLASH_ProcessTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup FLASH_Exported_Constants FLASH Exported Constants
* @{
*/
/** @defgroup FLASH_Error_Codes FLASH Error Codes
* @{
*/
#define HAL_FLASH_ERROR_NONE 0x00U /*!< No error */
#define HAL_FLASH_ERROR_PROG 0x01U /*!< Programming error */
#define HAL_FLASH_ERROR_WRP 0x02U /*!< Write protection error */
#define HAL_FLASH_ERROR_OPTV 0x04U /*!< Option validity error */
/**
* @}
*/
/** @defgroup FLASH_Type_Program FLASH Type Program
* @{
*/
#define FLASH_TYPEPROGRAM_HALFWORD 0x01U /*!<Program a half-word (16-bit) at a specified address.*/
#define FLASH_TYPEPROGRAM_WORD 0x02U /*!<Program a word (32-bit) at a specified address.*/
#define FLASH_TYPEPROGRAM_DOUBLEWORD 0x03U /*!<Program a double word (64-bit) at a specified address*/
/**
* @}
*/
#if defined(FLASH_ACR_LATENCY)
/** @defgroup FLASH_Latency FLASH Latency
* @{
*/
#define FLASH_LATENCY_0 0x00000000U /*!< FLASH Zero Latency cycle */
#define FLASH_LATENCY_1 FLASH_ACR_LATENCY_0 /*!< FLASH One Latency cycle */
#define FLASH_LATENCY_2 FLASH_ACR_LATENCY_1 /*!< FLASH Two Latency cycles */
/**
* @}
*/
#else
/** @defgroup FLASH_Latency FLASH Latency
* @{
*/
#define FLASH_LATENCY_0 0x00000000U /*!< FLASH Zero Latency cycle */
/**
* @}
*/
#endif /* FLASH_ACR_LATENCY */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup FLASH_Exported_Macros FLASH Exported Macros
* @brief macros to control FLASH features
* @{
*/
/** @defgroup FLASH_Half_Cycle FLASH Half Cycle
* @brief macros to handle FLASH half cycle
* @{
*/
/**
* @brief Enable the FLASH half cycle access.
* @note half cycle access can only be used with a low-frequency clock of less than
8 MHz that can be obtained with the use of HSI or HSE but not of PLL.
* @retval None
*/
#define __HAL_FLASH_HALF_CYCLE_ACCESS_ENABLE() (FLASH->ACR |= FLASH_ACR_HLFCYA)
/**
* @brief Disable the FLASH half cycle access.
* @note half cycle access can only be used with a low-frequency clock of less than
8 MHz that can be obtained with the use of HSI or HSE but not of PLL.
* @retval None
*/
#define __HAL_FLASH_HALF_CYCLE_ACCESS_DISABLE() (FLASH->ACR &= (~FLASH_ACR_HLFCYA))
/**
* @}
*/
#if defined(FLASH_ACR_LATENCY)
/** @defgroup FLASH_EM_Latency FLASH Latency
* @brief macros to handle FLASH Latency
* @{
*/
/**
* @brief Set the FLASH Latency.
* @param __LATENCY__ FLASH Latency
* The value of this parameter depend on device used within the same series
* @retval None
*/
#define __HAL_FLASH_SET_LATENCY(__LATENCY__) (FLASH->ACR = (FLASH->ACR&(~FLASH_ACR_LATENCY)) | (__LATENCY__))
/**
* @brief Get the FLASH Latency.
* @retval FLASH Latency
* The value of this parameter depend on device used within the same series
*/
#define __HAL_FLASH_GET_LATENCY() (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY))
/**
* @}
*/
#endif /* FLASH_ACR_LATENCY */
/** @defgroup FLASH_Prefetch FLASH Prefetch
* @brief macros to handle FLASH Prefetch buffer
* @{
*/
/**
* @brief Enable the FLASH prefetch buffer.
* @retval None
*/
#define __HAL_FLASH_PREFETCH_BUFFER_ENABLE() (FLASH->ACR |= FLASH_ACR_PRFTBE)
/**
* @brief Disable the FLASH prefetch buffer.
* @retval None
*/
#define __HAL_FLASH_PREFETCH_BUFFER_DISABLE() (FLASH->ACR &= (~FLASH_ACR_PRFTBE))
/**
* @}
*/
/**
* @}
*/
/* Include FLASH HAL Extended module */
#include "stm32f1xx_hal_flash_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup FLASH_Exported_Functions
* @{
*/
/** @addtogroup FLASH_Exported_Functions_Group1
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
/* FLASH IRQ handler function */
void HAL_FLASH_IRQHandler(void);
/* Callbacks in non blocking modes */
void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue);
void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue);
/**
* @}
*/
/** @addtogroup FLASH_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ***********************************************/
HAL_StatusTypeDef HAL_FLASH_Unlock(void);
HAL_StatusTypeDef HAL_FLASH_Lock(void);
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void);
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void);
void HAL_FLASH_OB_Launch(void);
/**
* @}
*/
/** @addtogroup FLASH_Exported_Functions_Group3
* @{
*/
/* Peripheral State and Error functions ***************************************/
uint32_t HAL_FLASH_GetError(void);
/**
* @}
*/
/**
* @}
*/
/* Private function -------------------------------------------------*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
#if defined(FLASH_BANK2_END)
HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout);
#endif /* FLASH_BANK2_END */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_FLASH_H */

View file

@ -0,0 +1,783 @@
/**
******************************************************************************
* @file stm32f1xx_hal_flash_ex.h
* @author MCD Application Team
* @brief Header file of Flash HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_FLASH_EX_H
#define __STM32F1xx_HAL_FLASH_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup FLASHEx
* @{
*/
/** @addtogroup FLASHEx_Private_Constants
* @{
*/
#define FLASH_SIZE_DATA_REGISTER 0x1FFFF7E0U
#define OBR_REG_INDEX 1U
#define SR_FLAG_MASK ((uint32_t)(FLASH_SR_BSY | FLASH_SR_PGERR | FLASH_SR_WRPRTERR | FLASH_SR_EOP))
/**
* @}
*/
/** @addtogroup FLASHEx_Private_Macros
* @{
*/
#define IS_FLASH_TYPEERASE(VALUE) (((VALUE) == FLASH_TYPEERASE_PAGES) || ((VALUE) == FLASH_TYPEERASE_MASSERASE))
#define IS_OPTIONBYTE(VALUE) (((VALUE) <= (OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER | OPTIONBYTE_DATA)))
#define IS_WRPSTATE(VALUE) (((VALUE) == OB_WRPSTATE_DISABLE) || ((VALUE) == OB_WRPSTATE_ENABLE))
#define IS_OB_RDP_LEVEL(LEVEL) (((LEVEL) == OB_RDP_LEVEL_0) || ((LEVEL) == OB_RDP_LEVEL_1))
#define IS_OB_DATA_ADDRESS(ADDRESS) (((ADDRESS) == OB_DATA_ADDRESS_DATA0) || ((ADDRESS) == OB_DATA_ADDRESS_DATA1))
#define IS_OB_IWDG_SOURCE(SOURCE) (((SOURCE) == OB_IWDG_SW) || ((SOURCE) == OB_IWDG_HW))
#define IS_OB_STOP_SOURCE(SOURCE) (((SOURCE) == OB_STOP_NO_RST) || ((SOURCE) == OB_STOP_RST))
#define IS_OB_STDBY_SOURCE(SOURCE) (((SOURCE) == OB_STDBY_NO_RST) || ((SOURCE) == OB_STDBY_RST))
#if defined(FLASH_BANK2_END)
#define IS_OB_BOOT1(BOOT1) (((BOOT1) == OB_BOOT1_RESET) || ((BOOT1) == OB_BOOT1_SET))
#endif /* FLASH_BANK2_END */
/* Low Density */
#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6))
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)- 1 <= 0x08007FFFU) : \
((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)- 1 <= 0x08003FFFU))
#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
/* Medium Density */
#if (defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0801FFFFU) : \
(((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x40U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0800FFFFU) : \
(((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x08007FFFU) : \
((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x08003FFFU))))
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
/* High Density */
#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE))
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x200U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0807FFFFU) : \
(((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x180U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0805FFFFU) : \
((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0803FFFFU)))
#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
/* XL Density */
#if defined(FLASH_BANK2_END)
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x400U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x080FFFFFU) : \
((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x080BFFFFU))
#endif /* FLASH_BANK2_END */
/* Connectivity Line */
#if (defined(STM32F105xC) || defined(STM32F107xC))
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x100U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0803FFFFU) : \
(((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0801FFFFU) : \
((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0800FFFFU)))
#endif /* STM32F105xC || STM32F107xC */
#define IS_OB_WRP(PAGE) (((PAGE) != 0x0000000U))
#if defined(FLASH_BANK2_END)
#define IS_FLASH_BANK(BANK) (((BANK) == FLASH_BANK_1) || \
((BANK) == FLASH_BANK_2) || \
((BANK) == FLASH_BANK_BOTH))
#else
#define IS_FLASH_BANK(BANK) (((BANK) == FLASH_BANK_1))
#endif /* FLASH_BANK2_END */
/* Low Density */
#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6))
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? \
((ADDRESS) <= FLASH_BANK1_END) : ((ADDRESS) <= 0x08003FFFU)))
#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
/* Medium Density */
#if (defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? \
((ADDRESS) <= FLASH_BANK1_END) : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x40U) ? \
((ADDRESS) <= 0x0800FFFF) : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? \
((ADDRESS) <= 0x08007FFF) : ((ADDRESS) <= 0x08003FFFU)))))
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
/* High Density */
#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE))
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x200U) ? \
((ADDRESS) <= FLASH_BANK1_END) : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x180U) ? \
((ADDRESS) <= 0x0805FFFFU) : ((ADDRESS) <= 0x0803FFFFU))))
#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
/* XL Density */
#if defined(FLASH_BANK2_END)
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x400U) ? \
((ADDRESS) <= FLASH_BANK2_END) : ((ADDRESS) <= 0x080BFFFFU)))
#endif /* FLASH_BANK2_END */
/* Connectivity Line */
#if (defined(STM32F105xC) || defined(STM32F107xC))
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x100U) ? \
((ADDRESS) <= FLASH_BANK1_END) : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? \
((ADDRESS) <= 0x0801FFFFU) : ((ADDRESS) <= 0x0800FFFFU))))
#endif /* STM32F105xC || STM32F107xC */
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Types FLASHEx Exported Types
* @{
*/
/**
* @brief FLASH Erase structure definition
*/
typedef struct
{
uint32_t TypeErase; /*!< TypeErase: Mass erase or page erase.
This parameter can be a value of @ref FLASHEx_Type_Erase */
uint32_t Banks; /*!< Select banks to erase when Mass erase is enabled.
This parameter must be a value of @ref FLASHEx_Banks */
uint32_t PageAddress; /*!< PageAdress: Initial FLASH page address to erase when mass erase is disabled
This parameter must be a number between Min_Data = 0x08000000 and Max_Data = FLASH_BANKx_END
(x = 1 or 2 depending on devices)*/
uint32_t NbPages; /*!< NbPages: Number of pagess to be erased.
This parameter must be a value between Min_Data = 1 and Max_Data = (max number of pages - value of initial page)*/
} FLASH_EraseInitTypeDef;
/**
* @brief FLASH Options bytes program structure definition
*/
typedef struct
{
uint32_t OptionType; /*!< OptionType: Option byte to be configured.
This parameter can be a value of @ref FLASHEx_OB_Type */
uint32_t WRPState; /*!< WRPState: Write protection activation or deactivation.
This parameter can be a value of @ref FLASHEx_OB_WRP_State */
uint32_t WRPPage; /*!< WRPPage: specifies the page(s) to be write protected
This parameter can be a value of @ref FLASHEx_OB_Write_Protection */
uint32_t Banks; /*!< Select banks for WRP activation/deactivation of all sectors.
This parameter must be a value of @ref FLASHEx_Banks */
uint8_t RDPLevel; /*!< RDPLevel: Set the read protection level..
This parameter can be a value of @ref FLASHEx_OB_Read_Protection */
#if defined(FLASH_BANK2_END)
uint8_t USERConfig; /*!< USERConfig: Program the FLASH User Option Byte:
IWDG / STOP / STDBY / BOOT1
This parameter can be a combination of @ref FLASHEx_OB_IWatchdog, @ref FLASHEx_OB_nRST_STOP,
@ref FLASHEx_OB_nRST_STDBY, @ref FLASHEx_OB_BOOT1 */
#else
uint8_t USERConfig; /*!< USERConfig: Program the FLASH User Option Byte:
IWDG / STOP / STDBY
This parameter can be a combination of @ref FLASHEx_OB_IWatchdog, @ref FLASHEx_OB_nRST_STOP,
@ref FLASHEx_OB_nRST_STDBY */
#endif /* FLASH_BANK2_END */
uint32_t DATAAddress; /*!< DATAAddress: Address of the option byte DATA to be programmed
This parameter can be a value of @ref FLASHEx_OB_Data_Address */
uint8_t DATAData; /*!< DATAData: Data to be stored in the option byte DATA
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
} FLASH_OBProgramInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Constants FLASHEx Exported Constants
* @{
*/
/** @defgroup FLASHEx_Constants FLASH Constants
* @{
*/
/** @defgroup FLASHEx_Page_Size Page Size
* @{
*/
#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6) || defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
#define FLASH_PAGE_SIZE 0x400U
#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
/* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC))
#define FLASH_PAGE_SIZE 0x800U
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
/* STM32F101xG || STM32F103xG */
/* STM32F105xC || STM32F107xC */
/**
* @}
*/
/** @defgroup FLASHEx_Type_Erase Type Erase
* @{
*/
#define FLASH_TYPEERASE_PAGES 0x00U /*!<Pages erase only*/
#define FLASH_TYPEERASE_MASSERASE 0x02U /*!<Flash mass erase activation*/
/**
* @}
*/
/** @defgroup FLASHEx_Banks Banks
* @{
*/
#if defined(FLASH_BANK2_END)
#define FLASH_BANK_1 1U /*!< Bank 1 */
#define FLASH_BANK_2 2U /*!< Bank 2 */
#define FLASH_BANK_BOTH ((uint32_t)FLASH_BANK_1 | FLASH_BANK_2) /*!< Bank1 and Bank2 */
#else
#define FLASH_BANK_1 1U /*!< Bank 1 */
#endif
/**
* @}
*/
/**
* @}
*/
/** @defgroup FLASHEx_OptionByte_Constants Option Byte Constants
* @{
*/
/** @defgroup FLASHEx_OB_Type Option Bytes Type
* @{
*/
#define OPTIONBYTE_WRP 0x01U /*!<WRP option byte configuration*/
#define OPTIONBYTE_RDP 0x02U /*!<RDP option byte configuration*/
#define OPTIONBYTE_USER 0x04U /*!<USER option byte configuration*/
#define OPTIONBYTE_DATA 0x08U /*!<DATA option byte configuration*/
/**
* @}
*/
/** @defgroup FLASHEx_OB_WRP_State Option Byte WRP State
* @{
*/
#define OB_WRPSTATE_DISABLE 0x00U /*!<Disable the write protection of the desired pages*/
#define OB_WRPSTATE_ENABLE 0x01U /*!<Enable the write protection of the desired pagess*/
/**
* @}
*/
/** @defgroup FLASHEx_OB_Write_Protection Option Bytes Write Protection
* @{
*/
/* STM32 Low and Medium density devices */
#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6) \
|| defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) \
|| defined(STM32F103xB)
#define OB_WRP_PAGES0TO3 0x00000001U /*!< Write protection of page 0 to 3 */
#define OB_WRP_PAGES4TO7 0x00000002U /*!< Write protection of page 4 to 7 */
#define OB_WRP_PAGES8TO11 0x00000004U /*!< Write protection of page 8 to 11 */
#define OB_WRP_PAGES12TO15 0x00000008U /*!< Write protection of page 12 to 15 */
#define OB_WRP_PAGES16TO19 0x00000010U /*!< Write protection of page 16 to 19 */
#define OB_WRP_PAGES20TO23 0x00000020U /*!< Write protection of page 20 to 23 */
#define OB_WRP_PAGES24TO27 0x00000040U /*!< Write protection of page 24 to 27 */
#define OB_WRP_PAGES28TO31 0x00000080U /*!< Write protection of page 28 to 31 */
#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
/* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
/* STM32 Medium-density devices */
#if defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB)
#define OB_WRP_PAGES32TO35 0x00000100U /*!< Write protection of page 32 to 35 */
#define OB_WRP_PAGES36TO39 0x00000200U /*!< Write protection of page 36 to 39 */
#define OB_WRP_PAGES40TO43 0x00000400U /*!< Write protection of page 40 to 43 */
#define OB_WRP_PAGES44TO47 0x00000800U /*!< Write protection of page 44 to 47 */
#define OB_WRP_PAGES48TO51 0x00001000U /*!< Write protection of page 48 to 51 */
#define OB_WRP_PAGES52TO55 0x00002000U /*!< Write protection of page 52 to 55 */
#define OB_WRP_PAGES56TO59 0x00004000U /*!< Write protection of page 56 to 59 */
#define OB_WRP_PAGES60TO63 0x00008000U /*!< Write protection of page 60 to 63 */
#define OB_WRP_PAGES64TO67 0x00010000U /*!< Write protection of page 64 to 67 */
#define OB_WRP_PAGES68TO71 0x00020000U /*!< Write protection of page 68 to 71 */
#define OB_WRP_PAGES72TO75 0x00040000U /*!< Write protection of page 72 to 75 */
#define OB_WRP_PAGES76TO79 0x00080000U /*!< Write protection of page 76 to 79 */
#define OB_WRP_PAGES80TO83 0x00100000U /*!< Write protection of page 80 to 83 */
#define OB_WRP_PAGES84TO87 0x00200000U /*!< Write protection of page 84 to 87 */
#define OB_WRP_PAGES88TO91 0x00400000U /*!< Write protection of page 88 to 91 */
#define OB_WRP_PAGES92TO95 0x00800000U /*!< Write protection of page 92 to 95 */
#define OB_WRP_PAGES96TO99 0x01000000U /*!< Write protection of page 96 to 99 */
#define OB_WRP_PAGES100TO103 0x02000000U /*!< Write protection of page 100 to 103 */
#define OB_WRP_PAGES104TO107 0x04000000U /*!< Write protection of page 104 to 107 */
#define OB_WRP_PAGES108TO111 0x08000000U /*!< Write protection of page 108 to 111 */
#define OB_WRP_PAGES112TO115 0x10000000U /*!< Write protection of page 112 to 115 */
#define OB_WRP_PAGES116TO119 0x20000000U /*!< Write protection of page 115 to 119 */
#define OB_WRP_PAGES120TO123 0x40000000U /*!< Write protection of page 120 to 123 */
#define OB_WRP_PAGES124TO127 0x80000000U /*!< Write protection of page 124 to 127 */
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
/* STM32 High-density, XL-density and Connectivity line devices */
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE) \
|| defined(STM32F101xG) || defined(STM32F103xG) \
|| defined(STM32F105xC) || defined(STM32F107xC)
#define OB_WRP_PAGES0TO1 0x00000001U /*!< Write protection of page 0 TO 1 */
#define OB_WRP_PAGES2TO3 0x00000002U /*!< Write protection of page 2 TO 3 */
#define OB_WRP_PAGES4TO5 0x00000004U /*!< Write protection of page 4 TO 5 */
#define OB_WRP_PAGES6TO7 0x00000008U /*!< Write protection of page 6 TO 7 */
#define OB_WRP_PAGES8TO9 0x00000010U /*!< Write protection of page 8 TO 9 */
#define OB_WRP_PAGES10TO11 0x00000020U /*!< Write protection of page 10 TO 11 */
#define OB_WRP_PAGES12TO13 0x00000040U /*!< Write protection of page 12 TO 13 */
#define OB_WRP_PAGES14TO15 0x00000080U /*!< Write protection of page 14 TO 15 */
#define OB_WRP_PAGES16TO17 0x00000100U /*!< Write protection of page 16 TO 17 */
#define OB_WRP_PAGES18TO19 0x00000200U /*!< Write protection of page 18 TO 19 */
#define OB_WRP_PAGES20TO21 0x00000400U /*!< Write protection of page 20 TO 21 */
#define OB_WRP_PAGES22TO23 0x00000800U /*!< Write protection of page 22 TO 23 */
#define OB_WRP_PAGES24TO25 0x00001000U /*!< Write protection of page 24 TO 25 */
#define OB_WRP_PAGES26TO27 0x00002000U /*!< Write protection of page 26 TO 27 */
#define OB_WRP_PAGES28TO29 0x00004000U /*!< Write protection of page 28 TO 29 */
#define OB_WRP_PAGES30TO31 0x00008000U /*!< Write protection of page 30 TO 31 */
#define OB_WRP_PAGES32TO33 0x00010000U /*!< Write protection of page 32 TO 33 */
#define OB_WRP_PAGES34TO35 0x00020000U /*!< Write protection of page 34 TO 35 */
#define OB_WRP_PAGES36TO37 0x00040000U /*!< Write protection of page 36 TO 37 */
#define OB_WRP_PAGES38TO39 0x00080000U /*!< Write protection of page 38 TO 39 */
#define OB_WRP_PAGES40TO41 0x00100000U /*!< Write protection of page 40 TO 41 */
#define OB_WRP_PAGES42TO43 0x00200000U /*!< Write protection of page 42 TO 43 */
#define OB_WRP_PAGES44TO45 0x00400000U /*!< Write protection of page 44 TO 45 */
#define OB_WRP_PAGES46TO47 0x00800000U /*!< Write protection of page 46 TO 47 */
#define OB_WRP_PAGES48TO49 0x01000000U /*!< Write protection of page 48 TO 49 */
#define OB_WRP_PAGES50TO51 0x02000000U /*!< Write protection of page 50 TO 51 */
#define OB_WRP_PAGES52TO53 0x04000000U /*!< Write protection of page 52 TO 53 */
#define OB_WRP_PAGES54TO55 0x08000000U /*!< Write protection of page 54 TO 55 */
#define OB_WRP_PAGES56TO57 0x10000000U /*!< Write protection of page 56 TO 57 */
#define OB_WRP_PAGES58TO59 0x20000000U /*!< Write protection of page 58 TO 59 */
#define OB_WRP_PAGES60TO61 0x40000000U /*!< Write protection of page 60 TO 61 */
#define OB_WRP_PAGES62TO127 0x80000000U /*!< Write protection of page 62 TO 127 */
#define OB_WRP_PAGES62TO255 0x80000000U /*!< Write protection of page 62 TO 255 */
#define OB_WRP_PAGES62TO511 0x80000000U /*!< Write protection of page 62 TO 511 */
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
/* STM32F101xG || STM32F103xG */
/* STM32F105xC || STM32F107xC */
#define OB_WRP_ALLPAGES 0xFFFFFFFFU /*!< Write protection of all Pages */
/* Low Density */
#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6)
#define OB_WRP_PAGES0TO31MASK 0x000000FFU
#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
/* Medium Density */
#if defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB)
#define OB_WRP_PAGES0TO31MASK 0x000000FFU
#define OB_WRP_PAGES32TO63MASK 0x0000FF00U
#define OB_WRP_PAGES64TO95MASK 0x00FF0000U
#define OB_WRP_PAGES96TO127MASK 0xFF000000U
#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
/* High Density */
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE)
#define OB_WRP_PAGES0TO15MASK 0x000000FFU
#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
#define OB_WRP_PAGES48TO255MASK 0xFF000000U
#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
/* XL Density */
#if defined(STM32F101xG) || defined(STM32F103xG)
#define OB_WRP_PAGES0TO15MASK 0x000000FFU
#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
#define OB_WRP_PAGES48TO511MASK 0xFF000000U
#endif /* STM32F101xG || STM32F103xG */
/* Connectivity line devices */
#if defined(STM32F105xC) || defined(STM32F107xC)
#define OB_WRP_PAGES0TO15MASK 0x000000FFU
#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
#define OB_WRP_PAGES48TO127MASK 0xFF000000U
#endif /* STM32F105xC || STM32F107xC */
/**
* @}
*/
/** @defgroup FLASHEx_OB_Read_Protection Option Byte Read Protection
* @{
*/
#define OB_RDP_LEVEL_0 ((uint8_t)0xA5)
#define OB_RDP_LEVEL_1 ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup FLASHEx_OB_IWatchdog Option Byte IWatchdog
* @{
*/
#define OB_IWDG_SW ((uint16_t)0x0001) /*!< Software IWDG selected */
#define OB_IWDG_HW ((uint16_t)0x0000) /*!< Hardware IWDG selected */
/**
* @}
*/
/** @defgroup FLASHEx_OB_nRST_STOP Option Byte nRST STOP
* @{
*/
#define OB_STOP_NO_RST ((uint16_t)0x0002) /*!< No reset generated when entering in STOP */
#define OB_STOP_RST ((uint16_t)0x0000) /*!< Reset generated when entering in STOP */
/**
* @}
*/
/** @defgroup FLASHEx_OB_nRST_STDBY Option Byte nRST STDBY
* @{
*/
#define OB_STDBY_NO_RST ((uint16_t)0x0004) /*!< No reset generated when entering in STANDBY */
#define OB_STDBY_RST ((uint16_t)0x0000) /*!< Reset generated when entering in STANDBY */
/**
* @}
*/
#if defined(FLASH_BANK2_END)
/** @defgroup FLASHEx_OB_BOOT1 Option Byte BOOT1
* @{
*/
#define OB_BOOT1_RESET ((uint16_t)0x0000) /*!< BOOT1 Reset */
#define OB_BOOT1_SET ((uint16_t)0x0008) /*!< BOOT1 Set */
/**
* @}
*/
#endif /* FLASH_BANK2_END */
/** @defgroup FLASHEx_OB_Data_Address Option Byte Data Address
* @{
*/
#define OB_DATA_ADDRESS_DATA0 0x1FFFF804U
#define OB_DATA_ADDRESS_DATA1 0x1FFFF806U
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASHEx_Constants
* @{
*/
/** @defgroup FLASH_Flag_definition Flag definition
* @brief Flag definition
* @{
*/
#if defined(FLASH_BANK2_END)
#define FLASH_FLAG_BSY FLASH_FLAG_BSY_BANK1 /*!< FLASH Bank1 Busy flag */
#define FLASH_FLAG_PGERR FLASH_FLAG_PGERR_BANK1 /*!< FLASH Bank1 Programming error flag */
#define FLASH_FLAG_WRPERR FLASH_FLAG_WRPERR_BANK1 /*!< FLASH Bank1 Write protected error flag */
#define FLASH_FLAG_EOP FLASH_FLAG_EOP_BANK1 /*!< FLASH Bank1 End of Operation flag */
#define FLASH_FLAG_BSY_BANK1 FLASH_SR_BSY /*!< FLASH Bank1 Busy flag */
#define FLASH_FLAG_PGERR_BANK1 FLASH_SR_PGERR /*!< FLASH Bank1 Programming error flag */
#define FLASH_FLAG_WRPERR_BANK1 FLASH_SR_WRPRTERR /*!< FLASH Bank1 Write protected error flag */
#define FLASH_FLAG_EOP_BANK1 FLASH_SR_EOP /*!< FLASH Bank1 End of Operation flag */
#define FLASH_FLAG_BSY_BANK2 (FLASH_SR2_BSY << 16U) /*!< FLASH Bank2 Busy flag */
#define FLASH_FLAG_PGERR_BANK2 (FLASH_SR2_PGERR << 16U) /*!< FLASH Bank2 Programming error flag */
#define FLASH_FLAG_WRPERR_BANK2 (FLASH_SR2_WRPRTERR << 16U) /*!< FLASH Bank2 Write protected error flag */
#define FLASH_FLAG_EOP_BANK2 (FLASH_SR2_EOP << 16U) /*!< FLASH Bank2 End of Operation flag */
#else
#define FLASH_FLAG_BSY FLASH_SR_BSY /*!< FLASH Busy flag */
#define FLASH_FLAG_PGERR FLASH_SR_PGERR /*!< FLASH Programming error flag */
#define FLASH_FLAG_WRPERR FLASH_SR_WRPRTERR /*!< FLASH Write protected error flag */
#define FLASH_FLAG_EOP FLASH_SR_EOP /*!< FLASH End of Operation flag */
#endif
#define FLASH_FLAG_OPTVERR ((OBR_REG_INDEX << 8U | FLASH_OBR_OPTERR)) /*!< Option Byte Error */
/**
* @}
*/
/** @defgroup FLASH_Interrupt_definition Interrupt definition
* @brief FLASH Interrupt definition
* @{
*/
#if defined(FLASH_BANK2_END)
#define FLASH_IT_EOP FLASH_IT_EOP_BANK1 /*!< End of FLASH Operation Interrupt source Bank1 */
#define FLASH_IT_ERR FLASH_IT_ERR_BANK1 /*!< Error Interrupt source Bank1 */
#define FLASH_IT_EOP_BANK1 FLASH_CR_EOPIE /*!< End of FLASH Operation Interrupt source Bank1 */
#define FLASH_IT_ERR_BANK1 FLASH_CR_ERRIE /*!< Error Interrupt source Bank1 */
#define FLASH_IT_EOP_BANK2 (FLASH_CR2_EOPIE << 16U) /*!< End of FLASH Operation Interrupt source Bank2 */
#define FLASH_IT_ERR_BANK2 (FLASH_CR2_ERRIE << 16U) /*!< Error Interrupt source Bank2 */
#else
#define FLASH_IT_EOP FLASH_CR_EOPIE /*!< End of FLASH Operation Interrupt source */
#define FLASH_IT_ERR FLASH_CR_ERRIE /*!< Error Interrupt source */
#endif
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Macros FLASHEx Exported Macros
* @{
*/
/** @defgroup FLASH_Interrupt Interrupt
* @brief macros to handle FLASH interrupts
* @{
*/
#if defined(FLASH_BANK2_END)
/**
* @brief Enable the specified FLASH interrupt.
* @param __INTERRUPT__ FLASH interrupt
* This parameter can be any combination of the following values:
* @arg @ref FLASH_IT_EOP_BANK1 End of FLASH Operation Interrupt on bank1
* @arg @ref FLASH_IT_ERR_BANK1 Error Interrupt on bank1
* @arg @ref FLASH_IT_EOP_BANK2 End of FLASH Operation Interrupt on bank2
* @arg @ref FLASH_IT_ERR_BANK2 Error Interrupt on bank2
* @retval none
*/
#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__) do { \
/* Enable Bank1 IT */ \
SET_BIT(FLASH->CR, ((__INTERRUPT__) & 0x0000FFFFU)); \
/* Enable Bank2 IT */ \
SET_BIT(FLASH->CR2, ((__INTERRUPT__) >> 16U)); \
} while(0U)
/**
* @brief Disable the specified FLASH interrupt.
* @param __INTERRUPT__ FLASH interrupt
* This parameter can be any combination of the following values:
* @arg @ref FLASH_IT_EOP_BANK1 End of FLASH Operation Interrupt on bank1
* @arg @ref FLASH_IT_ERR_BANK1 Error Interrupt on bank1
* @arg @ref FLASH_IT_EOP_BANK2 End of FLASH Operation Interrupt on bank2
* @arg @ref FLASH_IT_ERR_BANK2 Error Interrupt on bank2
* @retval none
*/
#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__) do { \
/* Disable Bank1 IT */ \
CLEAR_BIT(FLASH->CR, ((__INTERRUPT__) & 0x0000FFFFU)); \
/* Disable Bank2 IT */ \
CLEAR_BIT(FLASH->CR2, ((__INTERRUPT__) >> 16U)); \
} while(0U)
/**
* @brief Get the specified FLASH flag status.
* @param __FLAG__ specifies the FLASH flag to check.
* This parameter can be one of the following values:
* @arg @ref FLASH_FLAG_EOP_BANK1 FLASH End of Operation flag on bank1
* @arg @ref FLASH_FLAG_WRPERR_BANK1 FLASH Write protected error flag on bank1
* @arg @ref FLASH_FLAG_PGERR_BANK1 FLASH Programming error flag on bank1
* @arg @ref FLASH_FLAG_BSY_BANK1 FLASH Busy flag on bank1
* @arg @ref FLASH_FLAG_EOP_BANK2 FLASH End of Operation flag on bank2
* @arg @ref FLASH_FLAG_WRPERR_BANK2 FLASH Write protected error flag on bank2
* @arg @ref FLASH_FLAG_PGERR_BANK2 FLASH Programming error flag on bank2
* @arg @ref FLASH_FLAG_BSY_BANK2 FLASH Busy flag on bank2
* @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
* @retval The new state of __FLAG__ (SET or RESET).
*/
#define __HAL_FLASH_GET_FLAG(__FLAG__) (((__FLAG__) == FLASH_FLAG_OPTVERR) ? \
(FLASH->OBR & FLASH_OBR_OPTERR) : \
((((__FLAG__) & SR_FLAG_MASK) != RESET)? \
(FLASH->SR & ((__FLAG__) & SR_FLAG_MASK)) : \
(FLASH->SR2 & ((__FLAG__) >> 16U))))
/**
* @brief Clear the specified FLASH flag.
* @param __FLAG__ specifies the FLASH flags to clear.
* This parameter can be any combination of the following values:
* @arg @ref FLASH_FLAG_EOP_BANK1 FLASH End of Operation flag on bank1
* @arg @ref FLASH_FLAG_WRPERR_BANK1 FLASH Write protected error flag on bank1
* @arg @ref FLASH_FLAG_PGERR_BANK1 FLASH Programming error flag on bank1
* @arg @ref FLASH_FLAG_BSY_BANK1 FLASH Busy flag on bank1
* @arg @ref FLASH_FLAG_EOP_BANK2 FLASH End of Operation flag on bank2
* @arg @ref FLASH_FLAG_WRPERR_BANK2 FLASH Write protected error flag on bank2
* @arg @ref FLASH_FLAG_PGERR_BANK2 FLASH Programming error flag on bank2
* @arg @ref FLASH_FLAG_BSY_BANK2 FLASH Busy flag on bank2
* @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
* @retval none
*/
#define __HAL_FLASH_CLEAR_FLAG(__FLAG__) do { \
/* Clear FLASH_FLAG_OPTVERR flag */ \
if ((__FLAG__) == FLASH_FLAG_OPTVERR) \
{ \
CLEAR_BIT(FLASH->OBR, FLASH_OBR_OPTERR); \
} \
else { \
/* Clear Flag in Bank1 */ \
if (((__FLAG__) & SR_FLAG_MASK) != RESET) \
{ \
FLASH->SR = ((__FLAG__) & SR_FLAG_MASK); \
} \
/* Clear Flag in Bank2 */ \
if (((__FLAG__) >> 16U) != RESET) \
{ \
FLASH->SR2 = ((__FLAG__) >> 16U); \
} \
} \
} while(0U)
#else
/**
* @brief Enable the specified FLASH interrupt.
* @param __INTERRUPT__ FLASH interrupt
* This parameter can be any combination of the following values:
* @arg @ref FLASH_IT_EOP End of FLASH Operation Interrupt
* @arg @ref FLASH_IT_ERR Error Interrupt
* @retval none
*/
#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__) (FLASH->CR |= (__INTERRUPT__))
/**
* @brief Disable the specified FLASH interrupt.
* @param __INTERRUPT__ FLASH interrupt
* This parameter can be any combination of the following values:
* @arg @ref FLASH_IT_EOP End of FLASH Operation Interrupt
* @arg @ref FLASH_IT_ERR Error Interrupt
* @retval none
*/
#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__) (FLASH->CR &= ~(__INTERRUPT__))
/**
* @brief Get the specified FLASH flag status.
* @param __FLAG__ specifies the FLASH flag to check.
* This parameter can be one of the following values:
* @arg @ref FLASH_FLAG_EOP FLASH End of Operation flag
* @arg @ref FLASH_FLAG_WRPERR FLASH Write protected error flag
* @arg @ref FLASH_FLAG_PGERR FLASH Programming error flag
* @arg @ref FLASH_FLAG_BSY FLASH Busy flag
* @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
* @retval The new state of __FLAG__ (SET or RESET).
*/
#define __HAL_FLASH_GET_FLAG(__FLAG__) (((__FLAG__) == FLASH_FLAG_OPTVERR) ? \
(FLASH->OBR & FLASH_OBR_OPTERR) : \
(FLASH->SR & (__FLAG__)))
/**
* @brief Clear the specified FLASH flag.
* @param __FLAG__ specifies the FLASH flags to clear.
* This parameter can be any combination of the following values:
* @arg @ref FLASH_FLAG_EOP FLASH End of Operation flag
* @arg @ref FLASH_FLAG_WRPERR FLASH Write protected error flag
* @arg @ref FLASH_FLAG_PGERR FLASH Programming error flag
* @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
* @retval none
*/
#define __HAL_FLASH_CLEAR_FLAG(__FLAG__) do { \
/* Clear FLASH_FLAG_OPTVERR flag */ \
if ((__FLAG__) == FLASH_FLAG_OPTVERR) \
{ \
CLEAR_BIT(FLASH->OBR, FLASH_OBR_OPTERR); \
} \
else { \
/* Clear Flag in Bank1 */ \
FLASH->SR = (__FLAG__); \
} \
} while(0U)
#endif
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup FLASHEx_Exported_Functions
* @{
*/
/** @addtogroup FLASHEx_Exported_Functions_Group1
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError);
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit);
/**
* @}
*/
/** @addtogroup FLASHEx_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ***********************************************/
HAL_StatusTypeDef HAL_FLASHEx_OBErase(void);
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit);
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit);
uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_FLASH_EX_H */

View file

@ -0,0 +1,306 @@
/**
******************************************************************************
* @file stm32f1xx_hal_gpio.h
* @author MCD Application Team
* @brief Header file of GPIO HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_GPIO_H
#define STM32F1xx_HAL_GPIO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup GPIO
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup GPIO_Exported_Types GPIO Exported Types
* @{
*/
/**
* @brief GPIO Init structure definition
*/
typedef struct
{
uint32_t Pin; /*!< Specifies the GPIO pins to be configured.
This parameter can be any value of @ref GPIO_pins_define */
uint32_t Mode; /*!< Specifies the operating mode for the selected pins.
This parameter can be a value of @ref GPIO_mode_define */
uint32_t Pull; /*!< Specifies the Pull-up or Pull-Down activation for the selected pins.
This parameter can be a value of @ref GPIO_pull_define */
uint32_t Speed; /*!< Specifies the speed for the selected pins.
This parameter can be a value of @ref GPIO_speed_define */
} GPIO_InitTypeDef;
/**
* @brief GPIO Bit SET and Bit RESET enumeration
*/
typedef enum
{
GPIO_PIN_RESET = 0u,
GPIO_PIN_SET
} GPIO_PinState;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Constants GPIO Exported Constants
* @{
*/
/** @defgroup GPIO_pins_define GPIO pins define
* @{
*/
#define GPIO_PIN_0 ((uint16_t)0x0001) /* Pin 0 selected */
#define GPIO_PIN_1 ((uint16_t)0x0002) /* Pin 1 selected */
#define GPIO_PIN_2 ((uint16_t)0x0004) /* Pin 2 selected */
#define GPIO_PIN_3 ((uint16_t)0x0008) /* Pin 3 selected */
#define GPIO_PIN_4 ((uint16_t)0x0010) /* Pin 4 selected */
#define GPIO_PIN_5 ((uint16_t)0x0020) /* Pin 5 selected */
#define GPIO_PIN_6 ((uint16_t)0x0040) /* Pin 6 selected */
#define GPIO_PIN_7 ((uint16_t)0x0080) /* Pin 7 selected */
#define GPIO_PIN_8 ((uint16_t)0x0100) /* Pin 8 selected */
#define GPIO_PIN_9 ((uint16_t)0x0200) /* Pin 9 selected */
#define GPIO_PIN_10 ((uint16_t)0x0400) /* Pin 10 selected */
#define GPIO_PIN_11 ((uint16_t)0x0800) /* Pin 11 selected */
#define GPIO_PIN_12 ((uint16_t)0x1000) /* Pin 12 selected */
#define GPIO_PIN_13 ((uint16_t)0x2000) /* Pin 13 selected */
#define GPIO_PIN_14 ((uint16_t)0x4000) /* Pin 14 selected */
#define GPIO_PIN_15 ((uint16_t)0x8000) /* Pin 15 selected */
#define GPIO_PIN_All ((uint16_t)0xFFFF) /* All pins selected */
#define GPIO_PIN_MASK 0x0000FFFFu /* PIN mask for assert test */
/**
* @}
*/
/** @defgroup GPIO_mode_define GPIO mode define
* @brief GPIO Configuration Mode
* Elements values convention: 0xX0yz00YZ
* - X : GPIO mode or EXTI Mode
* - y : External IT or Event trigger detection
* - z : IO configuration on External IT or Event
* - Y : Output type (Push Pull or Open Drain)
* - Z : IO Direction mode (Input, Output, Alternate or Analog)
* @{
*/
#define GPIO_MODE_INPUT 0x00000000u /*!< Input Floating Mode */
#define GPIO_MODE_OUTPUT_PP 0x00000001u /*!< Output Push Pull Mode */
#define GPIO_MODE_OUTPUT_OD 0x00000011u /*!< Output Open Drain Mode */
#define GPIO_MODE_AF_PP 0x00000002u /*!< Alternate Function Push Pull Mode */
#define GPIO_MODE_AF_OD 0x00000012u /*!< Alternate Function Open Drain Mode */
#define GPIO_MODE_AF_INPUT GPIO_MODE_INPUT /*!< Alternate Function Input Mode */
#define GPIO_MODE_ANALOG 0x00000003u /*!< Analog Mode */
#define GPIO_MODE_IT_RISING 0x10110000u /*!< External Interrupt Mode with Rising edge trigger detection */
#define GPIO_MODE_IT_FALLING 0x10210000u /*!< External Interrupt Mode with Falling edge trigger detection */
#define GPIO_MODE_IT_RISING_FALLING 0x10310000u /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
#define GPIO_MODE_EVT_RISING 0x10120000u /*!< External Event Mode with Rising edge trigger detection */
#define GPIO_MODE_EVT_FALLING 0x10220000u /*!< External Event Mode with Falling edge trigger detection */
#define GPIO_MODE_EVT_RISING_FALLING 0x10320000u /*!< External Event Mode with Rising/Falling edge trigger detection */
/**
* @}
*/
/** @defgroup GPIO_speed_define GPIO speed define
* @brief GPIO Output Maximum frequency
* @{
*/
#define GPIO_SPEED_FREQ_LOW (GPIO_CRL_MODE0_1) /*!< Low speed */
#define GPIO_SPEED_FREQ_MEDIUM (GPIO_CRL_MODE0_0) /*!< Medium speed */
#define GPIO_SPEED_FREQ_HIGH (GPIO_CRL_MODE0) /*!< High speed */
/**
* @}
*/
/** @defgroup GPIO_pull_define GPIO pull define
* @brief GPIO Pull-Up or Pull-Down Activation
* @{
*/
#define GPIO_NOPULL 0x00000000u /*!< No Pull-up or Pull-down activation */
#define GPIO_PULLUP 0x00000001u /*!< Pull-up activation */
#define GPIO_PULLDOWN 0x00000002u /*!< Pull-down activation */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup GPIO_Exported_Macros GPIO Exported Macros
* @{
*/
/**
* @brief Checks whether the specified EXTI line flag is set or not.
* @param __EXTI_LINE__: specifies the EXTI line flag to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval The new state of __EXTI_LINE__ (SET or RESET).
*/
#define __HAL_GPIO_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
/**
* @brief Clears the EXTI's line pending flags.
* @param __EXTI_LINE__: specifies the EXTI lines flags to clear.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
/**
* @brief Checks whether the specified EXTI line is asserted or not.
* @param __EXTI_LINE__: specifies the EXTI line to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval The new state of __EXTI_LINE__ (SET or RESET).
*/
#define __HAL_GPIO_EXTI_GET_IT(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
/**
* @brief Clears the EXTI's line pending bits.
* @param __EXTI_LINE__: specifies the EXTI lines to clear.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_CLEAR_IT(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
/**
* @brief Generates a Software interrupt on selected EXTI line.
* @param __EXTI_LINE__: specifies the EXTI line to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER |= (__EXTI_LINE__))
/**
* @}
*/
/* Include GPIO HAL Extension module */
#include "stm32f1xx_hal_gpio_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup GPIO_Exported_Functions
* @{
*/
/** @addtogroup GPIO_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions *****************************/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init);
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin);
/**
* @}
*/
/** @addtogroup GPIO_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState);
void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin);
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup GPIO_Private_Macros GPIO Private Macros
* @{
*/
#define IS_GPIO_PIN_ACTION(ACTION) (((ACTION) == GPIO_PIN_RESET) || ((ACTION) == GPIO_PIN_SET))
#define IS_GPIO_PIN(PIN) (((((uint32_t)PIN) & GPIO_PIN_MASK ) != 0x00u) && ((((uint32_t)PIN) & ~GPIO_PIN_MASK) == 0x00u))
#define IS_GPIO_MODE(MODE) (((MODE) == GPIO_MODE_INPUT) ||\
((MODE) == GPIO_MODE_OUTPUT_PP) ||\
((MODE) == GPIO_MODE_OUTPUT_OD) ||\
((MODE) == GPIO_MODE_AF_PP) ||\
((MODE) == GPIO_MODE_AF_OD) ||\
((MODE) == GPIO_MODE_IT_RISING) ||\
((MODE) == GPIO_MODE_IT_FALLING) ||\
((MODE) == GPIO_MODE_IT_RISING_FALLING) ||\
((MODE) == GPIO_MODE_EVT_RISING) ||\
((MODE) == GPIO_MODE_EVT_FALLING) ||\
((MODE) == GPIO_MODE_EVT_RISING_FALLING) ||\
((MODE) == GPIO_MODE_ANALOG))
#define IS_GPIO_SPEED(SPEED) (((SPEED) == GPIO_SPEED_FREQ_LOW) || \
((SPEED) == GPIO_SPEED_FREQ_MEDIUM) || ((SPEED) == GPIO_SPEED_FREQ_HIGH))
#define IS_GPIO_PULL(PULL) (((PULL) == GPIO_NOPULL) || ((PULL) == GPIO_PULLUP) || \
((PULL) == GPIO_PULLDOWN))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup GPIO_Private_Functions GPIO Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_GPIO_H */

View file

@ -0,0 +1,892 @@
/**
******************************************************************************
* @file stm32f1xx_hal_gpio_ex.h
* @author MCD Application Team
* @brief Header file of GPIO HAL Extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_GPIO_EX_H
#define STM32F1xx_HAL_GPIO_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup GPIOEx GPIOEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIOEx_Exported_Constants GPIOEx Exported Constants
* @{
*/
/** @defgroup GPIOEx_EVENTOUT EVENTOUT Cortex Configuration
* @brief This section propose definition to use the Cortex EVENTOUT signal.
* @{
*/
/** @defgroup GPIOEx_EVENTOUT_PIN EVENTOUT Pin
* @{
*/
#define AFIO_EVENTOUT_PIN_0 AFIO_EVCR_PIN_PX0 /*!< EVENTOUT on pin 0 */
#define AFIO_EVENTOUT_PIN_1 AFIO_EVCR_PIN_PX1 /*!< EVENTOUT on pin 1 */
#define AFIO_EVENTOUT_PIN_2 AFIO_EVCR_PIN_PX2 /*!< EVENTOUT on pin 2 */
#define AFIO_EVENTOUT_PIN_3 AFIO_EVCR_PIN_PX3 /*!< EVENTOUT on pin 3 */
#define AFIO_EVENTOUT_PIN_4 AFIO_EVCR_PIN_PX4 /*!< EVENTOUT on pin 4 */
#define AFIO_EVENTOUT_PIN_5 AFIO_EVCR_PIN_PX5 /*!< EVENTOUT on pin 5 */
#define AFIO_EVENTOUT_PIN_6 AFIO_EVCR_PIN_PX6 /*!< EVENTOUT on pin 6 */
#define AFIO_EVENTOUT_PIN_7 AFIO_EVCR_PIN_PX7 /*!< EVENTOUT on pin 7 */
#define AFIO_EVENTOUT_PIN_8 AFIO_EVCR_PIN_PX8 /*!< EVENTOUT on pin 8 */
#define AFIO_EVENTOUT_PIN_9 AFIO_EVCR_PIN_PX9 /*!< EVENTOUT on pin 9 */
#define AFIO_EVENTOUT_PIN_10 AFIO_EVCR_PIN_PX10 /*!< EVENTOUT on pin 10 */
#define AFIO_EVENTOUT_PIN_11 AFIO_EVCR_PIN_PX11 /*!< EVENTOUT on pin 11 */
#define AFIO_EVENTOUT_PIN_12 AFIO_EVCR_PIN_PX12 /*!< EVENTOUT on pin 12 */
#define AFIO_EVENTOUT_PIN_13 AFIO_EVCR_PIN_PX13 /*!< EVENTOUT on pin 13 */
#define AFIO_EVENTOUT_PIN_14 AFIO_EVCR_PIN_PX14 /*!< EVENTOUT on pin 14 */
#define AFIO_EVENTOUT_PIN_15 AFIO_EVCR_PIN_PX15 /*!< EVENTOUT on pin 15 */
#define IS_AFIO_EVENTOUT_PIN(__PIN__) (((__PIN__) == AFIO_EVENTOUT_PIN_0) || \
((__PIN__) == AFIO_EVENTOUT_PIN_1) || \
((__PIN__) == AFIO_EVENTOUT_PIN_2) || \
((__PIN__) == AFIO_EVENTOUT_PIN_3) || \
((__PIN__) == AFIO_EVENTOUT_PIN_4) || \
((__PIN__) == AFIO_EVENTOUT_PIN_5) || \
((__PIN__) == AFIO_EVENTOUT_PIN_6) || \
((__PIN__) == AFIO_EVENTOUT_PIN_7) || \
((__PIN__) == AFIO_EVENTOUT_PIN_8) || \
((__PIN__) == AFIO_EVENTOUT_PIN_9) || \
((__PIN__) == AFIO_EVENTOUT_PIN_10) || \
((__PIN__) == AFIO_EVENTOUT_PIN_11) || \
((__PIN__) == AFIO_EVENTOUT_PIN_12) || \
((__PIN__) == AFIO_EVENTOUT_PIN_13) || \
((__PIN__) == AFIO_EVENTOUT_PIN_14) || \
((__PIN__) == AFIO_EVENTOUT_PIN_15))
/**
* @}
*/
/** @defgroup GPIOEx_EVENTOUT_PORT EVENTOUT Port
* @{
*/
#define AFIO_EVENTOUT_PORT_A AFIO_EVCR_PORT_PA /*!< EVENTOUT on port A */
#define AFIO_EVENTOUT_PORT_B AFIO_EVCR_PORT_PB /*!< EVENTOUT on port B */
#define AFIO_EVENTOUT_PORT_C AFIO_EVCR_PORT_PC /*!< EVENTOUT on port C */
#define AFIO_EVENTOUT_PORT_D AFIO_EVCR_PORT_PD /*!< EVENTOUT on port D */
#define AFIO_EVENTOUT_PORT_E AFIO_EVCR_PORT_PE /*!< EVENTOUT on port E */
#define IS_AFIO_EVENTOUT_PORT(__PORT__) (((__PORT__) == AFIO_EVENTOUT_PORT_A) || \
((__PORT__) == AFIO_EVENTOUT_PORT_B) || \
((__PORT__) == AFIO_EVENTOUT_PORT_C) || \
((__PORT__) == AFIO_EVENTOUT_PORT_D) || \
((__PORT__) == AFIO_EVENTOUT_PORT_E))
/**
* @}
*/
/**
* @}
*/
/** @defgroup GPIOEx_AFIO_AF_REMAPPING Alternate Function Remapping
* @brief This section propose definition to remap the alternate function to some other port/pins.
* @{
*/
/**
* @brief Enable the remapping of SPI1 alternate function NSS, SCK, MISO and MOSI.
* @note ENABLE: Remap (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5)
* @retval None
*/
#define __HAL_AFIO_REMAP_SPI1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_SPI1_REMAP)
/**
* @brief Disable the remapping of SPI1 alternate function NSS, SCK, MISO and MOSI.
* @note DISABLE: No remap (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7)
* @retval None
*/
#define __HAL_AFIO_REMAP_SPI1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_SPI1_REMAP)
/**
* @brief Enable the remapping of I2C1 alternate function SCL and SDA.
* @note ENABLE: Remap (SCL/PB8, SDA/PB9)
* @retval None
*/
#define __HAL_AFIO_REMAP_I2C1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_I2C1_REMAP)
/**
* @brief Disable the remapping of I2C1 alternate function SCL and SDA.
* @note DISABLE: No remap (SCL/PB6, SDA/PB7)
* @retval None
*/
#define __HAL_AFIO_REMAP_I2C1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_I2C1_REMAP)
/**
* @brief Enable the remapping of USART1 alternate function TX and RX.
* @note ENABLE: Remap (TX/PB6, RX/PB7)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_USART1_REMAP)
/**
* @brief Disable the remapping of USART1 alternate function TX and RX.
* @note DISABLE: No remap (TX/PA9, RX/PA10)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_USART1_REMAP)
/**
* @brief Enable the remapping of USART2 alternate function CTS, RTS, CK, TX and RX.
* @note ENABLE: Remap (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART2_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_USART2_REMAP)
/**
* @brief Disable the remapping of USART2 alternate function CTS, RTS, CK, TX and RX.
* @note DISABLE: No remap (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART2_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_USART2_REMAP)
/**
* @brief Enable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
* @note ENABLE: Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART3_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_FULLREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
* @note PARTIAL: Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART3_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_PARTIALREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
/**
* @brief Disable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
* @note DISABLE: No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14)
* @retval None
*/
#define __HAL_AFIO_REMAP_USART3_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_NOREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
* @note ENABLE: Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15, CH1N/PE8, CH2N/PE10, CH3N/PE12)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM1_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_FULLREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
* @note PARTIAL: Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM1_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_PARTIALREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
/**
* @brief Disable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
* @note DISABLE: No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12, CH1N/PB13, CH2N/PB14, CH3N/PB15)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM1_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_NOREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
* @note ENABLE: Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM2_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_FULLREMAP, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
* @note PARTIAL_2: Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM2_PARTIAL_2() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
* @note PARTIAL_1: Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM2_PARTIAL_1() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
/**
* @brief Disable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
* @note DISABLE: No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM2_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_NOREMAP, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM3 alternate function channels 1 to 4
* @note ENABLE: Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9)
* @note TIM3_ETR on PE0 is not re-mapped.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM3_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_FULLREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM3 alternate function channels 1 to 4
* @note PARTIAL: Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1)
* @note TIM3_ETR on PE0 is not re-mapped.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM3_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_PARTIALREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
/**
* @brief Disable the remapping of TIM3 alternate function channels 1 to 4
* @note DISABLE: No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1)
* @note TIM3_ETR on PE0 is not re-mapped.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM3_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_NOREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
/**
* @brief Enable the remapping of TIM4 alternate function channels 1 to 4.
* @note ENABLE: Full remap (TIM4_CH1/PD12, TIM4_CH2/PD13, TIM4_CH3/PD14, TIM4_CH4/PD15)
* @note TIM4_ETR on PE0 is not re-mapped.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM4_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM4_REMAP)
/**
* @brief Disable the remapping of TIM4 alternate function channels 1 to 4.
* @note DISABLE: No remap (TIM4_CH1/PB6, TIM4_CH2/PB7, TIM4_CH3/PB8, TIM4_CH4/PB9)
* @note TIM4_ETR on PE0 is not re-mapped.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM4_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM4_REMAP)
#if defined(AFIO_MAPR_CAN_REMAP_REMAP1)
/**
* @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
* @note CASE 1: CAN_RX mapped to PA11, CAN_TX mapped to PA12
* @retval None
*/
#define __HAL_AFIO_REMAP_CAN1_1() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP1, AFIO_MAPR_CAN_REMAP)
/**
* @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
* @note CASE 2: CAN_RX mapped to PB8, CAN_TX mapped to PB9 (not available on 36-pin package)
* @retval None
*/
#define __HAL_AFIO_REMAP_CAN1_2() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP2, AFIO_MAPR_CAN_REMAP)
/**
* @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
* @note CASE 3: CAN_RX mapped to PD0, CAN_TX mapped to PD1
* @retval None
*/
#define __HAL_AFIO_REMAP_CAN1_3() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP3, AFIO_MAPR_CAN_REMAP)
#endif
/**
* @brief Enable the remapping of PD0 and PD1. When the HSE oscillator is not used
* (application running on internal 8 MHz RC) PD0 and PD1 can be mapped on OSC_IN and
* OSC_OUT. This is available only on 36, 48 and 64 pins packages (PD0 and PD1 are available
* on 100-pin and 144-pin packages, no need for remapping).
* @note ENABLE: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT.
* @retval None
*/
#define __HAL_AFIO_REMAP_PD01_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_PD01_REMAP)
/**
* @brief Disable the remapping of PD0 and PD1. When the HSE oscillator is not used
* (application running on internal 8 MHz RC) PD0 and PD1 can be mapped on OSC_IN and
* OSC_OUT. This is available only on 36, 48 and 64 pins packages (PD0 and PD1 are available
* on 100-pin and 144-pin packages, no need for remapping).
* @note DISABLE: No remapping of PD0 and PD1
* @retval None
*/
#define __HAL_AFIO_REMAP_PD01_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_PD01_REMAP)
#if defined(AFIO_MAPR_TIM5CH4_IREMAP)
/**
* @brief Enable the remapping of TIM5CH4.
* @note ENABLE: LSI internal clock is connected to TIM5_CH4 input for calibration purpose.
* @note This function is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM5CH4_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM5CH4_IREMAP)
/**
* @brief Disable the remapping of TIM5CH4.
* @note DISABLE: TIM5_CH4 is connected to PA3
* @note This function is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM5CH4_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM5CH4_IREMAP)
#endif
#if defined(AFIO_MAPR_ETH_REMAP)
/**
* @brief Enable the remapping of Ethernet MAC connections with the PHY.
* @note ENABLE: Remap (RX_DV-CRS_DV/PD8, RXD0/PD9, RXD1/PD10, RXD2/PD11, RXD3/PD12)
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_ETH_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ETH_REMAP)
/**
* @brief Disable the remapping of Ethernet MAC connections with the PHY.
* @note DISABLE: No remap (RX_DV-CRS_DV/PA7, RXD0/PC4, RXD1/PC5, RXD2/PB0, RXD3/PB1)
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_ETH_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ETH_REMAP)
#endif
#if defined(AFIO_MAPR_CAN2_REMAP)
/**
* @brief Enable the remapping of CAN2 alternate function CAN2_RX and CAN2_TX.
* @note ENABLE: Remap (CAN2_RX/PB5, CAN2_TX/PB6)
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_CAN2_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_CAN2_REMAP)
/**
* @brief Disable the remapping of CAN2 alternate function CAN2_RX and CAN2_TX.
* @note DISABLE: No remap (CAN2_RX/PB12, CAN2_TX/PB13)
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_CAN2_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_CAN2_REMAP)
#endif
#if defined(AFIO_MAPR_MII_RMII_SEL)
/**
* @brief Configures the Ethernet MAC internally for use with an external MII or RMII PHY.
* @note ETH_RMII: Configure Ethernet MAC for connection with an RMII PHY
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_ETH_RMII() AFIO_REMAP_ENABLE(AFIO_MAPR_MII_RMII_SEL)
/**
* @brief Configures the Ethernet MAC internally for use with an external MII or RMII PHY.
* @note ETH_MII: Configure Ethernet MAC for connection with an MII PHY
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_ETH_MII() AFIO_REMAP_DISABLE(AFIO_MAPR_MII_RMII_SEL)
#endif
/**
* @brief Enable the remapping of ADC1_ETRGINJ (ADC 1 External trigger injected conversion).
* @note ENABLE: ADC1 External Event injected conversion is connected to TIM8 Channel4.
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC1_ETRGINJ_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC1_ETRGINJ_REMAP)
/**
* @brief Disable the remapping of ADC1_ETRGINJ (ADC 1 External trigger injected conversion).
* @note DISABLE: ADC1 External trigger injected conversion is connected to EXTI15
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC1_ETRGINJ_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC1_ETRGINJ_REMAP)
/**
* @brief Enable the remapping of ADC1_ETRGREG (ADC 1 External trigger regular conversion).
* @note ENABLE: ADC1 External Event regular conversion is connected to TIM8 TRG0.
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC1_ETRGREG_REMAP)
/**
* @brief Disable the remapping of ADC1_ETRGREG (ADC 1 External trigger regular conversion).
* @note DISABLE: ADC1 External trigger regular conversion is connected to EXTI11
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC1_ETRGREG_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC1_ETRGREG_REMAP)
#if defined(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
/**
* @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger injected conversion).
* @note ENABLE: ADC2 External Event injected conversion is connected to TIM8 Channel4.
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC2_ETRGINJ_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
/**
* @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger injected conversion).
* @note DISABLE: ADC2 External trigger injected conversion is connected to EXTI15
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC2_ETRGINJ_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
#endif
#if defined (AFIO_MAPR_ADC2_ETRGREG_REMAP)
/**
* @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
* @note ENABLE: ADC2 External Event regular conversion is connected to TIM8 TRG0.
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC2_ETRGREG_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC2_ETRGREG_REMAP)
/**
* @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
* @note DISABLE: ADC2 External trigger regular conversion is connected to EXTI11
* @retval None
*/
#define __HAL_AFIO_REMAP_ADC2_ETRGREG_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC2_ETRGREG_REMAP)
#endif
/**
* @brief Enable the Serial wire JTAG configuration
* @note ENABLE: Full SWJ (JTAG-DP + SW-DP): Reset State
* @retval None
*/
#define __HAL_AFIO_REMAP_SWJ_ENABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_RESET)
/**
* @brief Enable the Serial wire JTAG configuration
* @note NONJTRST: Full SWJ (JTAG-DP + SW-DP) but without NJTRST
* @retval None
*/
#define __HAL_AFIO_REMAP_SWJ_NONJTRST() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_NOJNTRST)
/**
* @brief Enable the Serial wire JTAG configuration
* @note NOJTAG: JTAG-DP Disabled and SW-DP Enabled
* @retval None
*/
#define __HAL_AFIO_REMAP_SWJ_NOJTAG() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_JTAGDISABLE)
/**
* @brief Disable the Serial wire JTAG configuration
* @note DISABLE: JTAG-DP Disabled and SW-DP Disabled
* @retval None
*/
#define __HAL_AFIO_REMAP_SWJ_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_DISABLE)
#if defined(AFIO_MAPR_SPI3_REMAP)
/**
* @brief Enable the remapping of SPI3 alternate functions SPI3_NSS/I2S3_WS, SPI3_SCK/I2S3_CK, SPI3_MISO, SPI3_MOSI/I2S3_SD.
* @note ENABLE: Remap (SPI3_NSS-I2S3_WS/PA4, SPI3_SCK-I2S3_CK/PC10, SPI3_MISO/PC11, SPI3_MOSI-I2S3_SD/PC12)
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_SPI3_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_SPI3_REMAP)
/**
* @brief Disable the remapping of SPI3 alternate functions SPI3_NSS/I2S3_WS, SPI3_SCK/I2S3_CK, SPI3_MISO, SPI3_MOSI/I2S3_SD.
* @note DISABLE: No remap (SPI3_NSS-I2S3_WS/PA15, SPI3_SCK-I2S3_CK/PB3, SPI3_MISO/PB4, SPI3_MOSI-I2S3_SD/PB5).
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_REMAP_SPI3_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_SPI3_REMAP)
#endif
#if defined(AFIO_MAPR_TIM2ITR1_IREMAP)
/**
* @brief Control of TIM2_ITR1 internal mapping.
* @note TO_USB: Connect USB OTG SOF (Start of Frame) output to TIM2_ITR1 for calibration purposes.
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_TIM2ITR1_TO_USB() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM2ITR1_IREMAP)
/**
* @brief Control of TIM2_ITR1 internal mapping.
* @note TO_ETH: Connect TIM2_ITR1 internally to the Ethernet PTP output for calibration purposes.
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_TIM2ITR1_TO_ETH() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM2ITR1_IREMAP)
#endif
#if defined(AFIO_MAPR_PTP_PPS_REMAP)
/**
* @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
* @note ENABLE: PTP_PPS is output on PB5 pin.
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_ETH_PTP_PPS_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_PTP_PPS_REMAP)
/**
* @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
* @note DISABLE: PTP_PPS not output on PB5 pin.
* @note This bit is available only in connectivity line devices and is reserved otherwise.
* @retval None
*/
#define __HAL_AFIO_ETH_PTP_PPS_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_PTP_PPS_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM9_REMAP)
/**
* @brief Enable the remapping of TIM9_CH1 and TIM9_CH2.
* @note ENABLE: Remap (TIM9_CH1 on PE5 and TIM9_CH2 on PE6).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM9_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM9_REMAP)
/**
* @brief Disable the remapping of TIM9_CH1 and TIM9_CH2.
* @note DISABLE: No remap (TIM9_CH1 on PA2 and TIM9_CH2 on PA3).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM9_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM9_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM10_REMAP)
/**
* @brief Enable the remapping of TIM10_CH1.
* @note ENABLE: Remap (TIM10_CH1 on PF6).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM10_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM10_REMAP)
/**
* @brief Disable the remapping of TIM10_CH1.
* @note DISABLE: No remap (TIM10_CH1 on PB8).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM10_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM10_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM11_REMAP)
/**
* @brief Enable the remapping of TIM11_CH1.
* @note ENABLE: Remap (TIM11_CH1 on PF7).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM11_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM11_REMAP)
/**
* @brief Disable the remapping of TIM11_CH1.
* @note DISABLE: No remap (TIM11_CH1 on PB9).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM11_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM11_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM13_REMAP)
/**
* @brief Enable the remapping of TIM13_CH1.
* @note ENABLE: Remap STM32F100:(TIM13_CH1 on PF8). Others:(TIM13_CH1 on PB0).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM13_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM13_REMAP)
/**
* @brief Disable the remapping of TIM13_CH1.
* @note DISABLE: No remap STM32F100:(TIM13_CH1 on PA6). Others:(TIM13_CH1 on PC8).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM13_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM13_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM14_REMAP)
/**
* @brief Enable the remapping of TIM14_CH1.
* @note ENABLE: Remap STM32F100:(TIM14_CH1 on PB1). Others:(TIM14_CH1 on PF9).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM14_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM14_REMAP)
/**
* @brief Disable the remapping of TIM14_CH1.
* @note DISABLE: No remap STM32F100:(TIM14_CH1 on PC9). Others:(TIM14_CH1 on PA7).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM14_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM14_REMAP)
#endif
#if defined(AFIO_MAPR2_FSMC_NADV_REMAP)
/**
* @brief Controls the use of the optional FSMC_NADV signal.
* @note DISCONNECTED: The NADV signal is not connected. The I/O pin can be used by another peripheral.
* @retval None
*/
#define __HAL_AFIO_FSMCNADV_DISCONNECTED() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_FSMC_NADV_REMAP)
/**
* @brief Controls the use of the optional FSMC_NADV signal.
* @note CONNECTED: The NADV signal is connected to the output (default).
* @retval None
*/
#define __HAL_AFIO_FSMCNADV_CONNECTED() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_FSMC_NADV_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM15_REMAP)
/**
* @brief Enable the remapping of TIM15_CH1 and TIM15_CH2.
* @note ENABLE: Remap (TIM15_CH1 on PB14 and TIM15_CH2 on PB15).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM15_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM15_REMAP)
/**
* @brief Disable the remapping of TIM15_CH1 and TIM15_CH2.
* @note DISABLE: No remap (TIM15_CH1 on PA2 and TIM15_CH2 on PA3).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM15_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM15_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM16_REMAP)
/**
* @brief Enable the remapping of TIM16_CH1.
* @note ENABLE: Remap (TIM16_CH1 on PA6).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM16_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM16_REMAP)
/**
* @brief Disable the remapping of TIM16_CH1.
* @note DISABLE: No remap (TIM16_CH1 on PB8).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM16_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM16_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM17_REMAP)
/**
* @brief Enable the remapping of TIM17_CH1.
* @note ENABLE: Remap (TIM17_CH1 on PA7).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM17_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM17_REMAP)
/**
* @brief Disable the remapping of TIM17_CH1.
* @note DISABLE: No remap (TIM17_CH1 on PB9).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM17_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM17_REMAP)
#endif
#if defined(AFIO_MAPR2_CEC_REMAP)
/**
* @brief Enable the remapping of CEC.
* @note ENABLE: Remap (CEC on PB10).
* @retval None
*/
#define __HAL_AFIO_REMAP_CEC_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_CEC_REMAP)
/**
* @brief Disable the remapping of CEC.
* @note DISABLE: No remap (CEC on PB8).
* @retval None
*/
#define __HAL_AFIO_REMAP_CEC_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_CEC_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM1_DMA_REMAP)
/**
* @brief Controls the mapping of the TIM1_CH1 TIM1_CH2 DMA requests onto the DMA1 channels.
* @note ENABLE: Remap (TIM1_CH1 DMA request/DMA1 Channel6, TIM1_CH2 DMA request/DMA1 Channel6)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM1DMA_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM1_DMA_REMAP)
/**
* @brief Controls the mapping of the TIM1_CH1 TIM1_CH2 DMA requests onto the DMA1 channels.
* @note DISABLE: No remap (TIM1_CH1 DMA request/DMA1 Channel2, TIM1_CH2 DMA request/DMA1 Channel3).
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM1DMA_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM1_DMA_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
/**
* @brief Controls the mapping of the TIM6_DAC1 and TIM7_DAC2 DMA requests onto the DMA1 channels.
* @note ENABLE: Remap (TIM6_DAC1 DMA request/DMA1 Channel3, TIM7_DAC2 DMA request/DMA1 Channel4)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM67DACDMA_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
/**
* @brief Controls the mapping of the TIM6_DAC1 and TIM7_DAC2 DMA requests onto the DMA1 channels.
* @note DISABLE: No remap (TIM6_DAC1 DMA request/DMA2 Channel3, TIM7_DAC2 DMA request/DMA2 Channel4)
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM67DACDMA_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
#endif
#if defined(AFIO_MAPR2_TIM12_REMAP)
/**
* @brief Enable the remapping of TIM12_CH1 and TIM12_CH2.
* @note ENABLE: Remap (TIM12_CH1 on PB12 and TIM12_CH2 on PB13).
* @note This bit is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM12_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM12_REMAP)
/**
* @brief Disable the remapping of TIM12_CH1 and TIM12_CH2.
* @note DISABLE: No remap (TIM12_CH1 on PC4 and TIM12_CH2 on PC5).
* @note This bit is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_TIM12_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM12_REMAP)
#endif
#if defined(AFIO_MAPR2_MISC_REMAP)
/**
* @brief Miscellaneous features remapping.
* This bit is set and cleared by software. It controls miscellaneous features.
* The DMA2 channel 5 interrupt position in the vector table.
* The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the DAC_CR register).
* @note ENABLE: DMA2 channel 5 interrupt is mapped separately at position 60 and TIM15 TRGO event is
* selected as DAC Trigger 3, TIM15 triggers TIM1/3.
* @note This bit is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_MISC_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_MISC_REMAP)
/**
* @brief Miscellaneous features remapping.
* This bit is set and cleared by software. It controls miscellaneous features.
* The DMA2 channel 5 interrupt position in the vector table.
* The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the DAC_CR register).
* @note DISABLE: DMA2 channel 5 interrupt is mapped with DMA2 channel 4 at position 59, TIM5 TRGO
* event is selected as DAC Trigger 3, TIM5 triggers TIM1/3.
* @note This bit is available only in high density value line devices.
* @retval None
*/
#define __HAL_AFIO_REMAP_MISC_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_MISC_REMAP)
#endif
/**
* @}
*/
/**
* @}
*/
/** @defgroup GPIOEx_Private_Macros GPIOEx Private Macros
* @{
*/
#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)
#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA))? 0uL :\
((__GPIOx__) == (GPIOB))? 1uL :\
((__GPIOx__) == (GPIOC))? 2uL :3uL)
#elif defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC)
#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA))? 0uL :\
((__GPIOx__) == (GPIOB))? 1uL :\
((__GPIOx__) == (GPIOC))? 2uL :\
((__GPIOx__) == (GPIOD))? 3uL :4uL)
#elif defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA))? 0uL :\
((__GPIOx__) == (GPIOB))? 1uL :\
((__GPIOx__) == (GPIOC))? 2uL :\
((__GPIOx__) == (GPIOD))? 3uL :\
((__GPIOx__) == (GPIOE))? 4uL :\
((__GPIOx__) == (GPIOF))? 5uL :6uL)
#endif
#define AFIO_REMAP_ENABLE(REMAP_PIN) do{ uint32_t tmpreg = AFIO->MAPR; \
tmpreg |= AFIO_MAPR_SWJ_CFG; \
tmpreg |= REMAP_PIN; \
AFIO->MAPR = tmpreg; \
}while(0u)
#define AFIO_REMAP_DISABLE(REMAP_PIN) do{ uint32_t tmpreg = AFIO->MAPR; \
tmpreg |= AFIO_MAPR_SWJ_CFG; \
tmpreg &= ~REMAP_PIN; \
AFIO->MAPR = tmpreg; \
}while(0u)
#define AFIO_REMAP_PARTIAL(REMAP_PIN, REMAP_PIN_MASK) do{ uint32_t tmpreg = AFIO->MAPR; \
tmpreg &= ~REMAP_PIN_MASK; \
tmpreg |= AFIO_MAPR_SWJ_CFG; \
tmpreg |= REMAP_PIN; \
AFIO->MAPR = tmpreg; \
}while(0u)
#define AFIO_DBGAFR_CONFIG(DBGAFR_SWJCFG) do{ uint32_t tmpreg = AFIO->MAPR; \
tmpreg &= ~AFIO_MAPR_SWJ_CFG_Msk; \
tmpreg |= DBGAFR_SWJCFG; \
AFIO->MAPR = tmpreg; \
}while(0u)
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup GPIOEx_Exported_Functions
* @{
*/
/** @addtogroup GPIOEx_Exported_Functions_Group1
* @{
*/
void HAL_GPIOEx_ConfigEventout(uint32_t GPIO_PortSource, uint32_t GPIO_PinSource);
void HAL_GPIOEx_EnableEventout(void);
void HAL_GPIOEx_DisableEventout(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_GPIO_EX_H */

View file

@ -0,0 +1,324 @@
/**
******************************************************************************
* @file stm32f1xx_hal_hcd.h
* @author MCD Application Team
* @brief Header file of HCD HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_HCD_H
#define STM32F1xx_HAL_HCD_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_usb.h"
#if defined (USB_OTG_FS)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup HCD HCD
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup HCD_Exported_Types HCD Exported Types
* @{
*/
/** @defgroup HCD_Exported_Types_Group1 HCD State Structure definition
* @{
*/
typedef enum
{
HAL_HCD_STATE_RESET = 0x00,
HAL_HCD_STATE_READY = 0x01,
HAL_HCD_STATE_ERROR = 0x02,
HAL_HCD_STATE_BUSY = 0x03,
HAL_HCD_STATE_TIMEOUT = 0x04
} HCD_StateTypeDef;
typedef USB_OTG_GlobalTypeDef HCD_TypeDef;
typedef USB_OTG_CfgTypeDef HCD_InitTypeDef;
typedef USB_OTG_HCTypeDef HCD_HCTypeDef;
typedef USB_OTG_URBStateTypeDef HCD_URBStateTypeDef;
typedef USB_OTG_HCStateTypeDef HCD_HCStateTypeDef;
/**
* @}
*/
/** @defgroup HCD_Exported_Types_Group2 HCD Handle Structure definition
* @{
*/
#if (USE_HAL_HCD_REGISTER_CALLBACKS == 1U)
typedef struct __HCD_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_HCD_REGISTER_CALLBACKS */
{
HCD_TypeDef *Instance; /*!< Register base address */
HCD_InitTypeDef Init; /*!< HCD required parameters */
HCD_HCTypeDef hc[16]; /*!< Host channels parameters */
HAL_LockTypeDef Lock; /*!< HCD peripheral status */
__IO HCD_StateTypeDef State; /*!< HCD communication state */
__IO uint32_t ErrorCode; /*!< HCD Error code */
void *pData; /*!< Pointer Stack Handler */
#if (USE_HAL_HCD_REGISTER_CALLBACKS == 1U)
void (* SOFCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD SOF callback */
void (* ConnectCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Connect callback */
void (* DisconnectCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Disconnect callback */
void (* PortEnabledCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Port Enable callback */
void (* PortDisabledCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Port Disable callback */
void (* HC_NotifyURBChangeCallback)(struct __HCD_HandleTypeDef *hhcd, uint8_t chnum,
HCD_URBStateTypeDef urb_state); /*!< USB OTG HCD Host Channel Notify URB Change callback */
void (* MspInitCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Msp Init callback */
void (* MspDeInitCallback)(struct __HCD_HandleTypeDef *hhcd); /*!< USB OTG HCD Msp DeInit callback */
#endif /* USE_HAL_HCD_REGISTER_CALLBACKS */
} HCD_HandleTypeDef;
/**
* @}
*/
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup HCD_Exported_Constants HCD Exported Constants
* @{
*/
/** @defgroup HCD_Speed HCD Speed
* @{
*/
#define HCD_SPEED_FULL USBH_FSLS_SPEED
#define HCD_SPEED_LOW USBH_FSLS_SPEED
/**
* @}
*/
/** @defgroup HCD_Device_Speed HCD Device Speed
* @{
*/
#define HCD_DEVICE_SPEED_HIGH 0U
#define HCD_DEVICE_SPEED_FULL 1U
#define HCD_DEVICE_SPEED_LOW 2U
/**
* @}
*/
/** @defgroup HCD_PHY_Module HCD PHY Module
* @{
*/
#define HCD_PHY_ULPI 1U
#define HCD_PHY_EMBEDDED 2U
/**
* @}
*/
/** @defgroup HCD_Error_Code_definition HCD Error Code definition
* @brief HCD Error Code definition
* @{
*/
#if (USE_HAL_HCD_REGISTER_CALLBACKS == 1U)
#define HAL_HCD_ERROR_INVALID_CALLBACK (0x00000010U) /*!< Invalid Callback error */
#endif /* USE_HAL_HCD_REGISTER_CALLBACKS */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup HCD_Exported_Macros HCD Exported Macros
* @brief macros to handle interrupts and specific clock configurations
* @{
*/
#define __HAL_HCD_ENABLE(__HANDLE__) (void)USB_EnableGlobalInt ((__HANDLE__)->Instance)
#define __HAL_HCD_DISABLE(__HANDLE__) (void)USB_DisableGlobalInt ((__HANDLE__)->Instance)
#define __HAL_HCD_GET_FLAG(__HANDLE__, __INTERRUPT__) ((USB_ReadInterrupts((__HANDLE__)->Instance)\
& (__INTERRUPT__)) == (__INTERRUPT__))
#define __HAL_HCD_GET_CH_FLAG(__HANDLE__, __chnum__, __INTERRUPT__) \
((USB_ReadChInterrupts((__HANDLE__)->Instance, (__chnum__)) & (__INTERRUPT__)) == (__INTERRUPT__))
#define __HAL_HCD_CLEAR_FLAG(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->GINTSTS) = (__INTERRUPT__))
#define __HAL_HCD_IS_INVALID_INTERRUPT(__HANDLE__) (USB_ReadInterrupts((__HANDLE__)->Instance) == 0U)
#define __HAL_HCD_CLEAR_HC_INT(chnum, __INTERRUPT__) (USBx_HC(chnum)->HCINT = (__INTERRUPT__))
#define __HAL_HCD_MASK_HALT_HC_INT(chnum) (USBx_HC(chnum)->HCINTMSK &= ~USB_OTG_HCINTMSK_CHHM)
#define __HAL_HCD_UNMASK_HALT_HC_INT(chnum) (USBx_HC(chnum)->HCINTMSK |= USB_OTG_HCINTMSK_CHHM)
#define __HAL_HCD_MASK_ACK_HC_INT(chnum) (USBx_HC(chnum)->HCINTMSK &= ~USB_OTG_HCINTMSK_ACKM)
#define __HAL_HCD_UNMASK_ACK_HC_INT(chnum) (USBx_HC(chnum)->HCINTMSK |= USB_OTG_HCINTMSK_ACKM)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup HCD_Exported_Functions HCD Exported Functions
* @{
*/
/** @defgroup HCD_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
HAL_StatusTypeDef HAL_HCD_Init(HCD_HandleTypeDef *hhcd);
HAL_StatusTypeDef HAL_HCD_DeInit(HCD_HandleTypeDef *hhcd);
HAL_StatusTypeDef HAL_HCD_HC_Init(HCD_HandleTypeDef *hhcd, uint8_t ch_num,
uint8_t epnum, uint8_t dev_address,
uint8_t speed, uint8_t ep_type, uint16_t mps);
HAL_StatusTypeDef HAL_HCD_HC_Halt(HCD_HandleTypeDef *hhcd, uint8_t ch_num);
void HAL_HCD_MspInit(HCD_HandleTypeDef *hhcd);
void HAL_HCD_MspDeInit(HCD_HandleTypeDef *hhcd);
#if (USE_HAL_HCD_REGISTER_CALLBACKS == 1U)
/** @defgroup HAL_HCD_Callback_ID_enumeration_definition HAL USB OTG HCD Callback ID enumeration definition
* @brief HAL USB OTG HCD Callback ID enumeration definition
* @{
*/
typedef enum
{
HAL_HCD_SOF_CB_ID = 0x01, /*!< USB HCD SOF callback ID */
HAL_HCD_CONNECT_CB_ID = 0x02, /*!< USB HCD Connect callback ID */
HAL_HCD_DISCONNECT_CB_ID = 0x03, /*!< USB HCD Disconnect callback ID */
HAL_HCD_PORT_ENABLED_CB_ID = 0x04, /*!< USB HCD Port Enable callback ID */
HAL_HCD_PORT_DISABLED_CB_ID = 0x05, /*!< USB HCD Port Disable callback ID */
HAL_HCD_MSPINIT_CB_ID = 0x06, /*!< USB HCD MspInit callback ID */
HAL_HCD_MSPDEINIT_CB_ID = 0x07 /*!< USB HCD MspDeInit callback ID */
} HAL_HCD_CallbackIDTypeDef;
/**
* @}
*/
/** @defgroup HAL_HCD_Callback_pointer_definition HAL USB OTG HCD Callback pointer definition
* @brief HAL USB OTG HCD Callback pointer definition
* @{
*/
typedef void (*pHCD_CallbackTypeDef)(HCD_HandleTypeDef *hhcd); /*!< pointer to a common USB OTG HCD callback function */
typedef void (*pHCD_HC_NotifyURBChangeCallbackTypeDef)(HCD_HandleTypeDef *hhcd,
uint8_t epnum,
HCD_URBStateTypeDef urb_state); /*!< pointer to USB OTG HCD host channel callback */
/**
* @}
*/
HAL_StatusTypeDef HAL_HCD_RegisterCallback(HCD_HandleTypeDef *hhcd,
HAL_HCD_CallbackIDTypeDef CallbackID,
pHCD_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_HCD_UnRegisterCallback(HCD_HandleTypeDef *hhcd,
HAL_HCD_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_HCD_RegisterHC_NotifyURBChangeCallback(HCD_HandleTypeDef *hhcd,
pHCD_HC_NotifyURBChangeCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_HCD_UnRegisterHC_NotifyURBChangeCallback(HCD_HandleTypeDef *hhcd);
#endif /* USE_HAL_HCD_REGISTER_CALLBACKS */
/**
* @}
*/
/* I/O operation functions ***************************************************/
/** @addtogroup HCD_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
HAL_StatusTypeDef HAL_HCD_HC_SubmitRequest(HCD_HandleTypeDef *hhcd, uint8_t ch_num,
uint8_t direction, uint8_t ep_type,
uint8_t token, uint8_t *pbuff,
uint16_t length, uint8_t do_ping);
HAL_StatusTypeDef HAL_HCD_HC_SetHubInfo(HCD_HandleTypeDef *hhcd, uint8_t ch_num,
uint8_t addr, uint8_t PortNbr);
HAL_StatusTypeDef HAL_HCD_HC_ClearHubInfo(HCD_HandleTypeDef *hhcd, uint8_t ch_num);
/* Non-Blocking mode: Interrupt */
void HAL_HCD_IRQHandler(HCD_HandleTypeDef *hhcd);
void HAL_HCD_WKUP_IRQHandler(HCD_HandleTypeDef *hhcd);
void HAL_HCD_SOF_Callback(HCD_HandleTypeDef *hhcd);
void HAL_HCD_Connect_Callback(HCD_HandleTypeDef *hhcd);
void HAL_HCD_Disconnect_Callback(HCD_HandleTypeDef *hhcd);
void HAL_HCD_PortEnabled_Callback(HCD_HandleTypeDef *hhcd);
void HAL_HCD_PortDisabled_Callback(HCD_HandleTypeDef *hhcd);
void HAL_HCD_HC_NotifyURBChange_Callback(HCD_HandleTypeDef *hhcd, uint8_t chnum,
HCD_URBStateTypeDef urb_state);
/**
* @}
*/
/* Peripheral Control functions **********************************************/
/** @addtogroup HCD_Exported_Functions_Group3 Peripheral Control functions
* @{
*/
HAL_StatusTypeDef HAL_HCD_ResetPort(HCD_HandleTypeDef *hhcd);
HAL_StatusTypeDef HAL_HCD_Start(HCD_HandleTypeDef *hhcd);
HAL_StatusTypeDef HAL_HCD_Stop(HCD_HandleTypeDef *hhcd);
/**
* @}
*/
/* Peripheral State functions ************************************************/
/** @addtogroup HCD_Exported_Functions_Group4 Peripheral State functions
* @{
*/
HCD_StateTypeDef HAL_HCD_GetState(HCD_HandleTypeDef const *hhcd);
HCD_URBStateTypeDef HAL_HCD_HC_GetURBState(HCD_HandleTypeDef const *hhcd, uint8_t chnum);
HCD_HCStateTypeDef HAL_HCD_HC_GetState(HCD_HandleTypeDef const *hhcd, uint8_t chnum);
uint32_t HAL_HCD_HC_GetXferCount(HCD_HandleTypeDef const *hhcd, uint8_t chnum);
uint32_t HAL_HCD_GetCurrentFrame(HCD_HandleTypeDef *hhcd);
uint32_t HAL_HCD_GetCurrentSpeed(HCD_HandleTypeDef *hhcd);
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup HCD_Private_Macros HCD Private Macros
* @{
*/
/**
* @}
*/
/* Private functions prototypes ----------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB_OTG_FS) */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_HCD_H */

View file

@ -0,0 +1,738 @@
/**
******************************************************************************
* @file stm32f1xx_hal_i2c.h
* @author MCD Application Team
* @brief Header file of I2C HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_I2C_H
#define __STM32F1xx_HAL_I2C_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup I2C
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup I2C_Exported_Types I2C Exported Types
* @{
*/
/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition
* @brief I2C Configuration Structure definition
* @{
*/
typedef struct
{
uint32_t ClockSpeed; /*!< Specifies the clock frequency.
This parameter must be set to a value lower than 400kHz */
uint32_t DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
uint32_t OwnAddress1; /*!< Specifies the first device own address.
This parameter can be a 7-bit or 10-bit address. */
uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected.
This parameter can be a value of @ref I2C_addressing_mode */
uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected.
This parameter can be a value of @ref I2C_dual_addressing_mode */
uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected
This parameter can be a 7-bit address. */
uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected.
This parameter can be a value of @ref I2C_general_call_addressing_mode */
uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected.
This parameter can be a value of @ref I2C_nostretch_mode */
} I2C_InitTypeDef;
/**
* @}
*/
/** @defgroup HAL_state_structure_definition HAL state structure definition
* @brief HAL State structure definition
* @note HAL I2C State value coding follow below described bitmap :
* b7-b6 Error information
* 00 : No Error
* 01 : Abort (Abort user request on going)
* 10 : Timeout
* 11 : Error
* b5 Peripheral initialization status
* 0 : Reset (Peripheral not initialized)
* 1 : Init done (Peripheral initialized and ready to use. HAL I2C Init function called)
* b4 (not used)
* x : Should be set to 0
* b3
* 0 : Ready or Busy (No Listen mode ongoing)
* 1 : Listen (Peripheral in Address Listen Mode)
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (Peripheral busy with some configuration or internal operations)
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
* @{
*/
typedef enum
{
HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */
HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */
HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */
HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */
HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */
HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */
HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission
process is ongoing */
HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception
process is ongoing */
HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */
HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */
HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */
} HAL_I2C_StateTypeDef;
/**
* @}
*/
/** @defgroup HAL_mode_structure_definition HAL mode structure definition
* @brief HAL Mode structure definition
* @note HAL I2C Mode value coding follow below described bitmap :\n
* b7 (not used)\n
* x : Should be set to 0\n
* b6\n
* 0 : None\n
* 1 : Memory (HAL I2C communication is in Memory Mode)\n
* b5\n
* 0 : None\n
* 1 : Slave (HAL I2C communication is in Slave Mode)\n
* b4\n
* 0 : None\n
* 1 : Master (HAL I2C communication is in Master Mode)\n
* b3-b2-b1-b0 (not used)\n
* xxxx : Should be set to 0000
* @{
*/
typedef enum
{
HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */
HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */
HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */
HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */
} HAL_I2C_ModeTypeDef;
/**
* @}
*/
/** @defgroup I2C_Error_Code_definition I2C Error Code definition
* @brief I2C Error Code definition
* @{
*/
#define HAL_I2C_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_I2C_ERROR_BERR 0x00000001U /*!< BERR error */
#define HAL_I2C_ERROR_ARLO 0x00000002U /*!< ARLO error */
#define HAL_I2C_ERROR_AF 0x00000004U /*!< AF error */
#define HAL_I2C_ERROR_OVR 0x00000008U /*!< OVR error */
#define HAL_I2C_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#define HAL_I2C_ERROR_TIMEOUT 0x00000020U /*!< Timeout Error */
#define HAL_I2C_ERROR_SIZE 0x00000040U /*!< Size Management error */
#define HAL_I2C_ERROR_DMA_PARAM 0x00000080U /*!< DMA Parameter Error */
#define HAL_I2C_WRONG_START 0x00000200U /*!< Wrong start Error */
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
#define HAL_I2C_ERROR_INVALID_CALLBACK 0x00000100U /*!< Invalid Callback error */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition
* @brief I2C handle Structure definition
* @{
*/
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
typedef struct __I2C_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
{
I2C_TypeDef *Instance; /*!< I2C registers base address */
I2C_InitTypeDef Init; /*!< I2C communication parameters */
uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */
uint16_t XferSize; /*!< I2C transfer size */
__IO uint16_t XferCount; /*!< I2C transfer counter */
__IO uint32_t XferOptions; /*!< I2C transfer options */
__IO uint32_t PreviousState; /*!< I2C communication Previous state and mode
context for internal usage */
DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */
HAL_LockTypeDef Lock; /*!< I2C locking object */
__IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */
__IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */
__IO uint32_t ErrorCode; /*!< I2C Error code */
__IO uint32_t Devaddress; /*!< I2C Target device address */
__IO uint32_t Memaddress; /*!< I2C Target memory address */
__IO uint32_t MemaddSize; /*!< I2C Target memory address size */
__IO uint32_t EventCount; /*!< I2C Event counter */
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
void (* MasterTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Tx Transfer completed callback */
void (* MasterRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Rx Transfer completed callback */
void (* SlaveTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Tx Transfer completed callback */
void (* SlaveRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Rx Transfer completed callback */
void (* ListenCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Listen Complete callback */
void (* MemTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Tx Transfer completed callback */
void (* MemRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Rx Transfer completed callback */
void (* ErrorCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Error callback */
void (* AbortCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Abort callback */
void (* AddrCallback)(struct __I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< I2C Slave Address Match callback */
void (* MspInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp Init callback */
void (* MspDeInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp DeInit callback */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
} I2C_HandleTypeDef;
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
/**
* @brief HAL I2C Callback ID enumeration definition
*/
typedef enum
{
HAL_I2C_MASTER_TX_COMPLETE_CB_ID = 0x00U, /*!< I2C Master Tx Transfer completed callback ID */
HAL_I2C_MASTER_RX_COMPLETE_CB_ID = 0x01U, /*!< I2C Master Rx Transfer completed callback ID */
HAL_I2C_SLAVE_TX_COMPLETE_CB_ID = 0x02U, /*!< I2C Slave Tx Transfer completed callback ID */
HAL_I2C_SLAVE_RX_COMPLETE_CB_ID = 0x03U, /*!< I2C Slave Rx Transfer completed callback ID */
HAL_I2C_LISTEN_COMPLETE_CB_ID = 0x04U, /*!< I2C Listen Complete callback ID */
HAL_I2C_MEM_TX_COMPLETE_CB_ID = 0x05U, /*!< I2C Memory Tx Transfer callback ID */
HAL_I2C_MEM_RX_COMPLETE_CB_ID = 0x06U, /*!< I2C Memory Rx Transfer completed callback ID */
HAL_I2C_ERROR_CB_ID = 0x07U, /*!< I2C Error callback ID */
HAL_I2C_ABORT_CB_ID = 0x08U, /*!< I2C Abort callback ID */
HAL_I2C_MSPINIT_CB_ID = 0x09U, /*!< I2C Msp Init callback ID */
HAL_I2C_MSPDEINIT_CB_ID = 0x0AU /*!< I2C Msp DeInit callback ID */
} HAL_I2C_CallbackIDTypeDef;
/**
* @brief HAL I2C Callback pointer definition
*/
typedef void (*pI2C_CallbackTypeDef)(I2C_HandleTypeDef *hi2c); /*!< pointer to an I2C callback function */
typedef void (*pI2C_AddrCallbackTypeDef)(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< pointer to an I2C Address Match callback function */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/**
* @}
*/
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2C_Exported_Constants I2C Exported Constants
* @{
*/
/** @defgroup I2C_duty_cycle_in_fast_mode I2C duty cycle in fast mode
* @{
*/
#define I2C_DUTYCYCLE_2 0x00000000U
#define I2C_DUTYCYCLE_16_9 I2C_CCR_DUTY
/**
* @}
*/
/** @defgroup I2C_addressing_mode I2C addressing mode
* @{
*/
#define I2C_ADDRESSINGMODE_7BIT 0x00004000U
#define I2C_ADDRESSINGMODE_10BIT (I2C_OAR1_ADDMODE | 0x00004000U)
/**
* @}
*/
/** @defgroup I2C_dual_addressing_mode I2C dual addressing mode
* @{
*/
#define I2C_DUALADDRESS_DISABLE 0x00000000U
#define I2C_DUALADDRESS_ENABLE I2C_OAR2_ENDUAL
/**
* @}
*/
/** @defgroup I2C_general_call_addressing_mode I2C general call addressing mode
* @{
*/
#define I2C_GENERALCALL_DISABLE 0x00000000U
#define I2C_GENERALCALL_ENABLE I2C_CR1_ENGC
/**
* @}
*/
/** @defgroup I2C_nostretch_mode I2C nostretch mode
* @{
*/
#define I2C_NOSTRETCH_DISABLE 0x00000000U
#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH
/**
* @}
*/
/** @defgroup I2C_Memory_Address_Size I2C Memory Address Size
* @{
*/
#define I2C_MEMADD_SIZE_8BIT 0x00000001U
#define I2C_MEMADD_SIZE_16BIT 0x00000010U
/**
* @}
*/
/** @defgroup I2C_XferDirection_definition I2C XferDirection definition
* @{
*/
#define I2C_DIRECTION_RECEIVE 0x00000000U
#define I2C_DIRECTION_TRANSMIT 0x00000001U
/**
* @}
*/
/** @defgroup I2C_XferOptions_definition I2C XferOptions definition
* @{
*/
#define I2C_FIRST_FRAME 0x00000001U
#define I2C_FIRST_AND_NEXT_FRAME 0x00000002U
#define I2C_NEXT_FRAME 0x00000004U
#define I2C_FIRST_AND_LAST_FRAME 0x00000008U
#define I2C_LAST_FRAME_NO_STOP 0x00000010U
#define I2C_LAST_FRAME 0x00000020U
/* List of XferOptions in usage of :
* 1- Restart condition in all use cases (direction change or not)
*/
#define I2C_OTHER_FRAME (0x00AA0000U)
#define I2C_OTHER_AND_LAST_FRAME (0xAA000000U)
/**
* @}
*/
/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition
* @brief I2C Interrupt definition
* Elements values convention: 0xXXXXXXXX
* - XXXXXXXX : Interrupt control mask
* @{
*/
#define I2C_IT_BUF I2C_CR2_ITBUFEN
#define I2C_IT_EVT I2C_CR2_ITEVTEN
#define I2C_IT_ERR I2C_CR2_ITERREN
/**
* @}
*/
/** @defgroup I2C_Flag_definition I2C Flag definition
* @{
*/
#define I2C_FLAG_OVR 0x00010800U
#define I2C_FLAG_AF 0x00010400U
#define I2C_FLAG_ARLO 0x00010200U
#define I2C_FLAG_BERR 0x00010100U
#define I2C_FLAG_TXE 0x00010080U
#define I2C_FLAG_RXNE 0x00010040U
#define I2C_FLAG_STOPF 0x00010010U
#define I2C_FLAG_ADD10 0x00010008U
#define I2C_FLAG_BTF 0x00010004U
#define I2C_FLAG_ADDR 0x00010002U
#define I2C_FLAG_SB 0x00010001U
#define I2C_FLAG_DUALF 0x00100080U
#define I2C_FLAG_GENCALL 0x00100010U
#define I2C_FLAG_TRA 0x00100004U
#define I2C_FLAG_BUSY 0x00100002U
#define I2C_FLAG_MSL 0x00100001U
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup I2C_Exported_Macros I2C Exported Macros
* @{
*/
/** @brief Reset I2C handle state.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_I2C_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET)
#endif
/** @brief Enable or disable the specified I2C interrupts.
* @param __HANDLE__ specifies the I2C Handle.
* @param __INTERRUPT__ specifies the interrupt source to enable or disable.
* This parameter can be one of the following values:
* @arg I2C_IT_BUF: Buffer interrupt enable
* @arg I2C_IT_EVT: Event interrupt enable
* @arg I2C_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CR2,(__INTERRUPT__))
#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
/** @brief Checks if the specified I2C interrupt source is enabled or disabled.
* @param __HANDLE__ specifies the I2C Handle.
* @param __INTERRUPT__ specifies the I2C interrupt source to check.
* This parameter can be one of the following values:
* @arg I2C_IT_BUF: Buffer interrupt enable
* @arg I2C_IT_EVT: Event interrupt enable
* @arg I2C_IT_ERR: Error interrupt enable
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Checks whether the specified I2C flag is set or not.
* @param __HANDLE__ specifies the I2C Handle.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg I2C_FLAG_OVR: Overrun/Underrun flag
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag
* @arg I2C_FLAG_BERR: Bus error flag
* @arg I2C_FLAG_TXE: Data register empty flag
* @arg I2C_FLAG_RXNE: Data register not empty flag
* @arg I2C_FLAG_STOPF: Stop detection flag
* @arg I2C_FLAG_ADD10: 10-bit header sent flag
* @arg I2C_FLAG_BTF: Byte transfer finished flag
* @arg I2C_FLAG_ADDR: Address sent flag
* Address matched flag
* @arg I2C_FLAG_SB: Start bit flag
* @arg I2C_FLAG_DUALF: Dual flag
* @arg I2C_FLAG_GENCALL: General call header flag
* @arg I2C_FLAG_TRA: Transmitter/Receiver flag
* @arg I2C_FLAG_BUSY: Bus busy flag
* @arg I2C_FLAG_MSL: Master/Slave flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) ((((uint8_t)((__FLAG__) >> 16U)) == 0x01U) ? \
(((((__HANDLE__)->Instance->SR1) & ((__FLAG__) & I2C_FLAG_MASK)) == ((__FLAG__) & I2C_FLAG_MASK)) ? SET : RESET) : \
(((((__HANDLE__)->Instance->SR2) & ((__FLAG__) & I2C_FLAG_MASK)) == ((__FLAG__) & I2C_FLAG_MASK)) ? SET : RESET))
/** @brief Clears the I2C pending flags which are cleared by writing 0 in a specific bit.
* @param __HANDLE__ specifies the I2C Handle.
* @param __FLAG__ specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
* @arg I2C_FLAG_BERR: Bus error flag
* @retval None
*/
#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR1 = ~((__FLAG__) & I2C_FLAG_MASK))
/** @brief Clears the I2C ADDR pending flag.
* @param __HANDLE__ specifies the I2C Handle.
* This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
* @retval None
*/
#define __HAL_I2C_CLEAR_ADDRFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR1; \
tmpreg = (__HANDLE__)->Instance->SR2; \
UNUSED(tmpreg); \
} while(0)
/** @brief Clears the I2C STOPF pending flag.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_CLEAR_STOPFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR1; \
SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE); \
UNUSED(tmpreg); \
} while(0)
/** @brief Enable the specified I2C peripheral.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)
/** @brief Disable the specified I2C peripheral.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_DISABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2C_Exported_Functions
* @{
*/
/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization and de-initialization functions******************************/
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c);
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
/* IO operation functions ****************************************************/
/******* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);
/******* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);
/******* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
/**
* @}
*/
/** @addtogroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks
* @{
*/
/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode);
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions
* @{
*/
/* Peripheral State, Mode and Error functions *********************************/
HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c);
HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c);
uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2C_Private_Constants I2C Private Constants
* @{
*/
#define I2C_FLAG_MASK 0x0000FFFFU
#define I2C_MIN_PCLK_FREQ_STANDARD 2000000U /*!< 2 MHz */
#define I2C_MIN_PCLK_FREQ_FAST 4000000U /*!< 4 MHz */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2C_Private_Macros I2C Private Macros
* @{
*/
#define I2C_MIN_PCLK_FREQ(__PCLK__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__PCLK__) < I2C_MIN_PCLK_FREQ_STANDARD) : ((__PCLK__) < I2C_MIN_PCLK_FREQ_FAST))
#define I2C_CCR_CALCULATION(__PCLK__, __SPEED__, __COEFF__) (((((__PCLK__) - 1U)/((__SPEED__) * (__COEFF__))) + 1U) & I2C_CCR_CCR)
#define I2C_FREQRANGE(__PCLK__) ((__PCLK__)/1000000U)
#define I2C_RISE_TIME(__FREQRANGE__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__FREQRANGE__) + 1U) : ((((__FREQRANGE__) * 300U) / 1000U) + 1U))
#define I2C_SPEED_STANDARD(__PCLK__, __SPEED__) ((I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U) < 4U)? 4U:I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U))
#define I2C_SPEED_FAST(__PCLK__, __SPEED__, __DUTYCYCLE__) (((__DUTYCYCLE__) == I2C_DUTYCYCLE_2)? I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 3U) : (I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 25U) | I2C_DUTYCYCLE_16_9))
#define I2C_SPEED(__PCLK__, __SPEED__, __DUTYCYCLE__) (((__SPEED__) <= 100000U)? (I2C_SPEED_STANDARD((__PCLK__), (__SPEED__))) : \
((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__)) & I2C_CCR_CCR) == 0U)? 1U : \
((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__))) | I2C_CCR_FS))
#define I2C_7BIT_ADD_WRITE(__ADDRESS__) ((uint8_t)((__ADDRESS__) & (uint8_t)(~I2C_OAR1_ADD0)))
#define I2C_7BIT_ADD_READ(__ADDRESS__) ((uint8_t)((__ADDRESS__) | I2C_OAR1_ADD0))
#define I2C_10BIT_ADDRESS(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)0x00FF)))
#define I2C_10BIT_HEADER_WRITE(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0x0300)) >> 7) | (uint16_t)0x00F0)))
#define I2C_10BIT_HEADER_READ(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0x0300)) >> 7) | (uint16_t)(0x00F1))))
#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0xFF00)) >> 8)))
#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)0x00FF)))
/** @defgroup I2C_IS_RTC_Definitions I2C Private macros to check input parameters
* @{
*/
#define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DUTYCYCLE_2) || \
((CYCLE) == I2C_DUTYCYCLE_16_9))
#define IS_I2C_ADDRESSING_MODE(ADDRESS) (((ADDRESS) == I2C_ADDRESSINGMODE_7BIT) || \
((ADDRESS) == I2C_ADDRESSINGMODE_10BIT))
#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || \
((ADDRESS) == I2C_DUALADDRESS_ENABLE))
#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || \
((CALL) == I2C_GENERALCALL_ENABLE))
#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || \
((STRETCH) == I2C_NOSTRETCH_ENABLE))
#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || \
((SIZE) == I2C_MEMADD_SIZE_16BIT))
#define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) > 0U) && ((SPEED) <= 400000U))
#define IS_I2C_OWN_ADDRESS1(ADDRESS1) (((ADDRESS1) & 0xFFFFFC00U) == 0U)
#define IS_I2C_OWN_ADDRESS2(ADDRESS2) (((ADDRESS2) & 0xFFFFFF01U) == 0U)
#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_FIRST_FRAME) || \
((REQUEST) == I2C_FIRST_AND_NEXT_FRAME) || \
((REQUEST) == I2C_NEXT_FRAME) || \
((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || \
((REQUEST) == I2C_LAST_FRAME) || \
((REQUEST) == I2C_LAST_FRAME_NO_STOP) || \
IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST))
#define IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_OTHER_FRAME) || \
((REQUEST) == I2C_OTHER_AND_LAST_FRAME))
#define I2C_CHECK_FLAG(__ISR__, __FLAG__) ((((__ISR__) & ((__FLAG__) & I2C_FLAG_MASK)) == ((__FLAG__) & I2C_FLAG_MASK)) ? SET : RESET)
#define I2C_CHECK_IT_SOURCE(__CR1__, __IT__) ((((__CR1__) & (__IT__)) == (__IT__)) ? SET : RESET)
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup I2C_Private_Functions I2C Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_I2C_H */

View file

@ -0,0 +1,554 @@
/**
******************************************************************************
* @file stm32f1xx_hal_i2s.h
* @author MCD Application Team
* @brief Header file of I2S HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_I2S_H
#define STM32F1xx_HAL_I2S_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined(SPI_I2S_SUPPORT)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup I2S
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup I2S_Exported_Types I2S Exported Types
* @{
*/
/**
* @brief I2S Init structure definition
*/
typedef struct
{
uint32_t Mode; /*!< Specifies the I2S operating mode.
This parameter can be a value of @ref I2S_Mode */
uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
This parameter can be a value of @ref I2S_Standard */
uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
This parameter can be a value of @ref I2S_Data_Format */
uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
This parameter can be a value of @ref I2S_MCLK_Output */
uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
This parameter can be a value of @ref I2S_Audio_Frequency */
uint32_t CPOL; /*!< Specifies the idle state of the I2S clock.
This parameter can be a value of @ref I2S_Clock_Polarity */
} I2S_InitTypeDef;
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_I2S_STATE_RESET = 0x00U, /*!< I2S not yet initialized or disabled */
HAL_I2S_STATE_READY = 0x01U, /*!< I2S initialized and ready for use */
HAL_I2S_STATE_BUSY = 0x02U, /*!< I2S internal process is ongoing */
HAL_I2S_STATE_BUSY_TX = 0x03U, /*!< Data Transmission process is ongoing */
HAL_I2S_STATE_BUSY_RX = 0x04U, /*!< Data Reception process is ongoing */
HAL_I2S_STATE_TIMEOUT = 0x06U, /*!< I2S timeout state */
HAL_I2S_STATE_ERROR = 0x07U /*!< I2S error state */
} HAL_I2S_StateTypeDef;
/**
* @brief I2S handle Structure definition
*/
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1)
typedef struct __I2S_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
{
SPI_TypeDef *Instance; /*!< I2S registers base address */
I2S_InitTypeDef Init; /*!< I2S communication parameters */
uint16_t *pTxBuffPtr; /*!< Pointer to I2S Tx transfer buffer */
__IO uint16_t TxXferSize; /*!< I2S Tx transfer size */
__IO uint16_t TxXferCount; /*!< I2S Tx transfer Counter */
uint16_t *pRxBuffPtr; /*!< Pointer to I2S Rx transfer buffer */
__IO uint16_t RxXferSize; /*!< I2S Rx transfer size */
__IO uint16_t RxXferCount; /*!< I2S Rx transfer counter
(This field is initialized at the
same value as transfer size at the
beginning of the transfer and
decremented when a sample is received
NbSamplesReceived = RxBufferSize-RxBufferCount) */
DMA_HandleTypeDef *hdmatx; /*!< I2S Tx DMA handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< I2S Rx DMA handle parameters */
__IO HAL_LockTypeDef Lock; /*!< I2S locking object */
__IO HAL_I2S_StateTypeDef State; /*!< I2S communication state */
__IO uint32_t ErrorCode; /*!< I2S Error code
This parameter can be a value of @ref I2S_Error */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
void (* TxCpltCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Tx Completed callback */
void (* RxCpltCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Rx Completed callback */
void (* TxHalfCpltCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Tx Half Completed callback */
void (* RxHalfCpltCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Rx Half Completed callback */
void (* ErrorCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Error callback */
void (* MspInitCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Msp Init callback */
void (* MspDeInitCallback)(struct __I2S_HandleTypeDef *hi2s); /*!< I2S Msp DeInit callback */
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
} I2S_HandleTypeDef;
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
/**
* @brief HAL I2S Callback ID enumeration definition
*/
typedef enum
{
HAL_I2S_TX_COMPLETE_CB_ID = 0x00U, /*!< I2S Tx Completed callback ID */
HAL_I2S_RX_COMPLETE_CB_ID = 0x01U, /*!< I2S Rx Completed callback ID */
HAL_I2S_TX_HALF_COMPLETE_CB_ID = 0x03U, /*!< I2S Tx Half Completed callback ID */
HAL_I2S_RX_HALF_COMPLETE_CB_ID = 0x04U, /*!< I2S Rx Half Completed callback ID */
HAL_I2S_ERROR_CB_ID = 0x06U, /*!< I2S Error callback ID */
HAL_I2S_MSPINIT_CB_ID = 0x07U, /*!< I2S Msp Init callback ID */
HAL_I2S_MSPDEINIT_CB_ID = 0x08U /*!< I2S Msp DeInit callback ID */
} HAL_I2S_CallbackIDTypeDef;
/**
* @brief HAL I2S Callback pointer definition
*/
typedef void (*pI2S_CallbackTypeDef)(I2S_HandleTypeDef *hi2s); /*!< pointer to an I2S callback function */
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2S_Exported_Constants I2S Exported Constants
* @{
*/
/** @defgroup I2S_Error I2S Error
* @{
*/
#define HAL_I2S_ERROR_NONE (0x00000000U) /*!< No error */
#define HAL_I2S_ERROR_TIMEOUT (0x00000001U) /*!< Timeout error */
#define HAL_I2S_ERROR_OVR (0x00000002U) /*!< OVR error */
#define HAL_I2S_ERROR_UDR (0x00000004U) /*!< UDR error */
#define HAL_I2S_ERROR_DMA (0x00000008U) /*!< DMA transfer error */
#define HAL_I2S_ERROR_PRESCALER (0x00000010U) /*!< Prescaler Calculation error */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
#define HAL_I2S_ERROR_INVALID_CALLBACK (0x00000020U) /*!< Invalid Callback error */
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
#define HAL_I2S_ERROR_BUSY_LINE_RX (0x00000040U) /*!< Busy Rx Line error */
/**
* @}
*/
/** @defgroup I2S_Mode I2S Mode
* @{
*/
#define I2S_MODE_SLAVE_TX (0x00000000U)
#define I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0)
#define I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1)
#define I2S_MODE_MASTER_RX ((SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1))
/**
* @}
*/
/** @defgroup I2S_Standard I2S Standard
* @{
*/
#define I2S_STANDARD_PHILIPS (0x00000000U)
#define I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0)
#define I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1)
#define I2S_STANDARD_PCM_SHORT ((SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1))
#define I2S_STANDARD_PCM_LONG ((SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC))
/**
* @}
*/
/** @defgroup I2S_Data_Format I2S Data Format
* @{
*/
#define I2S_DATAFORMAT_16B (0x00000000U)
#define I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN)
#define I2S_DATAFORMAT_24B ((SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0))
#define I2S_DATAFORMAT_32B ((SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1))
/**
* @}
*/
/** @defgroup I2S_MCLK_Output I2S MCLK Output
* @{
*/
#define I2S_MCLKOUTPUT_ENABLE (SPI_I2SPR_MCKOE)
#define I2S_MCLKOUTPUT_DISABLE (0x00000000U)
/**
* @}
*/
/** @defgroup I2S_Audio_Frequency I2S Audio Frequency
* @{
*/
#define I2S_AUDIOFREQ_192K (192000U)
#define I2S_AUDIOFREQ_96K (96000U)
#define I2S_AUDIOFREQ_48K (48000U)
#define I2S_AUDIOFREQ_44K (44100U)
#define I2S_AUDIOFREQ_32K (32000U)
#define I2S_AUDIOFREQ_22K (22050U)
#define I2S_AUDIOFREQ_16K (16000U)
#define I2S_AUDIOFREQ_11K (11025U)
#define I2S_AUDIOFREQ_8K (8000U)
#define I2S_AUDIOFREQ_DEFAULT (2U)
/**
* @}
*/
/** @defgroup I2S_Clock_Polarity I2S Clock Polarity
* @{
*/
#define I2S_CPOL_LOW (0x00000000U)
#define I2S_CPOL_HIGH (SPI_I2SCFGR_CKPOL)
/**
* @}
*/
/** @defgroup I2S_Interrupts_Definition I2S Interrupts Definition
* @{
*/
#define I2S_IT_TXE SPI_CR2_TXEIE
#define I2S_IT_RXNE SPI_CR2_RXNEIE
#define I2S_IT_ERR SPI_CR2_ERRIE
/**
* @}
*/
/** @defgroup I2S_Flags_Definition I2S Flags Definition
* @{
*/
#define I2S_FLAG_TXE SPI_SR_TXE
#define I2S_FLAG_RXNE SPI_SR_RXNE
#define I2S_FLAG_UDR SPI_SR_UDR
#define I2S_FLAG_OVR SPI_SR_OVR
#define I2S_FLAG_FRE SPI_SR_FRE
#define I2S_FLAG_CHSIDE SPI_SR_CHSIDE
#define I2S_FLAG_BSY SPI_SR_BSY
#define I2S_FLAG_MASK (SPI_SR_RXNE\
| SPI_SR_TXE | SPI_SR_UDR | SPI_SR_OVR | SPI_SR_CHSIDE | SPI_SR_BSY)
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup I2S_Exported_macros I2S Exported Macros
* @{
*/
/** @brief Reset I2S handle state
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
#define __HAL_I2S_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_I2S_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_I2S_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2S_STATE_RESET)
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
/** @brief Enable the specified SPI peripheral (in I2S mode).
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#define __HAL_I2S_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
/** @brief Disable the specified SPI peripheral (in I2S mode).
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#define __HAL_I2S_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
/** @brief Enable the specified I2S interrupts.
* @param __HANDLE__ specifies the I2S Handle.
* @param __INTERRUPT__ specifies the interrupt source to enable or disable.
* This parameter can be one of the following values:
* @arg I2S_IT_TXE: Tx buffer empty interrupt enable
* @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
* @arg I2S_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_I2S_ENABLE_IT(__HANDLE__, __INTERRUPT__) (SET_BIT((__HANDLE__)->Instance->CR2,(__INTERRUPT__)))
/** @brief Disable the specified I2S interrupts.
* @param __HANDLE__ specifies the I2S Handle.
* @param __INTERRUPT__ specifies the interrupt source to enable or disable.
* This parameter can be one of the following values:
* @arg I2S_IT_TXE: Tx buffer empty interrupt enable
* @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
* @arg I2S_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_I2S_DISABLE_IT(__HANDLE__, __INTERRUPT__) (CLEAR_BIT((__HANDLE__)->Instance->CR2,(__INTERRUPT__)))
/** @brief Checks if the specified I2S interrupt source is enabled or disabled.
* @param __HANDLE__ specifies the I2S Handle.
* This parameter can be I2S where x: 1, 2, or 3 to select the I2S peripheral.
* @param __INTERRUPT__ specifies the I2S interrupt source to check.
* This parameter can be one of the following values:
* @arg I2S_IT_TXE: Tx buffer empty interrupt enable
* @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
* @arg I2S_IT_ERR: Error interrupt enable
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_I2S_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2\
& (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Checks whether the specified I2S flag is set or not.
* @param __HANDLE__ specifies the I2S Handle.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg I2S_FLAG_RXNE: Receive buffer not empty flag
* @arg I2S_FLAG_TXE: Transmit buffer empty flag
* @arg I2S_FLAG_UDR: Underrun flag
* @arg I2S_FLAG_OVR: Overrun flag
* @arg I2S_FLAG_FRE: Frame error flag
* @arg I2S_FLAG_CHSIDE: Channel Side flag
* @arg I2S_FLAG_BSY: Busy flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_I2S_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
/** @brief Clears the I2S OVR pending flag.
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#define __HAL_I2S_CLEAR_OVRFLAG(__HANDLE__) do{ \
__IO uint32_t tmpreg_ovr = 0x00U; \
tmpreg_ovr = (__HANDLE__)->Instance->DR; \
tmpreg_ovr = (__HANDLE__)->Instance->SR; \
UNUSED(tmpreg_ovr); \
}while(0U)
/** @brief Clears the I2S UDR pending flag.
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#define __HAL_I2S_CLEAR_UDRFLAG(__HANDLE__) do{\
__IO uint32_t tmpreg_udr = 0x00U;\
tmpreg_udr = ((__HANDLE__)->Instance->SR);\
UNUSED(tmpreg_udr); \
}while(0U)
/** @brief Flush the I2S DR Register.
* @param __HANDLE__ specifies the I2S Handle.
* @retval None
*/
#define __HAL_I2S_FLUSH_RX_DR(__HANDLE__) do{\
__IO uint32_t tmpreg_dr = 0x00U;\
tmpreg_dr = ((__HANDLE__)->Instance->DR);\
UNUSED(tmpreg_dr); \
}while(0U)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2S_Exported_Functions
* @{
*/
/** @addtogroup I2S_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s);
HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s);
void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s);
void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
HAL_StatusTypeDef HAL_I2S_RegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID,
pI2S_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_I2S_UnRegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup I2S_Exported_Functions_Group2
* @{
*/
/* I/O operation functions ***************************************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s);
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s);
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s);
/* Callbacks used in non blocking modes (Interrupt and DMA) *******************/
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s);
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s);
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s);
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s);
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s);
/**
* @}
*/
/** @addtogroup I2S_Exported_Functions_Group3
* @{
*/
/* Peripheral Control and State functions ************************************/
HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s);
uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2S_Private_Macros I2S Private Macros
* @{
*/
/** @brief Check whether the specified SPI flag is set or not.
* @param __SR__ copy of I2S SR register.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg I2S_FLAG_RXNE: Receive buffer not empty flag
* @arg I2S_FLAG_TXE: Transmit buffer empty flag
* @arg I2S_FLAG_UDR: Underrun error flag
* @arg I2S_FLAG_OVR: Overrun flag
* @arg I2S_FLAG_CHSIDE: Channel side flag
* @arg I2S_FLAG_BSY: Busy flag
* @retval SET or RESET.
*/
#define I2S_CHECK_FLAG(__SR__, __FLAG__) ((((__SR__)\
& ((__FLAG__) & I2S_FLAG_MASK)) == ((__FLAG__) & I2S_FLAG_MASK)) ? SET : RESET)
/** @brief Check whether the specified SPI Interrupt is set or not.
* @param __CR2__ copy of I2S CR2 register.
* @param __INTERRUPT__ specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg I2S_IT_TXE: Tx buffer empty interrupt enable
* @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
* @arg I2S_IT_ERR: Error interrupt enable
* @retval SET or RESET.
*/
#define I2S_CHECK_IT_SOURCE(__CR2__, __INTERRUPT__) ((((__CR2__)\
& (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Checks if I2S Mode parameter is in allowed range.
* @param __MODE__ specifies the I2S Mode.
* This parameter can be a value of @ref I2S_Mode
* @retval None
*/
#define IS_I2S_MODE(__MODE__) (((__MODE__) == I2S_MODE_SLAVE_TX) || \
((__MODE__) == I2S_MODE_SLAVE_RX) || \
((__MODE__) == I2S_MODE_MASTER_TX) || \
((__MODE__) == I2S_MODE_MASTER_RX))
#define IS_I2S_STANDARD(__STANDARD__) (((__STANDARD__) == I2S_STANDARD_PHILIPS) || \
((__STANDARD__) == I2S_STANDARD_MSB) || \
((__STANDARD__) == I2S_STANDARD_LSB) || \
((__STANDARD__) == I2S_STANDARD_PCM_SHORT) || \
((__STANDARD__) == I2S_STANDARD_PCM_LONG))
#define IS_I2S_DATA_FORMAT(__FORMAT__) (((__FORMAT__) == I2S_DATAFORMAT_16B) || \
((__FORMAT__) == I2S_DATAFORMAT_16B_EXTENDED) || \
((__FORMAT__) == I2S_DATAFORMAT_24B) || \
((__FORMAT__) == I2S_DATAFORMAT_32B))
#define IS_I2S_MCLK_OUTPUT(__OUTPUT__) (((__OUTPUT__) == I2S_MCLKOUTPUT_ENABLE) || \
((__OUTPUT__) == I2S_MCLKOUTPUT_DISABLE))
#define IS_I2S_AUDIO_FREQ(__FREQ__) ((((__FREQ__) >= I2S_AUDIOFREQ_8K) && \
((__FREQ__) <= I2S_AUDIOFREQ_192K)) || \
((__FREQ__) == I2S_AUDIOFREQ_DEFAULT))
/** @brief Checks if I2S Serial clock steady state parameter is in allowed range.
* @param __CPOL__ specifies the I2S serial clock steady state.
* This parameter can be a value of @ref I2S_Clock_Polarity
* @retval None
*/
#define IS_I2S_CPOL(__CPOL__) (((__CPOL__) == I2S_CPOL_LOW) || \
((__CPOL__) == I2S_CPOL_HIGH))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* SPI_I2S_SUPPORT */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_I2S_H */

View file

@ -0,0 +1,670 @@
/**
******************************************************************************
* @file stm32f1xx_hal_irda.h
* @author MCD Application Team
* @brief Header file of IRDA HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_IRDA_H
#define __STM32F1xx_HAL_IRDA_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup IRDA
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup IRDA_Exported_Types IRDA Exported Types
* @{
*/
/**
* @brief IRDA Init Structure definition
*/
typedef struct
{
uint32_t BaudRate; /*!< This member configures the IRDA communication baud rate.
The baud rate is computed using the following formula:
- IntegerDivider = ((PCLKx) / (16 * (hirda->Init.BaudRate)))
- FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 16) + 0.5 */
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref IRDA_Word_Length */
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref IRDA_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits). */
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref IRDA_Mode */
uint8_t Prescaler; /*!< Specifies the Prescaler value to be programmed
in the IrDA low-power Baud Register, for defining pulse width on which
burst acceptance/rejection will be decided. This value is used as divisor
of system clock to achieve required pulse width. */
uint32_t IrDAMode; /*!< Specifies the IrDA mode
This parameter can be a value of @ref IRDA_Low_Power */
} IRDA_InitTypeDef;
/**
* @brief HAL IRDA State structures definition
* @note HAL IRDA State value is a combination of 2 different substates: gState and RxState.
* - gState contains IRDA state information related to global Handle management
* and also information related to Tx operations.
* gState value coding follow below described bitmap :
* b7-b6 Error information
* 00 : No Error
* 01 : (Not Used)
* 10 : Timeout
* 11 : Error
* b5 IP initialisation status
* 0 : Reset (IP not initialized)
* 1 : Init done (IP initialized. HAL IRDA Init function already called)
* b4-b3 (not used)
* xx : Should be set to 00
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (IP busy with some configuration or internal operations)
* b1 (not used)
* x : Should be set to 0
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
* - RxState contains information related to Rx operations.
* RxState value coding follow below described bitmap :
* b7-b6 (not used)
* xx : Should be set to 00
* b5 IP initialisation status
* 0 : Reset (IP not initialized)
* 1 : Init done (IP initialized)
* b4-b2 (not used)
* xxx : Should be set to 000
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 (not used)
* x : Should be set to 0.
*/
typedef enum
{
HAL_IRDA_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized
Value is allowed for gState and RxState */
HAL_IRDA_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use
Value is allowed for gState and RxState */
HAL_IRDA_STATE_BUSY = 0x24U, /*!< An internal process is ongoing
Value is allowed for gState only */
HAL_IRDA_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing
Value is allowed for gState only */
HAL_IRDA_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing
Value is allowed for RxState only */
HAL_IRDA_STATE_BUSY_TX_RX = 0x23U, /*!< Data Transmission and Reception process is ongoing
Not to be used for neither gState nor RxState.
Value is result of combination (Or) between gState and RxState values */
HAL_IRDA_STATE_TIMEOUT = 0xA0U, /*!< Timeout state
Value is allowed for gState only */
HAL_IRDA_STATE_ERROR = 0xE0U /*!< Error
Value is allowed for gState only */
} HAL_IRDA_StateTypeDef;
/**
* @brief IRDA handle Structure definition
*/
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
typedef struct __IRDA_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
{
USART_TypeDef *Instance; /*!< USART registers base address */
IRDA_InitTypeDef Init; /*!< IRDA communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to IRDA Tx transfer Buffer */
uint16_t TxXferSize; /*!< IRDA Tx Transfer size */
__IO uint16_t TxXferCount; /*!< IRDA Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to IRDA Rx transfer Buffer */
uint16_t RxXferSize; /*!< IRDA Rx Transfer size */
__IO uint16_t RxXferCount; /*!< IRDA Rx Transfer Counter */
DMA_HandleTypeDef *hdmatx; /*!< IRDA Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< IRDA Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_IRDA_StateTypeDef gState; /*!< IRDA state information related to global Handle management
and also related to Tx operations.
This parameter can be a value of @ref HAL_IRDA_StateTypeDef */
__IO HAL_IRDA_StateTypeDef RxState; /*!< IRDA state information related to Rx operations.
This parameter can be a value of @ref HAL_IRDA_StateTypeDef */
__IO uint32_t ErrorCode; /*!< IRDA Error code */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
void (* TxHalfCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Tx Half Complete Callback */
void (* TxCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Tx Complete Callback */
void (* RxHalfCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Rx Half Complete Callback */
void (* RxCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Rx Complete Callback */
void (* ErrorCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Error Callback */
void (* AbortCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Abort Complete Callback */
void (* AbortTransmitCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Abort Transmit Complete Callback */
void (* AbortReceiveCpltCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Abort Receive Complete Callback */
void (* MspInitCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Msp Init callback */
void (* MspDeInitCallback)(struct __IRDA_HandleTypeDef *hirda); /*!< IRDA Msp DeInit callback */
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
} IRDA_HandleTypeDef;
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
/**
* @brief HAL IRDA Callback ID enumeration definition
*/
typedef enum
{
HAL_IRDA_TX_HALFCOMPLETE_CB_ID = 0x00U, /*!< IRDA Tx Half Complete Callback ID */
HAL_IRDA_TX_COMPLETE_CB_ID = 0x01U, /*!< IRDA Tx Complete Callback ID */
HAL_IRDA_RX_HALFCOMPLETE_CB_ID = 0x02U, /*!< IRDA Rx Half Complete Callback ID */
HAL_IRDA_RX_COMPLETE_CB_ID = 0x03U, /*!< IRDA Rx Complete Callback ID */
HAL_IRDA_ERROR_CB_ID = 0x04U, /*!< IRDA Error Callback ID */
HAL_IRDA_ABORT_COMPLETE_CB_ID = 0x05U, /*!< IRDA Abort Complete Callback ID */
HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID = 0x06U, /*!< IRDA Abort Transmit Complete Callback ID */
HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID = 0x07U, /*!< IRDA Abort Receive Complete Callback ID */
HAL_IRDA_MSPINIT_CB_ID = 0x08U, /*!< IRDA MspInit callback ID */
HAL_IRDA_MSPDEINIT_CB_ID = 0x09U /*!< IRDA MspDeInit callback ID */
} HAL_IRDA_CallbackIDTypeDef;
/**
* @brief HAL IRDA Callback pointer definition
*/
typedef void (*pIRDA_CallbackTypeDef)(IRDA_HandleTypeDef *hirda); /*!< pointer to an IRDA callback function */
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup IRDA_Exported_Constants IRDA Exported constants
* @{
*/
/** @defgroup IRDA_Error_Code IRDA Error Code
* @{
*/
#define HAL_IRDA_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_IRDA_ERROR_PE 0x00000001U /*!< Parity error */
#define HAL_IRDA_ERROR_NE 0x00000002U /*!< Noise error */
#define HAL_IRDA_ERROR_FE 0x00000004U /*!< Frame error */
#define HAL_IRDA_ERROR_ORE 0x00000008U /*!< Overrun error */
#define HAL_IRDA_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
#define HAL_IRDA_ERROR_INVALID_CALLBACK ((uint32_t)0x00000020U) /*!< Invalid Callback error */
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup IRDA_Word_Length IRDA Word Length
* @{
*/
#define IRDA_WORDLENGTH_8B 0x00000000U
#define IRDA_WORDLENGTH_9B ((uint32_t)USART_CR1_M)
/**
* @}
*/
/** @defgroup IRDA_Parity IRDA Parity
* @{
*/
#define IRDA_PARITY_NONE 0x00000000U
#define IRDA_PARITY_EVEN ((uint32_t)USART_CR1_PCE)
#define IRDA_PARITY_ODD ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
/**
* @}
*/
/** @defgroup IRDA_Mode IRDA Transfer Mode
* @{
*/
#define IRDA_MODE_RX ((uint32_t)USART_CR1_RE)
#define IRDA_MODE_TX ((uint32_t)USART_CR1_TE)
#define IRDA_MODE_TX_RX ((uint32_t)(USART_CR1_TE |USART_CR1_RE))
/**
* @}
*/
/** @defgroup IRDA_Low_Power IRDA Low Power
* @{
*/
#define IRDA_POWERMODE_LOWPOWER ((uint32_t)USART_CR3_IRLP)
#define IRDA_POWERMODE_NORMAL 0x00000000U
/**
* @}
*/
/** @defgroup IRDA_Flags IRDA Flags
* Elements values convention: 0xXXXX
* - 0xXXXX : Flag mask in the SR register
* @{
*/
#define IRDA_FLAG_TXE ((uint32_t)USART_SR_TXE)
#define IRDA_FLAG_TC ((uint32_t)USART_SR_TC)
#define IRDA_FLAG_RXNE ((uint32_t)USART_SR_RXNE)
#define IRDA_FLAG_IDLE ((uint32_t)USART_SR_IDLE)
#define IRDA_FLAG_ORE ((uint32_t)USART_SR_ORE)
#define IRDA_FLAG_NE ((uint32_t)USART_SR_NE)
#define IRDA_FLAG_FE ((uint32_t)USART_SR_FE)
#define IRDA_FLAG_PE ((uint32_t)USART_SR_PE)
/**
* @}
*/
/** @defgroup IRDA_Interrupt_definition IRDA Interrupt Definitions
* Elements values convention: 0xY000XXXX
* - XXXX : Interrupt mask in the XX register
* - Y : Interrupt source register (2bits)
* - 01: CR1 register
* - 10: CR2 register
* - 11: CR3 register
* @{
*/
#define IRDA_IT_PE ((uint32_t)(IRDA_CR1_REG_INDEX << 28U | USART_CR1_PEIE))
#define IRDA_IT_TXE ((uint32_t)(IRDA_CR1_REG_INDEX << 28U | USART_CR1_TXEIE))
#define IRDA_IT_TC ((uint32_t)(IRDA_CR1_REG_INDEX << 28U | USART_CR1_TCIE))
#define IRDA_IT_RXNE ((uint32_t)(IRDA_CR1_REG_INDEX << 28U | USART_CR1_RXNEIE))
#define IRDA_IT_IDLE ((uint32_t)(IRDA_CR1_REG_INDEX << 28U | USART_CR1_IDLEIE))
#define IRDA_IT_LBD ((uint32_t)(IRDA_CR2_REG_INDEX << 28U | USART_CR2_LBDIE))
#define IRDA_IT_CTS ((uint32_t)(IRDA_CR3_REG_INDEX << 28U | USART_CR3_CTSIE))
#define IRDA_IT_ERR ((uint32_t)(IRDA_CR3_REG_INDEX << 28U | USART_CR3_EIE))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup IRDA_Exported_Macros IRDA Exported Macros
* @{
*/
/** @brief Reset IRDA handle gstate & RxState
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
#define __HAL_IRDA_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_IRDA_STATE_RESET; \
(__HANDLE__)->RxState = HAL_IRDA_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0U)
#else
#define __HAL_IRDA_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_IRDA_STATE_RESET; \
(__HANDLE__)->RxState = HAL_IRDA_STATE_RESET; \
} while(0U)
#endif /*USE_HAL_IRDA_REGISTER_CALLBACKS */
/** @brief Flush the IRDA DR register
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_FLUSH_DRREGISTER(__HANDLE__) ((__HANDLE__)->Instance->DR)
/** @brief Check whether the specified IRDA flag is set or not.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg IRDA_FLAG_TXE: Transmit data register empty flag
* @arg IRDA_FLAG_TC: Transmission Complete flag
* @arg IRDA_FLAG_RXNE: Receive data register not empty flag
* @arg IRDA_FLAG_IDLE: Idle Line detection flag
* @arg IRDA_FLAG_ORE: OverRun Error flag
* @arg IRDA_FLAG_NE: Noise Error flag
* @arg IRDA_FLAG_FE: Framing Error flag
* @arg IRDA_FLAG_PE: Parity Error flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_IRDA_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
/** @brief Clear the specified IRDA pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be any combination of the following values:
* @arg IRDA_FLAG_TC: Transmission Complete flag.
* @arg IRDA_FLAG_RXNE: Receive data register not empty flag.
*
* @note PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun
* error) and IDLE (Idle line detected) flags are cleared by software
* sequence: a read operation to USART_SR register followed by a read
* operation to USART_DR register.
* @note RXNE flag can be also cleared by a read to the USART_DR register.
* @note TC flag can be also cleared by software sequence: a read operation to
* USART_SR register followed by a write operation to USART_DR register.
* @note TXE flag is cleared only by a write to the USART_DR register.
* @retval None
*/
#define __HAL_IRDA_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/** @brief Clear the IRDA PE pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_CLEAR_PEFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR; \
tmpreg = (__HANDLE__)->Instance->DR; \
UNUSED(tmpreg); \
} while(0U)
/** @brief Clear the IRDA FE pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_CLEAR_FEFLAG(__HANDLE__) __HAL_IRDA_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the IRDA NE pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_CLEAR_NEFLAG(__HANDLE__) __HAL_IRDA_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the IRDA ORE pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_CLEAR_OREFLAG(__HANDLE__) __HAL_IRDA_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the IRDA IDLE pending flag.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_CLEAR_IDLEFLAG(__HANDLE__) __HAL_IRDA_CLEAR_PEFLAG(__HANDLE__)
/** @brief Enable the specified IRDA interrupt.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __INTERRUPT__ specifies the IRDA interrupt source to enable.
* This parameter can be one of the following values:
* @arg IRDA_IT_TXE: Transmit Data Register empty interrupt
* @arg IRDA_IT_TC: Transmission complete interrupt
* @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
* @arg IRDA_IT_IDLE: Idle line detection interrupt
* @arg IRDA_IT_PE: Parity Error interrupt
* @arg IRDA_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_IRDA_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == IRDA_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & IRDA_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == IRDA_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 |= ((__INTERRUPT__) & IRDA_IT_MASK)): \
((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & IRDA_IT_MASK)))
/** @brief Disable the specified IRDA interrupt.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __INTERRUPT__ specifies the IRDA interrupt source to disable.
* This parameter can be one of the following values:
* @arg IRDA_IT_TXE: Transmit Data Register empty interrupt
* @arg IRDA_IT_TC: Transmission complete interrupt
* @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
* @arg IRDA_IT_IDLE: Idle line detection interrupt
* @arg IRDA_IT_PE: Parity Error interrupt
* @arg IRDA_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_IRDA_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == IRDA_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & IRDA_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == IRDA_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 &= ~((__INTERRUPT__) & IRDA_IT_MASK)): \
((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & IRDA_IT_MASK)))
/** @brief Check whether the specified IRDA interrupt has occurred or not.
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __IT__ specifies the IRDA interrupt source to check.
* This parameter can be one of the following values:
* @arg IRDA_IT_TXE: Transmit Data Register empty interrupt
* @arg IRDA_IT_TC: Transmission complete interrupt
* @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
* @arg IRDA_IT_IDLE: Idle line detection interrupt
* @arg IRDA_IT_ERR: Error interrupt
* @arg IRDA_IT_PE: Parity Error interrupt
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_IRDA_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28U) == IRDA_CR1_REG_INDEX)? (__HANDLE__)->Instance->CR1:(((((uint32_t)(__IT__)) >> 28U) == IRDA_CR2_REG_INDEX)? \
(__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & (((uint32_t)(__IT__)) & IRDA_IT_MASK))
/** @brief Enable UART/USART associated to IRDA Handle
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR1, USART_CR1_UE))
/** @brief Disable UART/USART associated to IRDA Handle
* @param __HANDLE__ specifies the IRDA Handle.
* IRDA Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_IRDA_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CR1, USART_CR1_UE))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup IRDA_Exported_Functions
* @{
*/
/** @addtogroup IRDA_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda);
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
/* Callbacks Register/UnRegister functions ***********************************/
HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID, pIRDA_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup IRDA_Exported_Functions_Group2
* @{
*/
/* IO operation functions *******************************************************/
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda);
HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda);
void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda);
/**
* @}
*/
/** @addtogroup IRDA_Exported_Functions_Group3
* @{
*/
/* Peripheral State functions **************************************************/
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(const IRDA_HandleTypeDef *hirda);
uint32_t HAL_IRDA_GetError(const IRDA_HandleTypeDef *hirda);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup IRDA_Private_Constants IRDA Private Constants
* @{
*/
/** @brief IRDA interruptions flag mask
*
*/
#define IRDA_IT_MASK ((uint32_t) USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RXNEIE | \
USART_CR1_IDLEIE | USART_CR2_LBDIE | USART_CR3_CTSIE | USART_CR3_EIE )
#define IRDA_CR1_REG_INDEX 1U
#define IRDA_CR2_REG_INDEX 2U
#define IRDA_CR3_REG_INDEX 3U
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @defgroup IRDA_Private_Macros IRDA Private Macros
* @{
*/
#define IS_IRDA_WORD_LENGTH(LENGTH) (((LENGTH) == IRDA_WORDLENGTH_8B) || \
((LENGTH) == IRDA_WORDLENGTH_9B))
#define IS_IRDA_PARITY(PARITY) (((PARITY) == IRDA_PARITY_NONE) || \
((PARITY) == IRDA_PARITY_EVEN) || \
((PARITY) == IRDA_PARITY_ODD))
#define IS_IRDA_MODE(MODE) ((((MODE) & 0x0000FFF3U) == 0x00U) && ((MODE) != 0x00000000U))
#define IS_IRDA_POWERMODE(MODE) (((MODE) == IRDA_POWERMODE_LOWPOWER) || \
((MODE) == IRDA_POWERMODE_NORMAL))
#define IS_IRDA_BAUDRATE(BAUDRATE) ((BAUDRATE) < 115201U)
#define IRDA_DIV(_PCLK_, _BAUD_) (((_PCLK_)*25U)/(4U*(_BAUD_)))
#define IRDA_DIVMANT(_PCLK_, _BAUD_) (IRDA_DIV((_PCLK_), (_BAUD_))/100U)
#define IRDA_DIVFRAQ(_PCLK_, _BAUD_) ((((IRDA_DIV((_PCLK_), (_BAUD_)) - (IRDA_DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U)
/* UART BRR = mantissa + overflow + fraction
= (UART DIVMANT << 4) + (UART DIVFRAQ & 0xF0) + (UART DIVFRAQ & 0x0FU) */
#define IRDA_BRR(_PCLK_, _BAUD_) (((IRDA_DIVMANT((_PCLK_), (_BAUD_)) << 4U) + \
(IRDA_DIVFRAQ((_PCLK_), (_BAUD_)) & 0xF0U)) + \
(IRDA_DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup IRDA_Private_Functions IRDA Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_IRDA_H */

View file

@ -0,0 +1,220 @@
/**
******************************************************************************
* @file stm32f1xx_hal_iwdg.h
* @author MCD Application Team
* @brief Header file of IWDG HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_IWDG_H
#define STM32F1xx_HAL_IWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup IWDG IWDG
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup IWDG_Exported_Types IWDG Exported Types
* @{
*/
/**
* @brief IWDG Init structure definition
*/
typedef struct
{
uint32_t Prescaler; /*!< Select the prescaler of the IWDG.
This parameter can be a value of @ref IWDG_Prescaler */
uint32_t Reload; /*!< Specifies the IWDG down-counter reload value.
This parameter must be a number between Min_Data = 0 and Max_Data = 0x0FFF */
} IWDG_InitTypeDef;
/**
* @brief IWDG Handle Structure definition
*/
typedef struct
{
IWDG_TypeDef *Instance; /*!< Register base address */
IWDG_InitTypeDef Init; /*!< IWDG required parameters */
} IWDG_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup IWDG_Exported_Constants IWDG Exported Constants
* @{
*/
/** @defgroup IWDG_Prescaler IWDG Prescaler
* @{
*/
#define IWDG_PRESCALER_4 0x00000000u /*!< IWDG prescaler set to 4 */
#define IWDG_PRESCALER_8 IWDG_PR_PR_0 /*!< IWDG prescaler set to 8 */
#define IWDG_PRESCALER_16 IWDG_PR_PR_1 /*!< IWDG prescaler set to 16 */
#define IWDG_PRESCALER_32 (IWDG_PR_PR_1 | IWDG_PR_PR_0) /*!< IWDG prescaler set to 32 */
#define IWDG_PRESCALER_64 IWDG_PR_PR_2 /*!< IWDG prescaler set to 64 */
#define IWDG_PRESCALER_128 (IWDG_PR_PR_2 | IWDG_PR_PR_0) /*!< IWDG prescaler set to 128 */
#define IWDG_PRESCALER_256 (IWDG_PR_PR_2 | IWDG_PR_PR_1) /*!< IWDG prescaler set to 256 */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup IWDG_Exported_Macros IWDG Exported Macros
* @{
*/
/**
* @brief Enable the IWDG peripheral.
* @param __HANDLE__ IWDG handle
* @retval None
*/
#define __HAL_IWDG_START(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_ENABLE)
/**
* @brief Reload IWDG counter with value defined in the reload register
* (write access to IWDG_PR and IWDG_RLR registers disabled).
* @param __HANDLE__ IWDG handle
* @retval None
*/
#define __HAL_IWDG_RELOAD_COUNTER(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_RELOAD)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup IWDG_Exported_Functions IWDG Exported Functions
* @{
*/
/** @defgroup IWDG_Exported_Functions_Group1 Initialization and Start functions
* @{
*/
/* Initialization/Start functions ********************************************/
HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg);
/**
* @}
*/
/** @defgroup IWDG_Exported_Functions_Group2 IO operation functions
* @{
*/
/* I/O operation functions ****************************************************/
HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg);
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup IWDG_Private_Constants IWDG Private Constants
* @{
*/
/**
* @brief IWDG Key Register BitMask
*/
#define IWDG_KEY_RELOAD 0x0000AAAAu /*!< IWDG Reload Counter Enable */
#define IWDG_KEY_ENABLE 0x0000CCCCu /*!< IWDG Peripheral Enable */
#define IWDG_KEY_WRITE_ACCESS_ENABLE 0x00005555u /*!< IWDG KR Write Access Enable */
#define IWDG_KEY_WRITE_ACCESS_DISABLE 0x00000000u /*!< IWDG KR Write Access Disable */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup IWDG_Private_Macros IWDG Private Macros
* @{
*/
/**
* @brief Enable write access to IWDG_PR and IWDG_RLR registers.
* @param __HANDLE__ IWDG handle
* @retval None
*/
#define IWDG_ENABLE_WRITE_ACCESS(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_WRITE_ACCESS_ENABLE)
/**
* @brief Disable write access to IWDG_PR and IWDG_RLR registers.
* @param __HANDLE__ IWDG handle
* @retval None
*/
#define IWDG_DISABLE_WRITE_ACCESS(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_WRITE_ACCESS_DISABLE)
/**
* @brief Check IWDG prescaler value.
* @param __PRESCALER__ IWDG prescaler value
* @retval None
*/
#define IS_IWDG_PRESCALER(__PRESCALER__) (((__PRESCALER__) == IWDG_PRESCALER_4) || \
((__PRESCALER__) == IWDG_PRESCALER_8) || \
((__PRESCALER__) == IWDG_PRESCALER_16) || \
((__PRESCALER__) == IWDG_PRESCALER_32) || \
((__PRESCALER__) == IWDG_PRESCALER_64) || \
((__PRESCALER__) == IWDG_PRESCALER_128)|| \
((__PRESCALER__) == IWDG_PRESCALER_256))
/**
* @brief Check IWDG reload value.
* @param __RELOAD__ IWDG reload value
* @retval None
*/
#define IS_IWDG_RELOAD(__RELOAD__) ((__RELOAD__) <= IWDG_RLR_RL)
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_IWDG_H */

View file

@ -0,0 +1,747 @@
/**
******************************************************************************
* @file stm32f1xx_hal_mmc.h
* @author MCD Application Team
* @brief Header file of MMC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_MMC_H
#define STM32F1xx_HAL_MMC_H
#if defined(SDIO)
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_sdmmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup MMC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup MMC_Exported_Types MMC Exported Types
* @{
*/
/** @defgroup MMC_Exported_Types_Group1 MMC State enumeration structure
* @{
*/
typedef enum
{
HAL_MMC_STATE_RESET = 0x00000000U, /*!< MMC not yet initialized or disabled */
HAL_MMC_STATE_READY = 0x00000001U, /*!< MMC initialized and ready for use */
HAL_MMC_STATE_TIMEOUT = 0x00000002U, /*!< MMC Timeout state */
HAL_MMC_STATE_BUSY = 0x00000003U, /*!< MMC process ongoing */
HAL_MMC_STATE_PROGRAMMING = 0x00000004U, /*!< MMC Programming State */
HAL_MMC_STATE_RECEIVING = 0x00000005U, /*!< MMC Receinving State */
HAL_MMC_STATE_TRANSFER = 0x00000006U, /*!< MMC Transfer State */
HAL_MMC_STATE_ERROR = 0x0000000FU /*!< MMC is in error state */
}HAL_MMC_StateTypeDef;
/**
* @}
*/
/** @defgroup MMC_Exported_Types_Group2 MMC Card State enumeration structure
* @{
*/
typedef uint32_t HAL_MMC_CardStateTypeDef;
#define HAL_MMC_CARD_READY 0x00000001U /*!< Card state is ready */
#define HAL_MMC_CARD_IDENTIFICATION 0x00000002U /*!< Card is in identification state */
#define HAL_MMC_CARD_STANDBY 0x00000003U /*!< Card is in standby state */
#define HAL_MMC_CARD_TRANSFER 0x00000004U /*!< Card is in transfer state */
#define HAL_MMC_CARD_SENDING 0x00000005U /*!< Card is sending an operation */
#define HAL_MMC_CARD_RECEIVING 0x00000006U /*!< Card is receiving operation information */
#define HAL_MMC_CARD_PROGRAMMING 0x00000007U /*!< Card is in programming state */
#define HAL_MMC_CARD_DISCONNECTED 0x00000008U /*!< Card is disconnected */
#define HAL_MMC_CARD_ERROR 0x000000FFU /*!< Card response Error */
/**
* @}
*/
/** @defgroup MMC_Exported_Types_Group3 MMC Handle Structure definition
* @{
*/
#define MMC_InitTypeDef SDIO_InitTypeDef
#define MMC_TypeDef SDIO_TypeDef
/**
* @brief MMC Card Information Structure definition
*/
typedef struct
{
uint32_t CardType; /*!< Specifies the card Type */
uint32_t Class; /*!< Specifies the class of the card class */
uint32_t RelCardAdd; /*!< Specifies the Relative Card Address */
uint32_t BlockNbr; /*!< Specifies the Card Capacity in blocks */
uint32_t BlockSize; /*!< Specifies one block size in bytes */
uint32_t LogBlockNbr; /*!< Specifies the Card logical Capacity in blocks */
uint32_t LogBlockSize; /*!< Specifies logical block size in bytes */
}HAL_MMC_CardInfoTypeDef;
/**
* @brief MMC handle Structure definition
*/
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
typedef struct __MMC_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_MMC_REGISTER_CALLBACKS */
{
MMC_TypeDef *Instance; /*!< MMC registers base address */
MMC_InitTypeDef Init; /*!< MMC required parameters */
HAL_LockTypeDef Lock; /*!< MMC locking object */
uint8_t *pTxBuffPtr; /*!< Pointer to MMC Tx transfer Buffer */
uint32_t TxXferSize; /*!< MMC Tx Transfer size */
uint8_t *pRxBuffPtr; /*!< Pointer to MMC Rx transfer Buffer */
uint32_t RxXferSize; /*!< MMC Rx Transfer size */
__IO uint32_t Context; /*!< MMC transfer context */
__IO HAL_MMC_StateTypeDef State; /*!< MMC card State */
__IO uint32_t ErrorCode; /*!< MMC Card Error codes */
DMA_HandleTypeDef *hdmarx; /*!< MMC Rx DMA handle parameters */
DMA_HandleTypeDef *hdmatx; /*!< MMC Tx DMA handle parameters */
HAL_MMC_CardInfoTypeDef MmcCard; /*!< MMC Card information */
uint32_t CSD[4U]; /*!< MMC card specific data table */
uint32_t CID[4U]; /*!< MMC card identification number table */
uint32_t Ext_CSD[128];
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
void (* TxCpltCallback) (struct __MMC_HandleTypeDef *hmmc);
void (* RxCpltCallback) (struct __MMC_HandleTypeDef *hmmc);
void (* ErrorCallback) (struct __MMC_HandleTypeDef *hmmc);
void (* AbortCpltCallback) (struct __MMC_HandleTypeDef *hmmc);
void (* MspInitCallback) (struct __MMC_HandleTypeDef *hmmc);
void (* MspDeInitCallback) (struct __MMC_HandleTypeDef *hmmc);
#endif
}MMC_HandleTypeDef;
/**
* @}
*/
/** @defgroup MMC_Exported_Types_Group4 Card Specific Data: CSD Register
* @{
*/
typedef struct
{
__IO uint8_t CSDStruct; /*!< CSD structure */
__IO uint8_t SysSpecVersion; /*!< System specification version */
__IO uint8_t Reserved1; /*!< Reserved */
__IO uint8_t TAAC; /*!< Data read access time 1 */
__IO uint8_t NSAC; /*!< Data read access time 2 in CLK cycles */
__IO uint8_t MaxBusClkFrec; /*!< Max. bus clock frequency */
__IO uint16_t CardComdClasses; /*!< Card command classes */
__IO uint8_t RdBlockLen; /*!< Max. read data block length */
__IO uint8_t PartBlockRead; /*!< Partial blocks for read allowed */
__IO uint8_t WrBlockMisalign; /*!< Write block misalignment */
__IO uint8_t RdBlockMisalign; /*!< Read block misalignment */
__IO uint8_t DSRImpl; /*!< DSR implemented */
__IO uint8_t Reserved2; /*!< Reserved */
__IO uint32_t DeviceSize; /*!< Device Size */
__IO uint8_t MaxRdCurrentVDDMin; /*!< Max. read current @ VDD min */
__IO uint8_t MaxRdCurrentVDDMax; /*!< Max. read current @ VDD max */
__IO uint8_t MaxWrCurrentVDDMin; /*!< Max. write current @ VDD min */
__IO uint8_t MaxWrCurrentVDDMax; /*!< Max. write current @ VDD max */
__IO uint8_t DeviceSizeMul; /*!< Device size multiplier */
__IO uint8_t EraseGrSize; /*!< Erase group size */
__IO uint8_t EraseGrMul; /*!< Erase group size multiplier */
__IO uint8_t WrProtectGrSize; /*!< Write protect group size */
__IO uint8_t WrProtectGrEnable; /*!< Write protect group enable */
__IO uint8_t ManDeflECC; /*!< Manufacturer default ECC */
__IO uint8_t WrSpeedFact; /*!< Write speed factor */
__IO uint8_t MaxWrBlockLen; /*!< Max. write data block length */
__IO uint8_t WriteBlockPaPartial; /*!< Partial blocks for write allowed */
__IO uint8_t Reserved3; /*!< Reserved */
__IO uint8_t ContentProtectAppli; /*!< Content protection application */
__IO uint8_t FileFormatGroup; /*!< File format group */
__IO uint8_t CopyFlag; /*!< Copy flag (OTP) */
__IO uint8_t PermWrProtect; /*!< Permanent write protection */
__IO uint8_t TempWrProtect; /*!< Temporary write protection */
__IO uint8_t FileFormat; /*!< File format */
__IO uint8_t ECC; /*!< ECC code */
__IO uint8_t CSD_CRC; /*!< CSD CRC */
__IO uint8_t Reserved4; /*!< Always 1 */
}HAL_MMC_CardCSDTypeDef;
/**
* @}
*/
/** @defgroup MMC_Exported_Types_Group5 Card Identification Data: CID Register
* @{
*/
typedef struct
{
__IO uint8_t ManufacturerID; /*!< Manufacturer ID */
__IO uint16_t OEM_AppliID; /*!< OEM/Application ID */
__IO uint32_t ProdName1; /*!< Product Name part1 */
__IO uint8_t ProdName2; /*!< Product Name part2 */
__IO uint8_t ProdRev; /*!< Product Revision */
__IO uint32_t ProdSN; /*!< Product Serial Number */
__IO uint8_t Reserved1; /*!< Reserved1 */
__IO uint16_t ManufactDate; /*!< Manufacturing Date */
__IO uint8_t CID_CRC; /*!< CID CRC */
__IO uint8_t Reserved2; /*!< Always 1 */
}HAL_MMC_CardCIDTypeDef;
/**
* @}
*/
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
/** @defgroup MMC_Exported_Types_Group6 MMC Callback ID enumeration definition
* @{
*/
typedef enum
{
HAL_MMC_TX_CPLT_CB_ID = 0x00U, /*!< MMC Tx Complete Callback ID */
HAL_MMC_RX_CPLT_CB_ID = 0x01U, /*!< MMC Rx Complete Callback ID */
HAL_MMC_ERROR_CB_ID = 0x02U, /*!< MMC Error Callback ID */
HAL_MMC_ABORT_CB_ID = 0x03U, /*!< MMC Abort Callback ID */
HAL_MMC_MSP_INIT_CB_ID = 0x10U, /*!< MMC MspInit Callback ID */
HAL_MMC_MSP_DEINIT_CB_ID = 0x11U /*!< MMC MspDeInit Callback ID */
}HAL_MMC_CallbackIDTypeDef;
/**
* @}
*/
/** @defgroup MMC_Exported_Types_Group7 MMC Callback pointer definition
* @{
*/
typedef void (*pMMC_CallbackTypeDef) (MMC_HandleTypeDef *hmmc);
/**
* @}
*/
#endif
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup MMC_Exported_Constants Exported Constants
* @{
*/
#define MMC_BLOCKSIZE 512U /*!< Block size is 512 bytes */
/** @defgroup MMC_Exported_Constansts_Group1 MMC Error status enumeration Structure definition
* @{
*/
#define HAL_MMC_ERROR_NONE SDMMC_ERROR_NONE /*!< No error */
#define HAL_MMC_ERROR_CMD_CRC_FAIL SDMMC_ERROR_CMD_CRC_FAIL /*!< Command response received (but CRC check failed) */
#define HAL_MMC_ERROR_DATA_CRC_FAIL SDMMC_ERROR_DATA_CRC_FAIL /*!< Data block sent/received (CRC check failed) */
#define HAL_MMC_ERROR_CMD_RSP_TIMEOUT SDMMC_ERROR_CMD_RSP_TIMEOUT /*!< Command response timeout */
#define HAL_MMC_ERROR_DATA_TIMEOUT SDMMC_ERROR_DATA_TIMEOUT /*!< Data timeout */
#define HAL_MMC_ERROR_TX_UNDERRUN SDMMC_ERROR_TX_UNDERRUN /*!< Transmit FIFO underrun */
#define HAL_MMC_ERROR_RX_OVERRUN SDMMC_ERROR_RX_OVERRUN /*!< Receive FIFO overrun */
#define HAL_MMC_ERROR_ADDR_MISALIGNED SDMMC_ERROR_ADDR_MISALIGNED /*!< Misaligned address */
#define HAL_MMC_ERROR_BLOCK_LEN_ERR SDMMC_ERROR_BLOCK_LEN_ERR /*!< Transferred block length is not allowed for the card or the
number of transferred bytes does not match the block length */
#define HAL_MMC_ERROR_ERASE_SEQ_ERR SDMMC_ERROR_ERASE_SEQ_ERR /*!< An error in the sequence of erase command occurs */
#define HAL_MMC_ERROR_BAD_ERASE_PARAM SDMMC_ERROR_BAD_ERASE_PARAM /*!< An invalid selection for erase groups */
#define HAL_MMC_ERROR_WRITE_PROT_VIOLATION SDMMC_ERROR_WRITE_PROT_VIOLATION /*!< Attempt to program a write protect block */
#define HAL_MMC_ERROR_LOCK_UNLOCK_FAILED SDMMC_ERROR_LOCK_UNLOCK_FAILED /*!< Sequence or password error has been detected in unlock
command or if there was an attempt to access a locked card */
#define HAL_MMC_ERROR_COM_CRC_FAILED SDMMC_ERROR_COM_CRC_FAILED /*!< CRC check of the previous command failed */
#define HAL_MMC_ERROR_ILLEGAL_CMD SDMMC_ERROR_ILLEGAL_CMD /*!< Command is not legal for the card state */
#define HAL_MMC_ERROR_CARD_ECC_FAILED SDMMC_ERROR_CARD_ECC_FAILED /*!< Card internal ECC was applied but failed to correct the data */
#define HAL_MMC_ERROR_CC_ERR SDMMC_ERROR_CC_ERR /*!< Internal card controller error */
#define HAL_MMC_ERROR_GENERAL_UNKNOWN_ERR SDMMC_ERROR_GENERAL_UNKNOWN_ERR /*!< General or unknown error */
#define HAL_MMC_ERROR_STREAM_READ_UNDERRUN SDMMC_ERROR_STREAM_READ_UNDERRUN /*!< The card could not sustain data reading in stream rmode */
#define HAL_MMC_ERROR_STREAM_WRITE_OVERRUN SDMMC_ERROR_STREAM_WRITE_OVERRUN /*!< The card could not sustain data programming in stream mode */
#define HAL_MMC_ERROR_CID_CSD_OVERWRITE SDMMC_ERROR_CID_CSD_OVERWRITE /*!< CID/CSD overwrite error */
#define HAL_MMC_ERROR_WP_ERASE_SKIP SDMMC_ERROR_WP_ERASE_SKIP /*!< Only partial address space was erased */
#define HAL_MMC_ERROR_CARD_ECC_DISABLED SDMMC_ERROR_CARD_ECC_DISABLED /*!< Command has been executed without using internal ECC */
#define HAL_MMC_ERROR_ERASE_RESET SDMMC_ERROR_ERASE_RESET /*!< Erase sequence was cleared before executing because an out
of erase sequence command was received */
#define HAL_MMC_ERROR_AKE_SEQ_ERR SDMMC_ERROR_AKE_SEQ_ERR /*!< Error in sequence of authentication */
#define HAL_MMC_ERROR_INVALID_VOLTRANGE SDMMC_ERROR_INVALID_VOLTRANGE /*!< Error in case of invalid voltage range */
#define HAL_MMC_ERROR_ADDR_OUT_OF_RANGE SDMMC_ERROR_ADDR_OUT_OF_RANGE /*!< Error when addressed block is out of range */
#define HAL_MMC_ERROR_REQUEST_NOT_APPLICABLE SDMMC_ERROR_REQUEST_NOT_APPLICABLE /*!< Error when command request is not applicable */
#define HAL_MMC_ERROR_PARAM SDMMC_ERROR_INVALID_PARAMETER /*!< the used parameter is not valid */
#define HAL_MMC_ERROR_UNSUPPORTED_FEATURE SDMMC_ERROR_UNSUPPORTED_FEATURE /*!< Error when feature is not insupported */
#define HAL_MMC_ERROR_BUSY SDMMC_ERROR_BUSY /*!< Error when transfer process is busy */
#define HAL_MMC_ERROR_DMA SDMMC_ERROR_DMA /*!< Error while DMA transfer */
#define HAL_MMC_ERROR_TIMEOUT SDMMC_ERROR_TIMEOUT /*!< Timeout error */
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
#define HAL_MMC_ERROR_INVALID_CALLBACK SDMMC_ERROR_INVALID_PARAMETER /*!< Invalid callback error */
#endif
/**
* @}
*/
/** @defgroup MMC_Exported_Constansts_Group2 MMC context enumeration
* @{
*/
#define MMC_CONTEXT_NONE 0x00000000U /*!< None */
#define MMC_CONTEXT_READ_SINGLE_BLOCK 0x00000001U /*!< Read single block operation */
#define MMC_CONTEXT_READ_MULTIPLE_BLOCK 0x00000002U /*!< Read multiple blocks operation */
#define MMC_CONTEXT_WRITE_SINGLE_BLOCK 0x00000010U /*!< Write single block operation */
#define MMC_CONTEXT_WRITE_MULTIPLE_BLOCK 0x00000020U /*!< Write multiple blocks operation */
#define MMC_CONTEXT_IT 0x00000008U /*!< Process in Interrupt mode */
#define MMC_CONTEXT_DMA 0x00000080U /*!< Process in DMA mode */
/**
* @}
*/
/** @defgroup MMC_Exported_Constansts_Group3 MMC Voltage mode
* @{
*/
/**
* @brief
*/
#define MMC_HIGH_VOLTAGE_RANGE 0x80FF8000U /*!< High voltage in byte mode */
#define MMC_DUAL_VOLTAGE_RANGE 0x80FF8080U /*!< Dual voltage in byte mode */
#define MMC_LOW_VOLTAGE_RANGE 0x80000080U /*!< Low voltage in byte mode */
#define EMMC_HIGH_VOLTAGE_RANGE 0xC0FF8000U /*!< High voltage in sector mode */
#define EMMC_DUAL_VOLTAGE_RANGE 0xC0FF8080U /*!< Dual voltage in sector mode */
#define EMMC_LOW_VOLTAGE_RANGE 0xC0000080U /*!< Low voltage in sector mode */
#define MMC_INVALID_VOLTAGE_RANGE 0x0001FF01U
/**
* @}
*/
/** @defgroup MMC_Exported_Constansts_Group4 MMC Memory Cards
* @{
*/
#define MMC_LOW_CAPACITY_CARD 0x00000000U /*!< MMC Card Capacity <=2Gbytes */
#define MMC_HIGH_CAPACITY_CARD 0x00000001U /*!< MMC Card Capacity >2Gbytes and <2Tbytes */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup MMC_Exported_macros MMC Exported Macros
* @brief macros to handle interrupts and specific clock configurations
* @{
*/
/** @brief Reset MMC handle state.
* @param __HANDLE__ : MMC handle.
* @retval None
*/
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
#define __HAL_MMC_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_MMC_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_MMC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_MMC_STATE_RESET)
#endif
/**
* @brief Enable the MMC device.
* @retval None
*/
#define __HAL_MMC_ENABLE(__HANDLE__) __SDIO_ENABLE((__HANDLE__)->Instance)
/**
* @brief Disable the MMC device.
* @retval None
*/
#define __HAL_MMC_DISABLE(__HANDLE__) __SDIO_DISABLE((__HANDLE__)->Instance)
/**
* @brief Enable the SDMMC DMA transfer.
* @retval None
*/
#define __HAL_MMC_DMA_ENABLE(__HANDLE__) __SDIO_DMA_ENABLE((__HANDLE__)->Instance)
/**
* @brief Disable the SDMMC DMA transfer.
* @retval None
*/
#define __HAL_MMC_DMA_DISABLE(__HANDLE__) __SDIO_DMA_DISABLE((__HANDLE__)->Instance)
/**
* @brief Enable the MMC device interrupt.
* @param __HANDLE__: MMC Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt sources to be enabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @retval None
*/
#define __HAL_MMC_ENABLE_IT(__HANDLE__, __INTERRUPT__) __SDIO_ENABLE_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Disable the MMC device interrupt.
* @param __HANDLE__: MMC Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt sources to be disabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @retval None
*/
#define __HAL_MMC_DISABLE_IT(__HANDLE__, __INTERRUPT__) __SDIO_DISABLE_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Check whether the specified MMC flag is set or not.
* @param __HANDLE__: MMC Handle
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, DATACOUNT, is zero)
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_CMDACT: Command transfer in progress
* @arg SDIO_FLAG_TXACT: Data transmit in progress
* @arg SDIO_FLAG_RXACT: Data receive in progress
* @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty
* @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full
* @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full
* @arg SDIO_FLAG_RXFIFOF: Receive FIFO full
* @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty
* @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty
* @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO
* @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
* @retval The new state of MMC FLAG (SET or RESET).
*/
#define __HAL_MMC_GET_FLAG(__HANDLE__, __FLAG__) __SDIO_GET_FLAG((__HANDLE__)->Instance, (__FLAG__))
/**
* @brief Clear the MMC's pending flags.
* @param __HANDLE__: MMC Handle
* @param __FLAG__: specifies the flag to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, DATACOUNT, is zero)
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
* @retval None
*/
#define __HAL_MMC_CLEAR_FLAG(__HANDLE__, __FLAG__) __SDIO_CLEAR_FLAG((__HANDLE__)->Instance, (__FLAG__))
/**
* @brief Check whether the specified MMC interrupt has occurred or not.
* @param __HANDLE__: MMC Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt source to check.
* This parameter can be one of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @retval The new state of MMC IT (SET or RESET).
*/
#define __HAL_MMC_GET_IT(__HANDLE__, __INTERRUPT__) __SDIO_GET_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Clear the MMC's interrupt pending bits.
* @param __HANDLE__: MMC Handle
* @param __INTERRUPT__: specifies the interrupt pending bit to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @retval None
*/
#define __HAL_MMC_CLEAR_IT(__HANDLE__, __INTERRUPT__) __SDIO_CLEAR_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup MMC_Exported_Functions MMC Exported Functions
* @{
*/
/** @defgroup MMC_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
HAL_StatusTypeDef HAL_MMC_Init(MMC_HandleTypeDef *hmmc);
HAL_StatusTypeDef HAL_MMC_InitCard(MMC_HandleTypeDef *hmmc);
HAL_StatusTypeDef HAL_MMC_DeInit (MMC_HandleTypeDef *hmmc);
void HAL_MMC_MspInit(MMC_HandleTypeDef *hmmc);
void HAL_MMC_MspDeInit(MMC_HandleTypeDef *hmmc);
/**
* @}
*/
/** @defgroup MMC_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_MMC_ReadBlocks(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout);
HAL_StatusTypeDef HAL_MMC_WriteBlocks(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout);
HAL_StatusTypeDef HAL_MMC_Erase(MMC_HandleTypeDef *hmmc, uint32_t BlockStartAdd, uint32_t BlockEndAdd);
/* Non-Blocking mode: IT */
HAL_StatusTypeDef HAL_MMC_ReadBlocks_IT(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
HAL_StatusTypeDef HAL_MMC_WriteBlocks_IT(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_MMC_ReadBlocks_DMA(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
HAL_StatusTypeDef HAL_MMC_WriteBlocks_DMA(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
void HAL_MMC_IRQHandler(MMC_HandleTypeDef *hmmc);
/* Callback in non blocking modes (DMA) */
void HAL_MMC_TxCpltCallback(MMC_HandleTypeDef *hmmc);
void HAL_MMC_RxCpltCallback(MMC_HandleTypeDef *hmmc);
void HAL_MMC_ErrorCallback(MMC_HandleTypeDef *hmmc);
void HAL_MMC_AbortCallback(MMC_HandleTypeDef *hmmc);
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
/* MMC callback registering/unregistering */
HAL_StatusTypeDef HAL_MMC_RegisterCallback (MMC_HandleTypeDef *hmmc, HAL_MMC_CallbackIDTypeDef CallbackId, pMMC_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_MMC_UnRegisterCallback(MMC_HandleTypeDef *hmmc, HAL_MMC_CallbackIDTypeDef CallbackId);
#endif
/**
* @}
*/
/** @defgroup MMC_Exported_Functions_Group3 Peripheral Control functions
* @{
*/
HAL_StatusTypeDef HAL_MMC_ConfigWideBusOperation(MMC_HandleTypeDef *hmmc, uint32_t WideMode);
/**
* @}
*/
/** @defgroup MMC_Exported_Functions_Group4 MMC card related functions
* @{
*/
HAL_MMC_CardStateTypeDef HAL_MMC_GetCardState(MMC_HandleTypeDef *hmmc);
HAL_StatusTypeDef HAL_MMC_GetCardCID(MMC_HandleTypeDef *hmmc, HAL_MMC_CardCIDTypeDef *pCID);
HAL_StatusTypeDef HAL_MMC_GetCardCSD(MMC_HandleTypeDef *hmmc, HAL_MMC_CardCSDTypeDef *pCSD);
HAL_StatusTypeDef HAL_MMC_GetCardInfo(MMC_HandleTypeDef *hmmc, HAL_MMC_CardInfoTypeDef *pCardInfo);
HAL_StatusTypeDef HAL_MMC_GetCardExtCSD(MMC_HandleTypeDef *hmmc, uint32_t *pExtCSD, uint32_t Timeout);
/**
* @}
*/
/** @defgroup MMC_Exported_Functions_Group5 Peripheral State and Errors functions
* @{
*/
HAL_MMC_StateTypeDef HAL_MMC_GetState(MMC_HandleTypeDef *hmmc);
uint32_t HAL_MMC_GetError(MMC_HandleTypeDef *hmmc);
/**
* @}
*/
/** @defgroup MMC_Exported_Functions_Group6 Peripheral Abort management
* @{
*/
HAL_StatusTypeDef HAL_MMC_Abort(MMC_HandleTypeDef *hmmc);
HAL_StatusTypeDef HAL_MMC_Abort_IT(MMC_HandleTypeDef *hmmc);
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/** @defgroup MMC_Private_Types MMC Private Types
* @{
*/
/**
* @}
*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup MMC_Private_Defines MMC Private Defines
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup MMC_Private_Variables MMC Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup MMC_Private_Constants MMC Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup MMC_Private_Macros MMC Private Macros
* @{
*/
/**
* @}
*/
/* Private functions prototypes ----------------------------------------------*/
/** @defgroup MMC_Private_Functions_Prototypes MMC Private Functions Prototypes
* @{
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup MMC_Private_Functions MMC Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* SDIO */
#endif /* STM32F1xx_HAL_MMC_H */

View file

@ -0,0 +1,379 @@
/**
******************************************************************************
* @file stm32f1xx_hal_nand.h
* @author MCD Application Team
* @brief Header file of NAND HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_NAND_H
#define STM32F1xx_HAL_NAND_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(FSMC_BANK3)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_fsmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup NAND
* @{
*/
/* Exported typedef ----------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup NAND_Exported_Types NAND Exported Types
* @{
*/
/**
* @brief HAL NAND State structures definition
*/
typedef enum
{
HAL_NAND_STATE_RESET = 0x00U, /*!< NAND not yet initialized or disabled */
HAL_NAND_STATE_READY = 0x01U, /*!< NAND initialized and ready for use */
HAL_NAND_STATE_BUSY = 0x02U, /*!< NAND internal process is ongoing */
HAL_NAND_STATE_ERROR = 0x03U /*!< NAND error state */
} HAL_NAND_StateTypeDef;
/**
* @brief NAND Memory electronic signature Structure definition
*/
typedef struct
{
/*<! NAND memory electronic signature maker and device IDs */
uint8_t Maker_Id;
uint8_t Device_Id;
uint8_t Third_Id;
uint8_t Fourth_Id;
} NAND_IDTypeDef;
/**
* @brief NAND Memory address Structure definition
*/
typedef struct
{
uint16_t Page; /*!< NAND memory Page address */
uint16_t Plane; /*!< NAND memory Zone address */
uint16_t Block; /*!< NAND memory Block address */
} NAND_AddressTypeDef;
/**
* @brief NAND Memory info Structure definition
*/
typedef struct
{
uint32_t PageSize; /*!< NAND memory page (without spare area) size measured in bytes
for 8 bits addressing or words for 16 bits addressing */
uint32_t SpareAreaSize; /*!< NAND memory spare area size measured in bytes
for 8 bits addressing or words for 16 bits addressing */
uint32_t BlockSize; /*!< NAND memory block size measured in number of pages */
uint32_t BlockNbr; /*!< NAND memory number of total blocks */
uint32_t PlaneNbr; /*!< NAND memory number of planes */
uint32_t PlaneSize; /*!< NAND memory zone size measured in number of blocks */
FunctionalState ExtraCommandEnable; /*!< NAND extra command needed for Page reading mode. This
parameter is mandatory for some NAND parts after the read
command (NAND_CMD_AREA_TRUE1) and before DATA reading sequence.
This parameter could be ENABLE or DISABLE
Please check the Read Mode sequence in the NAND device datasheet */
} NAND_DeviceConfigTypeDef;
/**
* @brief NAND handle Structure definition
*/
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
typedef struct __NAND_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */
{
FSMC_NAND_TypeDef *Instance; /*!< Register base address */
FSMC_NAND_InitTypeDef Init; /*!< NAND device control configuration parameters */
HAL_LockTypeDef Lock; /*!< NAND locking object */
__IO HAL_NAND_StateTypeDef State; /*!< NAND device access state */
NAND_DeviceConfigTypeDef Config; /*!< NAND physical characteristic information structure */
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
void (* MspInitCallback)(struct __NAND_HandleTypeDef *hnand); /*!< NAND Msp Init callback */
void (* MspDeInitCallback)(struct __NAND_HandleTypeDef *hnand); /*!< NAND Msp DeInit callback */
void (* ItCallback)(struct __NAND_HandleTypeDef *hnand); /*!< NAND IT callback */
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */
} NAND_HandleTypeDef;
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
/**
* @brief HAL NAND Callback ID enumeration definition
*/
typedef enum
{
HAL_NAND_MSP_INIT_CB_ID = 0x00U, /*!< NAND MspInit Callback ID */
HAL_NAND_MSP_DEINIT_CB_ID = 0x01U, /*!< NAND MspDeInit Callback ID */
HAL_NAND_IT_CB_ID = 0x02U /*!< NAND IT Callback ID */
} HAL_NAND_CallbackIDTypeDef;
/**
* @brief HAL NAND Callback pointer definition
*/
typedef void (*pNAND_CallbackTypeDef)(NAND_HandleTypeDef *hnand);
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup NAND_Exported_Macros NAND Exported Macros
* @{
*/
/** @brief Reset NAND handle state
* @param __HANDLE__ specifies the NAND handle.
* @retval None
*/
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
#define __HAL_NAND_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_NAND_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_NAND_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_NAND_STATE_RESET)
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup NAND_Exported_Functions NAND Exported Functions
* @{
*/
/** @addtogroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FSMC_NAND_PCC_TimingTypeDef *ComSpace_Timing,
FSMC_NAND_PCC_TimingTypeDef *AttSpace_Timing);
HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand);
HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig);
HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID);
void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand);
void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand);
void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand);
void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand);
/**
* @}
*/
/** @addtogroup NAND_Exported_Functions_Group2 Input and Output functions
* @{
*/
/* IO operation functions ****************************************************/
HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand);
HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
uint8_t *pBuffer, uint32_t NumPageToRead);
HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
const uint8_t *pBuffer, uint32_t NumPageToWrite);
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
uint8_t *pBuffer, uint32_t NumSpareAreaToRead);
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
const uint8_t *pBuffer, uint32_t NumSpareAreaTowrite);
HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
uint16_t *pBuffer, uint32_t NumPageToRead);
HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
const uint16_t *pBuffer, uint32_t NumPageToWrite);
HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
uint16_t *pBuffer, uint32_t NumSpareAreaToRead);
HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress,
const uint16_t *pBuffer, uint32_t NumSpareAreaTowrite);
HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress);
uint32_t HAL_NAND_Address_Inc(const NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress);
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
/* NAND callback registering/unregistering */
HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId,
pNAND_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId);
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup NAND_Exported_Functions_Group3 Peripheral Control functions
* @{
*/
/* NAND Control functions ****************************************************/
HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand);
HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand);
HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout);
/**
* @}
*/
/** @addtogroup NAND_Exported_Functions_Group4 Peripheral State functions
* @{
*/
/* NAND State functions *******************************************************/
HAL_NAND_StateTypeDef HAL_NAND_GetState(const NAND_HandleTypeDef *hnand);
uint32_t HAL_NAND_Read_Status(const NAND_HandleTypeDef *hnand);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup NAND_Private_Constants NAND Private Constants
* @{
*/
#define NAND_DEVICE1 0x70000000UL
#define NAND_DEVICE2 0x80000000UL
#define NAND_WRITE_TIMEOUT 0x01000000UL
#define CMD_AREA (1UL<<16U) /* A16 = CLE high */
#define ADDR_AREA (1UL<<17U) /* A17 = ALE high */
#define NAND_CMD_AREA_A ((uint8_t)0x00)
#define NAND_CMD_AREA_B ((uint8_t)0x01)
#define NAND_CMD_AREA_C ((uint8_t)0x50)
#define NAND_CMD_AREA_TRUE1 ((uint8_t)0x30)
#define NAND_CMD_WRITE0 ((uint8_t)0x80)
#define NAND_CMD_WRITE_TRUE1 ((uint8_t)0x10)
#define NAND_CMD_ERASE0 ((uint8_t)0x60)
#define NAND_CMD_ERASE1 ((uint8_t)0xD0)
#define NAND_CMD_READID ((uint8_t)0x90)
#define NAND_CMD_STATUS ((uint8_t)0x70)
#define NAND_CMD_LOCK_STATUS ((uint8_t)0x7A)
#define NAND_CMD_RESET ((uint8_t)0xFF)
/* NAND memory status */
#define NAND_VALID_ADDRESS 0x00000100UL
#define NAND_INVALID_ADDRESS 0x00000200UL
#define NAND_TIMEOUT_ERROR 0x00000400UL
#define NAND_BUSY 0x00000000UL
#define NAND_ERROR 0x00000001UL
#define NAND_READY 0x00000040UL
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup NAND_Private_Macros NAND Private Macros
* @{
*/
/**
* @brief NAND memory address computation.
* @param __ADDRESS__ NAND memory address.
* @param __HANDLE__ NAND handle.
* @retval NAND Raw address value
*/
#define ARRAY_ADDRESS(__ADDRESS__ , __HANDLE__) ((__ADDRESS__)->Page + \
(((__ADDRESS__)->Block + \
(((__ADDRESS__)->Plane) * \
((__HANDLE__)->Config.PlaneSize))) * \
((__HANDLE__)->Config.BlockSize)))
/**
* @brief NAND memory Column address computation.
* @param __HANDLE__ NAND handle.
* @retval NAND Raw address value
*/
#define COLUMN_ADDRESS( __HANDLE__) ((__HANDLE__)->Config.PageSize)
/**
* @brief NAND memory address cycling.
* @param __ADDRESS__ NAND memory address.
* @retval NAND address cycling value.
*/
#define ADDR_1ST_CYCLE(__ADDRESS__) (uint8_t)(__ADDRESS__) /* 1st addressing cycle */
#define ADDR_2ND_CYCLE(__ADDRESS__) (uint8_t)((__ADDRESS__) >> 8) /* 2nd addressing cycle */
#define ADDR_3RD_CYCLE(__ADDRESS__) (uint8_t)((__ADDRESS__) >> 16) /* 3rd addressing cycle */
#define ADDR_4TH_CYCLE(__ADDRESS__) (uint8_t)((__ADDRESS__) >> 24) /* 4th addressing cycle */
/**
* @brief NAND memory Columns cycling.
* @param __ADDRESS__ NAND memory address.
* @retval NAND Column address cycling value.
*/
#define COLUMN_1ST_CYCLE(__ADDRESS__) (uint8_t)((__ADDRESS__) & 0xFFU) /* 1st Column addressing cycle */
#define COLUMN_2ND_CYCLE(__ADDRESS__) (uint8_t)((__ADDRESS__) >> 8) /* 2nd Column addressing cycle */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK3 */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_NAND_H */

View file

@ -0,0 +1,326 @@
/**
******************************************************************************
* @file stm32f1xx_hal_nor.h
* @author MCD Application Team
* @brief Header file of NOR HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_NOR_H
#define STM32F1xx_HAL_NOR_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(FSMC_BANK1)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_fsmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup NOR
* @{
*/
/* Exported typedef ----------------------------------------------------------*/
/** @defgroup NOR_Exported_Types NOR Exported Types
* @{
*/
/**
* @brief HAL SRAM State structures definition
*/
typedef enum
{
HAL_NOR_STATE_RESET = 0x00U, /*!< NOR not yet initialized or disabled */
HAL_NOR_STATE_READY = 0x01U, /*!< NOR initialized and ready for use */
HAL_NOR_STATE_BUSY = 0x02U, /*!< NOR internal processing is ongoing */
HAL_NOR_STATE_ERROR = 0x03U, /*!< NOR error state */
HAL_NOR_STATE_PROTECTED = 0x04U /*!< NOR NORSRAM device write protected */
} HAL_NOR_StateTypeDef;
/**
* @brief FSMC NOR Status typedef
*/
typedef enum
{
HAL_NOR_STATUS_SUCCESS = 0U,
HAL_NOR_STATUS_ONGOING,
HAL_NOR_STATUS_ERROR,
HAL_NOR_STATUS_TIMEOUT
} HAL_NOR_StatusTypeDef;
/**
* @brief FSMC NOR ID typedef
*/
typedef struct
{
uint16_t Manufacturer_Code; /*!< Defines the device's manufacturer code used to identify the memory */
uint16_t Device_Code1;
uint16_t Device_Code2;
uint16_t Device_Code3; /*!< Defines the device's codes used to identify the memory.
These codes can be accessed by performing read operations with specific
control signals and addresses set.They can also be accessed by issuing
an Auto Select command */
} NOR_IDTypeDef;
/**
* @brief FSMC NOR CFI typedef
*/
typedef struct
{
/*!< Defines the information stored in the memory's Common flash interface
which contains a description of various electrical and timing parameters,
density information and functions supported by the memory */
uint16_t CFI_1;
uint16_t CFI_2;
uint16_t CFI_3;
uint16_t CFI_4;
} NOR_CFITypeDef;
/**
* @brief NOR handle Structure definition
*/
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
typedef struct __NOR_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_NOR_REGISTER_CALLBACKS */
{
FSMC_NORSRAM_TypeDef *Instance; /*!< Register base address */
FSMC_NORSRAM_EXTENDED_TypeDef *Extended; /*!< Extended mode register base address */
FSMC_NORSRAM_InitTypeDef Init; /*!< NOR device control configuration parameters */
HAL_LockTypeDef Lock; /*!< NOR locking object */
__IO HAL_NOR_StateTypeDef State; /*!< NOR device access state */
uint32_t CommandSet; /*!< NOR algorithm command set and control */
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
void (* MspInitCallback)(struct __NOR_HandleTypeDef *hnor); /*!< NOR Msp Init callback */
void (* MspDeInitCallback)(struct __NOR_HandleTypeDef *hnor); /*!< NOR Msp DeInit callback */
#endif /* USE_HAL_NOR_REGISTER_CALLBACKS */
} NOR_HandleTypeDef;
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
/**
* @brief HAL NOR Callback ID enumeration definition
*/
typedef enum
{
HAL_NOR_MSP_INIT_CB_ID = 0x00U, /*!< NOR MspInit Callback ID */
HAL_NOR_MSP_DEINIT_CB_ID = 0x01U /*!< NOR MspDeInit Callback ID */
} HAL_NOR_CallbackIDTypeDef;
/**
* @brief HAL NOR Callback pointer definition
*/
typedef void (*pNOR_CallbackTypeDef)(NOR_HandleTypeDef *hnor);
#endif /* USE_HAL_NOR_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup NOR_Exported_Macros NOR Exported Macros
* @{
*/
/** @brief Reset NOR handle state
* @param __HANDLE__ specifies the NOR handle.
* @retval None
*/
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
#define __HAL_NOR_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_NOR_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_NOR_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_NOR_STATE_RESET)
#endif /* USE_HAL_NOR_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup NOR_Exported_Functions NOR Exported Functions
* @{
*/
/** @addtogroup NOR_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_NOR_Init(NOR_HandleTypeDef *hnor, FSMC_NORSRAM_TimingTypeDef *Timing,
FSMC_NORSRAM_TimingTypeDef *ExtTiming);
HAL_StatusTypeDef HAL_NOR_DeInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout);
/**
* @}
*/
/** @addtogroup NOR_Exported_Functions_Group2 Input and Output functions
* @{
*/
/* I/O operation functions ***************************************************/
HAL_StatusTypeDef HAL_NOR_Read_ID(NOR_HandleTypeDef *hnor, NOR_IDTypeDef *pNOR_ID);
HAL_StatusTypeDef HAL_NOR_ReturnToReadMode(NOR_HandleTypeDef *hnor);
HAL_StatusTypeDef HAL_NOR_Read(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData);
HAL_StatusTypeDef HAL_NOR_Program(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData);
HAL_StatusTypeDef HAL_NOR_ReadBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData,
uint32_t uwBufferSize);
HAL_StatusTypeDef HAL_NOR_ProgramBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData,
uint32_t uwBufferSize);
HAL_StatusTypeDef HAL_NOR_Erase_Block(NOR_HandleTypeDef *hnor, uint32_t BlockAddress, uint32_t Address);
HAL_StatusTypeDef HAL_NOR_Erase_Chip(NOR_HandleTypeDef *hnor, uint32_t Address);
HAL_StatusTypeDef HAL_NOR_Read_CFI(NOR_HandleTypeDef *hnor, NOR_CFITypeDef *pNOR_CFI);
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
/* NOR callback registering/unregistering */
HAL_StatusTypeDef HAL_NOR_RegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_CallbackIDTypeDef CallbackId,
pNOR_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_NOR_UnRegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_CallbackIDTypeDef CallbackId);
#endif /* USE_HAL_NOR_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup NOR_Exported_Functions_Group3 NOR Control functions
* @{
*/
/* NOR Control functions *****************************************************/
HAL_StatusTypeDef HAL_NOR_WriteOperation_Enable(NOR_HandleTypeDef *hnor);
HAL_StatusTypeDef HAL_NOR_WriteOperation_Disable(NOR_HandleTypeDef *hnor);
/**
* @}
*/
/** @addtogroup NOR_Exported_Functions_Group4 NOR State functions
* @{
*/
/* NOR State functions ********************************************************/
HAL_NOR_StateTypeDef HAL_NOR_GetState(const NOR_HandleTypeDef *hnor);
HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup NOR_Private_Constants NOR Private Constants
* @{
*/
/* NOR device IDs addresses */
#define MC_ADDRESS ((uint16_t)0x0000)
#define DEVICE_CODE1_ADDR ((uint16_t)0x0001)
#define DEVICE_CODE2_ADDR ((uint16_t)0x000E)
#define DEVICE_CODE3_ADDR ((uint16_t)0x000F)
/* NOR CFI IDs addresses */
#define CFI1_ADDRESS ((uint16_t)0x0061)
#define CFI2_ADDRESS ((uint16_t)0x0062)
#define CFI3_ADDRESS ((uint16_t)0x0063)
#define CFI4_ADDRESS ((uint16_t)0x0064)
/* NOR operation wait timeout */
#define NOR_TMEOUT ((uint16_t)0xFFFF)
/* NOR memory data width */
#define NOR_MEMORY_8B ((uint8_t)0x00)
#define NOR_MEMORY_16B ((uint8_t)0x01)
/* NOR memory device read/write start address */
#define NOR_MEMORY_ADRESS1 (0x60000000U)
#define NOR_MEMORY_ADRESS2 (0x64000000U)
#define NOR_MEMORY_ADRESS3 (0x68000000U)
#define NOR_MEMORY_ADRESS4 (0x6C000000U)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup NOR_Private_Macros NOR Private Macros
* @{
*/
/**
* @brief NOR memory address shifting.
* @param __NOR_ADDRESS NOR base address
* @param __NOR_MEMORY_WIDTH_ NOR memory width
* @param __ADDRESS__ NOR memory address
* @retval NOR shifted address value
*/
#define NOR_ADDR_SHIFT(__NOR_ADDRESS, __NOR_MEMORY_WIDTH_, __ADDRESS__) \
((uint32_t)(((__NOR_MEMORY_WIDTH_) == NOR_MEMORY_16B)? \
((uint32_t)((__NOR_ADDRESS) + (2U * (__ADDRESS__)))): \
((uint32_t)((__NOR_ADDRESS) + (__ADDRESS__)))))
/**
* @brief NOR memory write data to specified address.
* @param __ADDRESS__ NOR memory address
* @param __DATA__ Data to write
* @retval None
*/
#define NOR_WRITE(__ADDRESS__, __DATA__) do{ \
(*(__IO uint16_t *)((uint32_t)(__ADDRESS__)) = (__DATA__)); \
__DSB(); \
} while(0)
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK1 */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_NOR_H */

View file

@ -0,0 +1,281 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pccard.h
* @author MCD Application Team
* @brief Header file of PCCARD HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_PCCARD_H
#define STM32F1xx_HAL_PCCARD_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(FSMC_BANK4)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_fsmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup PCCARD
* @{
*/
/* Exported typedef ----------------------------------------------------------*/
/** @defgroup PCCARD_Exported_Types PCCARD Exported Types
* @{
*/
/**
* @brief HAL PCCARD State structures definition
*/
typedef enum
{
HAL_PCCARD_STATE_RESET = 0x00U, /*!< PCCARD peripheral not yet initialized or disabled */
HAL_PCCARD_STATE_READY = 0x01U, /*!< PCCARD peripheral ready */
HAL_PCCARD_STATE_BUSY = 0x02U, /*!< PCCARD peripheral busy */
HAL_PCCARD_STATE_ERROR = 0x04U /*!< PCCARD peripheral error */
} HAL_PCCARD_StateTypeDef;
typedef enum
{
HAL_PCCARD_STATUS_SUCCESS = 0U,
HAL_PCCARD_STATUS_ONGOING,
HAL_PCCARD_STATUS_ERROR,
HAL_PCCARD_STATUS_TIMEOUT
} HAL_PCCARD_StatusTypeDef;
/**
* @brief FSMC_PCCARD handle Structure definition
*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
typedef struct __PCCARD_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_PCCARD_REGISTER_CALLBACKS */
{
FSMC_PCCARD_TypeDef *Instance; /*!< Register base address for PCCARD device */
FSMC_PCCARD_InitTypeDef Init; /*!< PCCARD device control configuration parameters */
__IO HAL_PCCARD_StateTypeDef State; /*!< PCCARD device access state */
HAL_LockTypeDef Lock; /*!< PCCARD Lock */
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
void (* MspInitCallback)(struct __PCCARD_HandleTypeDef *hpccard); /*!< PCCARD Msp Init callback */
void (* MspDeInitCallback)(struct __PCCARD_HandleTypeDef *hpccard); /*!< PCCARD Msp DeInit callback */
void (* ItCallback)(struct __PCCARD_HandleTypeDef *hpccard); /*!< PCCARD IT callback */
#endif
} PCCARD_HandleTypeDef;
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
/**
* @brief HAL PCCARD Callback ID enumeration definition
*/
typedef enum
{
HAL_PCCARD_MSP_INIT_CB_ID = 0x00U, /*!< PCCARD MspInit Callback ID */
HAL_PCCARD_MSP_DEINIT_CB_ID = 0x01U, /*!< PCCARD MspDeInit Callback ID */
HAL_PCCARD_IT_CB_ID = 0x02U /*!< PCCARD IT Callback ID */
} HAL_PCCARD_CallbackIDTypeDef;
/**
* @brief HAL PCCARD Callback pointer definition
*/
typedef void (*pPCCARD_CallbackTypeDef)(PCCARD_HandleTypeDef *hpccard);
#endif
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup PCCARD_Exported_Macros PCCARD Exported Macros
* @{
*/
/** @brief Reset PCCARD handle state
* @param __HANDLE__ specifies the PCCARD handle.
* @retval None
*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
#define __HAL_PCCARD_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_PCCARD_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_PCCARD_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_PCCARD_STATE_RESET)
#endif
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PCCARD_Exported_Functions
* @{
*/
/** @addtogroup PCCARD_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_PCCARD_Init(PCCARD_HandleTypeDef *hpccard, FSMC_NAND_PCC_TimingTypeDef *ComSpaceTiming,
FSMC_NAND_PCC_TimingTypeDef *AttSpaceTiming, FSMC_NAND_PCC_TimingTypeDef *IOSpaceTiming);
HAL_StatusTypeDef HAL_PCCARD_DeInit(PCCARD_HandleTypeDef *hpccard);
void HAL_PCCARD_MspInit(PCCARD_HandleTypeDef *hpccard);
void HAL_PCCARD_MspDeInit(PCCARD_HandleTypeDef *hpccard);
/**
* @}
*/
/** @addtogroup PCCARD_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_PCCARD_Read_ID(PCCARD_HandleTypeDef *hpccard, uint8_t CompactFlash_ID[], uint8_t *pStatus);
HAL_StatusTypeDef HAL_PCCARD_Write_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress,
uint8_t *pStatus);
HAL_StatusTypeDef HAL_PCCARD_Read_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress,
uint8_t *pStatus);
HAL_StatusTypeDef HAL_PCCARD_Erase_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t SectorAddress, uint8_t *pStatus);
HAL_StatusTypeDef HAL_PCCARD_Reset(PCCARD_HandleTypeDef *hpccard);
void HAL_PCCARD_IRQHandler(PCCARD_HandleTypeDef *hpccard);
void HAL_PCCARD_ITCallback(PCCARD_HandleTypeDef *hpccard);
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
/* PCCARD callback registering/unregistering */
HAL_StatusTypeDef HAL_PCCARD_RegisterCallback(PCCARD_HandleTypeDef *hpccard, HAL_PCCARD_CallbackIDTypeDef CallbackId,
pPCCARD_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCCARD_UnRegisterCallback(PCCARD_HandleTypeDef *hpccard,
HAL_PCCARD_CallbackIDTypeDef CallbackId);
#endif
/**
* @}
*/
/** @addtogroup PCCARD_Exported_Functions_Group3
* @{
*/
/* PCCARD State functions *******************************************************/
HAL_PCCARD_StateTypeDef HAL_PCCARD_GetState(PCCARD_HandleTypeDef *hpccard);
HAL_PCCARD_StatusTypeDef HAL_PCCARD_GetStatus(PCCARD_HandleTypeDef *hpccard);
HAL_PCCARD_StatusTypeDef HAL_PCCARD_ReadStatus(PCCARD_HandleTypeDef *hpccard);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup PCCARD_Private_Constants PCCARD Private Constants
* @{
*/
#define PCCARD_DEVICE_ADDRESS 0x90000000U
#define PCCARD_ATTRIBUTE_SPACE_ADDRESS 0x98000000U /* Attribute space size to @0x9BFF FFFF */
#define PCCARD_COMMON_SPACE_ADDRESS PCCARD_DEVICE_ADDRESS /* Common space size to @0x93FF FFFF */
#define PCCARD_IO_SPACE_ADDRESS 0x9C000000U /* IO space size to @0x9FFF FFFF */
#define PCCARD_IO_SPACE_PRIMARY_ADDR 0x9C0001F0U /* IO space size to @0x9FFF FFFF */
/* Flash-ATA registers description */
#define ATA_DATA ((uint8_t)0x00) /* Data register */
#define ATA_SECTOR_COUNT ((uint8_t)0x02) /* Sector Count register */
#define ATA_SECTOR_NUMBER ((uint8_t)0x03) /* Sector Number register */
#define ATA_CYLINDER_LOW ((uint8_t)0x04) /* Cylinder low register */
#define ATA_CYLINDER_HIGH ((uint8_t)0x05) /* Cylinder high register */
#define ATA_CARD_HEAD ((uint8_t)0x06) /* Card/Head register */
#define ATA_STATUS_CMD ((uint8_t)0x07) /* Status(read)/Command(write) register */
#define ATA_STATUS_CMD_ALTERNATE ((uint8_t)0x0E) /* Alternate Status(read)/Command(write) register */
#define ATA_COMMON_DATA_AREA ((uint16_t)0x0400) /* Start of data area (for Common access only!) */
#define ATA_CARD_CONFIGURATION ((uint16_t)0x0202) /* Card Configuration and Status Register */
/* Flash-ATA commands */
#define ATA_READ_SECTOR_CMD ((uint8_t)0x20)
#define ATA_WRITE_SECTOR_CMD ((uint8_t)0x30)
#define ATA_ERASE_SECTOR_CMD ((uint8_t)0xC0)
#define ATA_IDENTIFY_CMD ((uint8_t)0xEC)
/* PC Card/Compact Flash status */
#define PCCARD_TIMEOUT_ERROR ((uint8_t)0x60)
#define PCCARD_BUSY ((uint8_t)0x80)
#define PCCARD_PROGR ((uint8_t)0x01)
#define PCCARD_READY ((uint8_t)0x40)
#define PCCARD_SECTOR_SIZE 255U /* In half words */
/**
* @}
*/
/* Compact Flash redefinition */
#define HAL_CF_Init HAL_PCCARD_Init
#define HAL_CF_DeInit HAL_PCCARD_DeInit
#define HAL_CF_MspInit HAL_PCCARD_MspInit
#define HAL_CF_MspDeInit HAL_PCCARD_MspDeInit
#define HAL_CF_Read_ID HAL_PCCARD_Read_ID
#define HAL_CF_Write_Sector HAL_PCCARD_Write_Sector
#define HAL_CF_Read_Sector HAL_PCCARD_Read_Sector
#define HAL_CF_Erase_Sector HAL_PCCARD_Erase_Sector
#define HAL_CF_Reset HAL_PCCARD_Reset
#define HAL_CF_IRQHandler HAL_PCCARD_IRQHandler
#define HAL_CF_ITCallback HAL_PCCARD_ITCallback
#define HAL_CF_GetState HAL_PCCARD_GetState
#define HAL_CF_GetStatus HAL_PCCARD_GetStatus
#define HAL_CF_ReadStatus HAL_PCCARD_ReadStatus
#define HAL_CF_STATUS_SUCCESS HAL_PCCARD_STATUS_SUCCESS
#define HAL_CF_STATUS_ONGOING HAL_PCCARD_STATUS_ONGOING
#define HAL_CF_STATUS_ERROR HAL_PCCARD_STATUS_ERROR
#define HAL_CF_STATUS_TIMEOUT HAL_PCCARD_STATUS_TIMEOUT
#define HAL_CF_StatusTypeDef HAL_PCCARD_StatusTypeDef
#define CF_DEVICE_ADDRESS PCCARD_DEVICE_ADDRESS
#define CF_ATTRIBUTE_SPACE_ADDRESS PCCARD_ATTRIBUTE_SPACE_ADDRESS
#define CF_COMMON_SPACE_ADDRESS PCCARD_COMMON_SPACE_ADDRESS
#define CF_IO_SPACE_ADDRESS PCCARD_IO_SPACE_ADDRESS
#define CF_IO_SPACE_PRIMARY_ADDR PCCARD_IO_SPACE_PRIMARY_ADDR
#define CF_TIMEOUT_ERROR PCCARD_TIMEOUT_ERROR
#define CF_BUSY PCCARD_BUSY
#define CF_PROGR PCCARD_PROGR
#define CF_READY PCCARD_READY
#define CF_SECTOR_SIZE PCCARD_SECTOR_SIZE
/* Private macros ------------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK4 */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_PCCARD_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,85 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pcd_ex.h
* @author MCD Application Team
* @brief Header file of PCD HAL Extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_PCD_EX_H
#define STM32F1xx_HAL_PCD_EX_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined (USB) || defined (USB_OTG_FS)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup PCDEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macros -----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PCDEx_Exported_Functions PCDEx Exported Functions
* @{
*/
/** @addtogroup PCDEx_Exported_Functions_Group1 Peripheral Control functions
* @{
*/
#if defined (USB_OTG_FS)
HAL_StatusTypeDef HAL_PCDEx_SetTxFiFo(PCD_HandleTypeDef *hpcd, uint8_t fifo, uint16_t size);
HAL_StatusTypeDef HAL_PCDEx_SetRxFiFo(PCD_HandleTypeDef *hpcd, uint16_t size);
#endif /* defined (USB_OTG_FS) */
#if defined (USB)
HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, uint16_t ep_addr,
uint16_t ep_kind, uint32_t pmaadress);
void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state);
#endif /* defined (USB) */
void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg);
void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) || defined (USB_OTG_FS) */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* STM32F1xx_HAL_PCD_EX_H */

View file

@ -0,0 +1,385 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pwr.h
* @author MCD Application Team
* @brief Header file of PWR HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_PWR_H
#define __STM32F1xx_HAL_PWR_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup PWR
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup PWR_Exported_Types PWR Exported Types
* @{
*/
/**
* @brief PWR PVD configuration structure definition
*/
typedef struct
{
uint32_t PVDLevel; /*!< PVDLevel: Specifies the PVD detection level.
This parameter can be a value of @ref PWR_PVD_detection_level */
uint32_t Mode; /*!< Mode: Specifies the operating mode for the selected pins.
This parameter can be a value of @ref PWR_PVD_Mode */
}PWR_PVDTypeDef;
/**
* @}
*/
/* Internal constants --------------------------------------------------------*/
/** @addtogroup PWR_Private_Constants
* @{
*/
#define PWR_EXTI_LINE_PVD ((uint32_t)0x00010000) /*!< External interrupt line 16 Connected to the PVD EXTI Line */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup PWR_Exported_Constants PWR Exported Constants
* @{
*/
/** @defgroup PWR_PVD_detection_level PWR PVD detection level
* @{
*/
#define PWR_PVDLEVEL_0 PWR_CR_PLS_2V2
#define PWR_PVDLEVEL_1 PWR_CR_PLS_2V3
#define PWR_PVDLEVEL_2 PWR_CR_PLS_2V4
#define PWR_PVDLEVEL_3 PWR_CR_PLS_2V5
#define PWR_PVDLEVEL_4 PWR_CR_PLS_2V6
#define PWR_PVDLEVEL_5 PWR_CR_PLS_2V7
#define PWR_PVDLEVEL_6 PWR_CR_PLS_2V8
#define PWR_PVDLEVEL_7 PWR_CR_PLS_2V9
/**
* @}
*/
/** @defgroup PWR_PVD_Mode PWR PVD Mode
* @{
*/
#define PWR_PVD_MODE_NORMAL 0x00000000U /*!< basic mode is used */
#define PWR_PVD_MODE_IT_RISING 0x00010001U /*!< External Interrupt Mode with Rising edge trigger detection */
#define PWR_PVD_MODE_IT_FALLING 0x00010002U /*!< External Interrupt Mode with Falling edge trigger detection */
#define PWR_PVD_MODE_IT_RISING_FALLING 0x00010003U /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
#define PWR_PVD_MODE_EVENT_RISING 0x00020001U /*!< Event Mode with Rising edge trigger detection */
#define PWR_PVD_MODE_EVENT_FALLING 0x00020002U /*!< Event Mode with Falling edge trigger detection */
#define PWR_PVD_MODE_EVENT_RISING_FALLING 0x00020003U /*!< Event Mode with Rising/Falling edge trigger detection */
/**
* @}
*/
/** @defgroup PWR_WakeUp_Pins PWR WakeUp Pins
* @{
*/
#define PWR_WAKEUP_PIN1 PWR_CSR_EWUP
/**
* @}
*/
/** @defgroup PWR_Regulator_state_in_SLEEP_STOP_mode PWR Regulator state in SLEEP/STOP mode
* @{
*/
#define PWR_MAINREGULATOR_ON 0x00000000U
#define PWR_LOWPOWERREGULATOR_ON PWR_CR_LPDS
/**
* @}
*/
/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry
* @{
*/
#define PWR_SLEEPENTRY_WFI ((uint8_t)0x01)
#define PWR_SLEEPENTRY_WFE ((uint8_t)0x02)
/**
* @}
*/
/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry
* @{
*/
#define PWR_STOPENTRY_WFI ((uint8_t)0x01)
#define PWR_STOPENTRY_WFE ((uint8_t)0x02)
/**
* @}
*/
/** @defgroup PWR_Flag PWR Flag
* @{
*/
#define PWR_FLAG_WU PWR_CSR_WUF
#define PWR_FLAG_SB PWR_CSR_SBF
#define PWR_FLAG_PVDO PWR_CSR_PVDO
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup PWR_Exported_Macros PWR Exported Macros
* @{
*/
/** @brief Check PWR flag is set or not.
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
* was received from the WKUP pin or from the RTC alarm
* An additional wakeup event is detected if the WKUP pin is enabled
* (by setting the EWUP bit) when the WKUP pin level is already high.
* @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
* resumed from StandBy mode.
* @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
* by the HAL_PWR_EnablePVD() function. The PVD is stopped by Standby mode
* For this reason, this bit is equal to 0 after Standby or reset
* until the PVDE bit is set.
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_PWR_GET_FLAG(__FLAG__) ((PWR->CSR & (__FLAG__)) == (__FLAG__))
/** @brief Clear the PWR's pending flags.
* @param __FLAG__: specifies the flag to clear.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag
* @arg PWR_FLAG_SB: StandBy flag
*/
#define __HAL_PWR_CLEAR_FLAG(__FLAG__) SET_BIT(PWR->CR, ((__FLAG__) << 2))
/**
* @brief Enable interrupt on PVD Exti Line 16.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_IT() SET_BIT(EXTI->IMR, PWR_EXTI_LINE_PVD)
/**
* @brief Disable interrupt on PVD Exti Line 16.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_IT() CLEAR_BIT(EXTI->IMR, PWR_EXTI_LINE_PVD)
/**
* @brief Enable event on PVD Exti Line 16.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_EVENT() SET_BIT(EXTI->EMR, PWR_EXTI_LINE_PVD)
/**
* @brief Disable event on PVD Exti Line 16.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_EVENT() CLEAR_BIT(EXTI->EMR, PWR_EXTI_LINE_PVD)
/**
* @brief PVD EXTI line configuration: set falling edge trigger.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE() SET_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt Falling Trigger.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE() CLEAR_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD)
/**
* @brief PVD EXTI line configuration: set rising edge trigger.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE() SET_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt Rising Trigger.
* This parameter can be:
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE() CLEAR_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD)
/**
* @brief PVD EXTI line configuration: set rising & falling edge trigger.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_FALLING_EDGE() __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
/**
* @brief Disable the PVD Extended Interrupt Rising & Falling Trigger.
* This parameter can be:
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE() __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
/**
* @brief Check whether the specified PVD EXTI interrupt flag is set or not.
* @retval EXTI PVD Line Status.
*/
#define __HAL_PWR_PVD_EXTI_GET_FLAG() (EXTI->PR & (PWR_EXTI_LINE_PVD))
/**
* @brief Clear the PVD EXTI flag.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_CLEAR_FLAG() (EXTI->PR = (PWR_EXTI_LINE_PVD))
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @retval None.
*/
#define __HAL_PWR_PVD_EXTI_GENERATE_SWIT() SET_BIT(EXTI->SWIER, PWR_EXTI_LINE_PVD)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup PWR_Private_Macros PWR Private Macros
* @{
*/
#define IS_PWR_PVD_LEVEL(LEVEL) (((LEVEL) == PWR_PVDLEVEL_0) || ((LEVEL) == PWR_PVDLEVEL_1)|| \
((LEVEL) == PWR_PVDLEVEL_2) || ((LEVEL) == PWR_PVDLEVEL_3)|| \
((LEVEL) == PWR_PVDLEVEL_4) || ((LEVEL) == PWR_PVDLEVEL_5)|| \
((LEVEL) == PWR_PVDLEVEL_6) || ((LEVEL) == PWR_PVDLEVEL_7))
#define IS_PWR_PVD_MODE(MODE) (((MODE) == PWR_PVD_MODE_IT_RISING)|| ((MODE) == PWR_PVD_MODE_IT_FALLING) || \
((MODE) == PWR_PVD_MODE_IT_RISING_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING) || \
((MODE) == PWR_PVD_MODE_EVENT_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING_FALLING) || \
((MODE) == PWR_PVD_MODE_NORMAL))
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1))
#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_ON) || \
((REGULATOR) == PWR_LOWPOWERREGULATOR_ON))
#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPENTRY_WFI) || ((ENTRY) == PWR_SLEEPENTRY_WFE))
#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPENTRY_WFI) || ((ENTRY) == PWR_STOPENTRY_WFE))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization and de-initialization functions *******************************/
void HAL_PWR_DeInit(void);
void HAL_PWR_EnableBkUpAccess(void);
void HAL_PWR_DisableBkUpAccess(void);
/**
* @}
*/
/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD);
/* #define HAL_PWR_ConfigPVD 12*/
void HAL_PWR_EnablePVD(void);
void HAL_PWR_DisablePVD(void);
/* WakeUp pins configuration functions ****************************************/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx);
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx);
/* Low Power modes configuration functions ************************************/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry);
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry);
void HAL_PWR_EnterSTANDBYMode(void);
void HAL_PWR_EnableSleepOnExit(void);
void HAL_PWR_DisableSleepOnExit(void);
void HAL_PWR_EnableSEVOnPend(void);
void HAL_PWR_DisableSEVOnPend(void);
void HAL_PWR_PVD_IRQHandler(void);
void HAL_PWR_PVDCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_PWR_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,604 @@
/**
******************************************************************************
* @file stm32f1xx_hal_rtc.h
* @author MCD Application Team
* @brief Header file of RTC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_RTC_H
#define __STM32F1xx_HAL_RTC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup RTC
* @{
*/
/** @addtogroup RTC_Private_Macros
* @{
*/
#define IS_RTC_ASYNCH_PREDIV(PREDIV) (((PREDIV) <= 0xFFFFFU) || ((PREDIV) == RTC_AUTO_1_SECOND))
#define IS_RTC_HOUR24(HOUR) ((HOUR) <= 23U)
#define IS_RTC_MINUTES(MINUTES) ((MINUTES) <= 59U)
#define IS_RTC_SECONDS(SECONDS) ((SECONDS) <= 59U)
#define IS_RTC_FORMAT(FORMAT) (((FORMAT) == RTC_FORMAT_BIN) || ((FORMAT) == RTC_FORMAT_BCD))
#define IS_RTC_YEAR(YEAR) ((YEAR) <= 99U)
#define IS_RTC_MONTH(MONTH) (((MONTH) >= 1U) && ((MONTH) <= 12U))
#define IS_RTC_DATE(DATE) (((DATE) >= 1U) && ((DATE) <= 31U))
#define IS_RTC_ALARM(ALARM) ((ALARM) == RTC_ALARM_A)
#define IS_RTC_CALIB_OUTPUT(__OUTPUT__) (((__OUTPUT__) == RTC_OUTPUTSOURCE_NONE) || \
((__OUTPUT__) == RTC_OUTPUTSOURCE_CALIBCLOCK) || \
((__OUTPUT__) == RTC_OUTPUTSOURCE_ALARM) || \
((__OUTPUT__) == RTC_OUTPUTSOURCE_SECOND))
/**
* @}
*/
/** @addtogroup RTC_Private_Constants
* @{
*/
/** @defgroup RTC_Timeout_Value Default Timeout Value
* @{
*/
#define RTC_TIMEOUT_VALUE 1000U
/**
* @}
*/
/** @defgroup RTC_EXTI_Line_Event RTC EXTI Line event
* @{
*/
#define RTC_EXTI_LINE_ALARM_EVENT ((uint32_t)EXTI_IMR_MR17) /*!< External interrupt line 17 Connected to the RTC Alarm event */
/**
* @}
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RTC_Exported_Types RTC Exported Types
* @{
*/
/**
* @brief RTC Time structure definition
*/
typedef struct
{
uint8_t Hours; /*!< Specifies the RTC Time Hour.
This parameter must be a number between Min_Data = 0 and Max_Data = 23 */
uint8_t Minutes; /*!< Specifies the RTC Time Minutes.
This parameter must be a number between Min_Data = 0 and Max_Data = 59 */
uint8_t Seconds; /*!< Specifies the RTC Time Seconds.
This parameter must be a number between Min_Data = 0 and Max_Data = 59 */
} RTC_TimeTypeDef;
/**
* @brief RTC Alarm structure definition
*/
typedef struct
{
RTC_TimeTypeDef AlarmTime; /*!< Specifies the RTC Alarm Time members */
uint32_t Alarm; /*!< Specifies the alarm ID (only 1 alarm ID for STM32F1).
This parameter can be a value of @ref RTC_Alarms_Definitions */
} RTC_AlarmTypeDef;
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_RTC_STATE_RESET = 0x00U, /*!< RTC not yet initialized or disabled */
HAL_RTC_STATE_READY = 0x01U, /*!< RTC initialized and ready for use */
HAL_RTC_STATE_BUSY = 0x02U, /*!< RTC process is ongoing */
HAL_RTC_STATE_TIMEOUT = 0x03U, /*!< RTC timeout state */
HAL_RTC_STATE_ERROR = 0x04U /*!< RTC error state */
} HAL_RTCStateTypeDef;
/**
* @brief RTC Configuration Structure definition
*/
typedef struct
{
uint32_t AsynchPrediv; /*!< Specifies the RTC Asynchronous Predivider value.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFFF or RTC_AUTO_1_SECOND
If RTC_AUTO_1_SECOND is selected, AsynchPrediv will be set automatically to get 1sec timebase */
uint32_t OutPut; /*!< Specifies which signal will be routed to the RTC Tamper pin.
This parameter can be a value of @ref RTC_output_source_to_output_on_the_Tamper_pin */
} RTC_InitTypeDef;
/**
* @brief RTC Date structure definition
*/
typedef struct
{
uint8_t WeekDay; /*!< Specifies the RTC Date WeekDay (not necessary for HAL_RTC_SetDate).
This parameter can be a value of @ref RTC_WeekDay_Definitions */
uint8_t Month; /*!< Specifies the RTC Date Month (in BCD format).
This parameter can be a value of @ref RTC_Month_Date_Definitions */
uint8_t Date; /*!< Specifies the RTC Date.
This parameter must be a number between Min_Data = 1 and Max_Data = 31 */
uint8_t Year; /*!< Specifies the RTC Date Year.
This parameter must be a number between Min_Data = 0 and Max_Data = 99 */
} RTC_DateTypeDef;
/**
* @brief Time Handle Structure definition
*/
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
typedef struct __RTC_HandleTypeDef
#else
typedef struct
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
{
RTC_TypeDef *Instance; /*!< Register base address */
RTC_InitTypeDef Init; /*!< RTC required parameters */
RTC_DateTypeDef DateToUpdate; /*!< Current date set by user and updated automatically */
HAL_LockTypeDef Lock; /*!< RTC locking object */
__IO HAL_RTCStateTypeDef State; /*!< Time communication state */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
void (* AlarmAEventCallback)(struct __RTC_HandleTypeDef *hrtc); /*!< RTC Alarm A Event callback */
void (* Tamper1EventCallback)(struct __RTC_HandleTypeDef *hrtc); /*!< RTC Tamper 1 Event callback */
void (* MspInitCallback)(struct __RTC_HandleTypeDef *hrtc); /*!< RTC Msp Init callback */
void (* MspDeInitCallback)(struct __RTC_HandleTypeDef *hrtc); /*!< RTC Msp DeInit callback */
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
} RTC_HandleTypeDef;
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
/**
* @brief HAL RTC Callback ID enumeration definition
*/
typedef enum
{
HAL_RTC_ALARM_A_EVENT_CB_ID = 0x00u, /*!< RTC Alarm A Event Callback ID */
HAL_RTC_TAMPER1_EVENT_CB_ID = 0x04u, /*!< RTC Tamper 1 Callback ID */
HAL_RTC_MSPINIT_CB_ID = 0x0Eu, /*!< RTC Msp Init callback ID */
HAL_RTC_MSPDEINIT_CB_ID = 0x0Fu /*!< RTC Msp DeInit callback ID */
} HAL_RTC_CallbackIDTypeDef;
/**
* @brief HAL RTC Callback pointer definition
*/
typedef void (*pRTC_CallbackTypeDef)(RTC_HandleTypeDef *hrtc); /*!< pointer to an RTC callback function */
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RTC_Exported_Constants RTC Exported Constants
* @{
*/
/** @defgroup RTC_Automatic_Prediv_1_Second Automatic calculation of prediv for 1sec timebase
* @{
*/
#define RTC_AUTO_1_SECOND 0xFFFFFFFFU
/**
* @}
*/
/** @defgroup RTC_Input_parameter_format_definitions Input Parameter Format
* @{
*/
#define RTC_FORMAT_BIN 0x000000000U
#define RTC_FORMAT_BCD 0x000000001U
/**
* @}
*/
/** @defgroup RTC_Month_Date_Definitions Month Definitions
* @{
*/
/* Coded in BCD format */
#define RTC_MONTH_JANUARY ((uint8_t)0x01)
#define RTC_MONTH_FEBRUARY ((uint8_t)0x02)
#define RTC_MONTH_MARCH ((uint8_t)0x03)
#define RTC_MONTH_APRIL ((uint8_t)0x04)
#define RTC_MONTH_MAY ((uint8_t)0x05)
#define RTC_MONTH_JUNE ((uint8_t)0x06)
#define RTC_MONTH_JULY ((uint8_t)0x07)
#define RTC_MONTH_AUGUST ((uint8_t)0x08)
#define RTC_MONTH_SEPTEMBER ((uint8_t)0x09)
#define RTC_MONTH_OCTOBER ((uint8_t)0x10)
#define RTC_MONTH_NOVEMBER ((uint8_t)0x11)
#define RTC_MONTH_DECEMBER ((uint8_t)0x12)
/**
* @}
*/
/** @defgroup RTC_WeekDay_Definitions WeekDay Definitions
* @{
*/
#define RTC_WEEKDAY_MONDAY ((uint8_t)0x01)
#define RTC_WEEKDAY_TUESDAY ((uint8_t)0x02)
#define RTC_WEEKDAY_WEDNESDAY ((uint8_t)0x03)
#define RTC_WEEKDAY_THURSDAY ((uint8_t)0x04)
#define RTC_WEEKDAY_FRIDAY ((uint8_t)0x05)
#define RTC_WEEKDAY_SATURDAY ((uint8_t)0x06)
#define RTC_WEEKDAY_SUNDAY ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup RTC_Alarms_Definitions Alarms Definitions
* @{
*/
#define RTC_ALARM_A 0U /*!< Specify alarm ID (mainly for legacy purposes) */
/**
* @}
*/
/** @defgroup RTC_output_source_to_output_on_the_Tamper_pin Output source to output on the Tamper pin
* @{
*/
#define RTC_OUTPUTSOURCE_NONE 0x00000000U /*!< No output on the TAMPER pin */
#define RTC_OUTPUTSOURCE_CALIBCLOCK BKP_RTCCR_CCO /*!< RTC clock with a frequency divided by 64 on the TAMPER pin */
#define RTC_OUTPUTSOURCE_ALARM BKP_RTCCR_ASOE /*!< Alarm pulse signal on the TAMPER pin */
#define RTC_OUTPUTSOURCE_SECOND (BKP_RTCCR_ASOS | BKP_RTCCR_ASOE) /*!< Second pulse signal on the TAMPER pin */
/**
* @}
*/
/** @defgroup RTC_Interrupts_Definitions Interrupts Definitions
* @{
*/
#define RTC_IT_OW RTC_CRH_OWIE /*!< Overflow interrupt */
#define RTC_IT_ALRA RTC_CRH_ALRIE /*!< Alarm interrupt */
#define RTC_IT_SEC RTC_CRH_SECIE /*!< Second interrupt */
#define RTC_IT_TAMP1 BKP_CSR_TPIE /*!< TAMPER Pin interrupt enable */
/**
* @}
*/
/** @defgroup RTC_Flags_Definitions Flags Definitions
* @{
*/
#define RTC_FLAG_RTOFF RTC_CRL_RTOFF /*!< RTC Operation OFF flag */
#define RTC_FLAG_RSF RTC_CRL_RSF /*!< Registers Synchronized flag */
#define RTC_FLAG_OW RTC_CRL_OWF /*!< Overflow flag */
#define RTC_FLAG_ALRAF RTC_CRL_ALRF /*!< Alarm flag */
#define RTC_FLAG_SEC RTC_CRL_SECF /*!< Second flag */
#define RTC_FLAG_TAMP1F BKP_CSR_TEF /*!< Tamper Interrupt Flag */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RTC_Exported_macros RTC Exported Macros
* @{
*/
/** @brief Reset RTC handle state
* @param __HANDLE__: RTC handle.
* @retval None
*/
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
#define __HAL_RTC_RESET_HANDLE_STATE(__HANDLE__) do{\
(__HANDLE__)->State = HAL_RTC_STATE_RESET;\
(__HANDLE__)->MspInitCallback = NULL;\
(__HANDLE__)->MspDeInitCallback = NULL;\
}while(0u)
#else
#define __HAL_RTC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_RTC_STATE_RESET)
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/**
* @brief Disable the write protection for RTC registers.
* @param __HANDLE__: specifies the RTC handle.
* @retval None
*/
#define __HAL_RTC_WRITEPROTECTION_DISABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CRL, RTC_CRL_CNF)
/**
* @brief Enable the write protection for RTC registers.
* @param __HANDLE__: specifies the RTC handle.
* @retval None
*/
#define __HAL_RTC_WRITEPROTECTION_ENABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CRL, RTC_CRL_CNF)
/**
* @brief Enable the RTC Alarm interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Alarm interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_ALRA: Alarm A interrupt
* @retval None
*/
#define __HAL_RTC_ALARM_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Disable the RTC Alarm interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Alarm interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_ALRA: Alarm A interrupt
* @retval None
*/
#define __HAL_RTC_ALARM_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Check whether the specified RTC Alarm interrupt has been enabled or not.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Alarm interrupt sources to be checked
* This parameter can be:
* @arg RTC_IT_ALRA: Alarm A interrupt
* @retval None
*/
#define __HAL_RTC_ALARM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((((__HANDLE__)->Instance->CRH)& ((__INTERRUPT__)))) != RESET)? SET : RESET)
/**
* @brief Get the selected RTC Alarm's flag status.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Alarm Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_ALRAF
* @retval None
*/
#define __HAL_RTC_ALARM_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->CRL) & (__FLAG__)) != RESET)? SET : RESET)
/**
* @brief Check whether the specified RTC Alarm interrupt has occurred or not.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Alarm interrupt sources to check.
* This parameter can be:
* @arg RTC_IT_ALRA: Alarm A interrupt
* @retval None
*/
#define __HAL_RTC_ALARM_GET_IT(__HANDLE__, __INTERRUPT__) (((((__HANDLE__)->Instance->CRL) & (__INTERRUPT__)) != RESET)? SET : RESET)
/**
* @brief Clear the RTC Alarm's pending flags.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Alarm Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_ALRAF
* @retval None
*/
#define __HAL_RTC_ALARM_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->CRL) &= ~(__FLAG__)
/**
* @brief Enable interrupt on ALARM Exti Line 17.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_ENABLE_IT() SET_BIT(EXTI->IMR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief Disable interrupt on ALARM Exti Line 17.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_DISABLE_IT() CLEAR_BIT(EXTI->IMR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief Enable event on ALARM Exti Line 17.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_ENABLE_EVENT() SET_BIT(EXTI->EMR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief Disable event on ALARM Exti Line 17.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_DISABLE_EVENT() CLEAR_BIT(EXTI->EMR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief ALARM EXTI line configuration: set falling edge trigger.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_ENABLE_FALLING_EDGE() SET_BIT(EXTI->FTSR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief Disable the ALARM Extended Interrupt Falling Trigger.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_DISABLE_FALLING_EDGE() CLEAR_BIT(EXTI->FTSR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief ALARM EXTI line configuration: set rising edge trigger.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE() SET_BIT(EXTI->RTSR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief Disable the ALARM Extended Interrupt Rising Trigger.
* This parameter can be:
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_DISABLE_RISING_EDGE() CLEAR_BIT(EXTI->RTSR, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @brief ALARM EXTI line configuration: set rising & falling edge trigger.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_ENABLE_RISING_FALLING_EDGE() \
do{ \
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE(); \
__HAL_RTC_ALARM_EXTI_ENABLE_FALLING_EDGE(); \
} while(0U)
/**
* @brief Disable the ALARM Extended Interrupt Rising & Falling Trigger.
* This parameter can be:
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_DISABLE_RISING_FALLING_EDGE() \
do{ \
__HAL_RTC_ALARM_EXTI_DISABLE_RISING_EDGE(); \
__HAL_RTC_ALARM_EXTI_DISABLE_FALLING_EDGE(); \
} while(0U)
/**
* @brief Check whether the specified ALARM EXTI interrupt flag is set or not.
* @retval EXTI ALARM Line Status.
*/
#define __HAL_RTC_ALARM_EXTI_GET_FLAG() (EXTI->PR & (RTC_EXTI_LINE_ALARM_EVENT))
/**
* @brief Clear the ALARM EXTI flag.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_CLEAR_FLAG() (EXTI->PR = (RTC_EXTI_LINE_ALARM_EVENT))
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @retval None.
*/
#define __HAL_RTC_ALARM_EXTI_GENERATE_SWIT() SET_BIT(EXTI->SWIER, RTC_EXTI_LINE_ALARM_EVENT)
/**
* @}
*/
/* Include RTC HAL Extension module */
#include "stm32f1xx_hal_rtc_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RTC_Exported_Functions
* @{
*/
/* Initialization and de-initialization functions ****************************/
/** @addtogroup RTC_Exported_Functions_Group1
* @{
*/
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc);
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc);
void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc);
void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/**
* @}
*/
/* RTC Time and Date functions ************************************************/
/** @addtogroup RTC_Exported_Functions_Group2
* @{
*/
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);
/**
* @}
*/
/* RTC Alarm functions ********************************************************/
/** @addtogroup RTC_Exported_Functions_Group3
* @{
*/
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format);
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format);
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm);
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format);
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc);
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc);
/**
* @}
*/
/* Peripheral State functions *************************************************/
/** @addtogroup RTC_Exported_Functions_Group4
* @{
*/
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc);
/**
* @}
*/
/* Peripheral Control functions ***********************************************/
/** @addtogroup RTC_Exported_Functions_Group5
* @{
*/
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_RTC_H */

View file

@ -0,0 +1,409 @@
/**
******************************************************************************
* @file stm32f1xx_hal_rtc_ex.h
* @author MCD Application Team
* @brief Header file of RTC HAL Extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_RTC_EX_H
#define __STM32F1xx_HAL_RTC_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup RTCEx
* @{
*/
/** @addtogroup RTCEx_Private_Macros
* @{
*/
/** @defgroup RTCEx_Alias_For_Legacy Alias define maintained for legacy
* @{
*/
#define HAL_RTCEx_TamperTimeStampIRQHandler HAL_RTCEx_TamperIRQHandler
/**
* @}
*/
/** @defgroup RTCEx_IS_RTC_Definitions Private macros to check input parameters
* @{
*/
#define IS_RTC_TAMPER(__TAMPER__) ((__TAMPER__) == RTC_TAMPER_1)
#define IS_RTC_TAMPER_TRIGGER(__TRIGGER__) (((__TRIGGER__) == RTC_TAMPERTRIGGER_LOWLEVEL) || \
((__TRIGGER__) == RTC_TAMPERTRIGGER_HIGHLEVEL))
#if RTC_BKP_NUMBER > 10U
#define IS_RTC_BKP(BKP) (((BKP) <= (uint32_t)RTC_BKP_DR10) || (((BKP) >= (uint32_t)RTC_BKP_DR11) && ((BKP) <= (uint32_t)RTC_BKP_DR42)))
#else
#define IS_RTC_BKP(BKP) ((BKP) <= (uint32_t)RTC_BKP_NUMBER)
#endif
#define IS_RTC_SMOOTH_CALIB_MINUS(__VALUE__) ((__VALUE__) <= 0x0000007FU)
/**
* @}
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RTCEx_Exported_Types RTCEx Exported Types
* @{
*/
/**
* @brief RTC Tamper structure definition
*/
typedef struct
{
uint32_t Tamper; /*!< Specifies the Tamper Pin.
This parameter can be a value of @ref RTCEx_Tamper_Pins_Definitions */
uint32_t Trigger; /*!< Specifies the Tamper Trigger.
This parameter can be a value of @ref RTCEx_Tamper_Trigger_Definitions */
} RTC_TamperTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RTCEx_Exported_Constants RTCEx Exported Constants
* @{
*/
/** @defgroup RTCEx_Tamper_Pins_Definitions Tamper Pins Definitions
* @{
*/
#define RTC_TAMPER_1 BKP_CR_TPE /*!< Select tamper to be enabled (mainly for legacy purposes) */
/**
* @}
*/
/** @defgroup RTCEx_Tamper_Trigger_Definitions Tamper Trigger Definitions
* @{
*/
#define RTC_TAMPERTRIGGER_LOWLEVEL BKP_CR_TPAL /*!< A high level on the TAMPER pin resets all data backup registers (if TPE bit is set) */
#define RTC_TAMPERTRIGGER_HIGHLEVEL 0x00000000U /*!< A low level on the TAMPER pin resets all data backup registers (if TPE bit is set) */
/**
* @}
*/
/** @defgroup RTCEx_Backup_Registers_Definitions Backup Registers Definitions
* @{
*/
#if RTC_BKP_NUMBER > 0U
#define RTC_BKP_DR1 0x00000001U
#define RTC_BKP_DR2 0x00000002U
#define RTC_BKP_DR3 0x00000003U
#define RTC_BKP_DR4 0x00000004U
#define RTC_BKP_DR5 0x00000005U
#define RTC_BKP_DR6 0x00000006U
#define RTC_BKP_DR7 0x00000007U
#define RTC_BKP_DR8 0x00000008U
#define RTC_BKP_DR9 0x00000009U
#define RTC_BKP_DR10 0x0000000AU
#endif /* RTC_BKP_NUMBER > 0 */
#if RTC_BKP_NUMBER > 10U
#define RTC_BKP_DR11 0x00000010U
#define RTC_BKP_DR12 0x00000011U
#define RTC_BKP_DR13 0x00000012U
#define RTC_BKP_DR14 0x00000013U
#define RTC_BKP_DR15 0x00000014U
#define RTC_BKP_DR16 0x00000015U
#define RTC_BKP_DR17 0x00000016U
#define RTC_BKP_DR18 0x00000017U
#define RTC_BKP_DR19 0x00000018U
#define RTC_BKP_DR20 0x00000019U
#define RTC_BKP_DR21 0x0000001AU
#define RTC_BKP_DR22 0x0000001BU
#define RTC_BKP_DR23 0x0000001CU
#define RTC_BKP_DR24 0x0000001DU
#define RTC_BKP_DR25 0x0000001EU
#define RTC_BKP_DR26 0x0000001FU
#define RTC_BKP_DR27 0x00000020U
#define RTC_BKP_DR28 0x00000021U
#define RTC_BKP_DR29 0x00000022U
#define RTC_BKP_DR30 0x00000023U
#define RTC_BKP_DR31 0x00000024U
#define RTC_BKP_DR32 0x00000025U
#define RTC_BKP_DR33 0x00000026U
#define RTC_BKP_DR34 0x00000027U
#define RTC_BKP_DR35 0x00000028U
#define RTC_BKP_DR36 0x00000029U
#define RTC_BKP_DR37 0x0000002AU
#define RTC_BKP_DR38 0x0000002BU
#define RTC_BKP_DR39 0x0000002CU
#define RTC_BKP_DR40 0x0000002DU
#define RTC_BKP_DR41 0x0000002EU
#define RTC_BKP_DR42 0x0000002FU
#endif /* RTC_BKP_NUMBER > 10 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RTCEx_Exported_Macros RTCEx Exported Macros
* @{
*/
/**
* @brief Enable the RTC Tamper interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Tamper interrupt sources to be enabled
* This parameter can be any combination of the following values:
* @arg RTC_IT_TAMP1: Tamper A interrupt
* @retval None
*/
#define __HAL_RTC_TAMPER_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT(BKP->CSR, (__INTERRUPT__))
/**
* @brief Disable the RTC Tamper interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Tamper interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_TAMP1: Tamper A interrupt
* @retval None
*/
#define __HAL_RTC_TAMPER_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT(BKP->CSR, (__INTERRUPT__))
/**
* @brief Check whether the specified RTC Tamper interrupt has been enabled or not.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Tamper interrupt sources to be checked.
* This parameter can be:
* @arg RTC_IT_TAMP1
* @retval None
*/
#define __HAL_RTC_TAMPER_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((BKP->CSR) & ((__INTERRUPT__))) != RESET)? SET : RESET)
/**
* @brief Get the selected RTC Tamper's flag status.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Tamper Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_TAMP1F
* @retval None
*/
#define __HAL_RTC_TAMPER_GET_FLAG(__HANDLE__, __FLAG__) ((((BKP->CSR) & (__FLAG__)) != RESET)? SET : RESET)
/**
* @brief Get the selected RTC Tamper's flag status.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Tamper interrupt sources to be checked.
* This parameter can be:
* @arg RTC_IT_TAMP1
* @retval None
*/
#define __HAL_RTC_TAMPER_GET_IT(__HANDLE__, __INTERRUPT__) ((((BKP->CSR) & (BKP_CSR_TEF)) != RESET)? SET : RESET)
/**
* @brief Clear the RTC Tamper's pending flags.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Tamper Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_TAMP1F
* @retval None
*/
#define __HAL_RTC_TAMPER_CLEAR_FLAG(__HANDLE__, __FLAG__) SET_BIT(BKP->CSR, BKP_CSR_CTE | BKP_CSR_CTI)
/**
* @brief Enable the RTC Second interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Second interrupt sources to be enabled
* This parameter can be any combination of the following values:
* @arg RTC_IT_SEC: Second A interrupt
* @retval None
*/
#define __HAL_RTC_SECOND_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Disable the RTC Second interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Second interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_SEC: Second A interrupt
* @retval None
*/
#define __HAL_RTC_SECOND_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Check whether the specified RTC Second interrupt has occurred or not.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Second interrupt sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_IT_SEC: Second A interrupt
* @retval None
*/
#define __HAL_RTC_SECOND_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((((__HANDLE__)->Instance->CRH)& ((__INTERRUPT__)))) != RESET)? SET : RESET)
/**
* @brief Get the selected RTC Second's flag status.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Second Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_SEC
* @retval None
*/
#define __HAL_RTC_SECOND_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->CRL) & (__FLAG__)) != RESET)? SET : RESET)
/**
* @brief Clear the RTC Second's pending flags.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Second Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_SEC
* @retval None
*/
#define __HAL_RTC_SECOND_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->CRL) &= ~(__FLAG__)
/**
* @brief Enable the RTC Overflow interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Overflow interrupt sources to be enabled
* This parameter can be any combination of the following values:
* @arg RTC_IT_OW: Overflow A interrupt
* @retval None
*/
#define __HAL_RTC_OVERFLOW_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Disable the RTC Overflow interrupt.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Overflow interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_OW: Overflow A interrupt
* @retval None
*/
#define __HAL_RTC_OVERFLOW_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CRH, (__INTERRUPT__))
/**
* @brief Check whether the specified RTC Overflow interrupt has occurred or not.
* @param __HANDLE__: specifies the RTC handle.
* @param __INTERRUPT__: specifies the RTC Overflow interrupt sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_IT_OW: Overflow A interrupt
* @retval None
*/
#define __HAL_RTC_OVERFLOW_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((((__HANDLE__)->Instance->CRH)& ((__INTERRUPT__))) ) != RESET)? SET : RESET)
/**
* @brief Get the selected RTC Overflow's flag status.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Overflow Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_OW
* @retval None
*/
#define __HAL_RTC_OVERFLOW_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->CRL) & (__FLAG__)) != RESET)? SET : RESET)
/**
* @brief Clear the RTC Overflow's pending flags.
* @param __HANDLE__: specifies the RTC handle.
* @param __FLAG__: specifies the RTC Overflow Flag sources to be enabled or disabled.
* This parameter can be:
* @arg RTC_FLAG_OW
* @retval None
*/
#define __HAL_RTC_OVERFLOW_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->CRL) = ~(__FLAG__)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RTCEx_Exported_Functions
* @{
*/
/* RTC Tamper functions *****************************************/
/** @addtogroup RTCEx_Exported_Functions_Group1
* @{
*/
HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper);
HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper);
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper);
void HAL_RTCEx_TamperIRQHandler(RTC_HandleTypeDef *hrtc);
void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc);
HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
/**
* @}
*/
/* RTC Second functions *****************************************/
/** @addtogroup RTCEx_Exported_Functions_Group2
* @{
*/
HAL_StatusTypeDef HAL_RTCEx_SetSecond_IT(RTC_HandleTypeDef *hrtc);
HAL_StatusTypeDef HAL_RTCEx_DeactivateSecond(RTC_HandleTypeDef *hrtc);
void HAL_RTCEx_RTCIRQHandler(RTC_HandleTypeDef *hrtc);
void HAL_RTCEx_RTCEventCallback(RTC_HandleTypeDef *hrtc);
void HAL_RTCEx_RTCEventErrorCallback(RTC_HandleTypeDef *hrtc);
/**
* @}
*/
/* Extension Control functions ************************************************/
/** @addtogroup RTCEx_Exported_Functions_Group3
* @{
*/
void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data);
uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister);
HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_RTC_EX_H */

View file

@ -0,0 +1,758 @@
/**
******************************************************************************
* @file stm32f1xx_hal_sd.h
* @author MCD Application Team
* @brief Header file of SD HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_SD_H
#define STM32F1xx_HAL_SD_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SDIO)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_sdmmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup SD SD
* @brief SD HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup SD_Exported_Types SD Exported Types
* @{
*/
/** @defgroup SD_Exported_Types_Group1 SD State enumeration structure
* @{
*/
typedef enum
{
HAL_SD_STATE_RESET = 0x00000000U, /*!< SD not yet initialized or disabled */
HAL_SD_STATE_READY = 0x00000001U, /*!< SD initialized and ready for use */
HAL_SD_STATE_TIMEOUT = 0x00000002U, /*!< SD Timeout state */
HAL_SD_STATE_BUSY = 0x00000003U, /*!< SD process ongoing */
HAL_SD_STATE_PROGRAMMING = 0x00000004U, /*!< SD Programming State */
HAL_SD_STATE_RECEIVING = 0x00000005U, /*!< SD Receiving State */
HAL_SD_STATE_TRANSFER = 0x00000006U, /*!< SD Transfer State */
HAL_SD_STATE_ERROR = 0x0000000FU /*!< SD is in error state */
}HAL_SD_StateTypeDef;
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group2 SD Card State enumeration structure
* @{
*/
typedef uint32_t HAL_SD_CardStateTypeDef;
#define HAL_SD_CARD_READY 0x00000001U /*!< Card state is ready */
#define HAL_SD_CARD_IDENTIFICATION 0x00000002U /*!< Card is in identification state */
#define HAL_SD_CARD_STANDBY 0x00000003U /*!< Card is in standby state */
#define HAL_SD_CARD_TRANSFER 0x00000004U /*!< Card is in transfer state */
#define HAL_SD_CARD_SENDING 0x00000005U /*!< Card is sending an operation */
#define HAL_SD_CARD_RECEIVING 0x00000006U /*!< Card is receiving operation information */
#define HAL_SD_CARD_PROGRAMMING 0x00000007U /*!< Card is in programming state */
#define HAL_SD_CARD_DISCONNECTED 0x00000008U /*!< Card is disconnected */
#define HAL_SD_CARD_ERROR 0x000000FFU /*!< Card response Error */
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group3 SD Handle Structure definition
* @{
*/
#define SD_InitTypeDef SDIO_InitTypeDef
#define SD_TypeDef SDIO_TypeDef
/**
* @brief SD Card Information Structure definition
*/
typedef struct
{
uint32_t CardType; /*!< Specifies the card Type */
uint32_t CardVersion; /*!< Specifies the card version */
uint32_t Class; /*!< Specifies the class of the card class */
uint32_t RelCardAdd; /*!< Specifies the Relative Card Address */
uint32_t BlockNbr; /*!< Specifies the Card Capacity in blocks */
uint32_t BlockSize; /*!< Specifies one block size in bytes */
uint32_t LogBlockNbr; /*!< Specifies the Card logical Capacity in blocks */
uint32_t LogBlockSize; /*!< Specifies logical block size in bytes */
}HAL_SD_CardInfoTypeDef;
/**
* @brief SD handle Structure definition
*/
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
typedef struct __SD_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
{
SD_TypeDef *Instance; /*!< SD registers base address */
SD_InitTypeDef Init; /*!< SD required parameters */
HAL_LockTypeDef Lock; /*!< SD locking object */
uint8_t *pTxBuffPtr; /*!< Pointer to SD Tx transfer Buffer */
uint32_t TxXferSize; /*!< SD Tx Transfer size */
uint8_t *pRxBuffPtr; /*!< Pointer to SD Rx transfer Buffer */
uint32_t RxXferSize; /*!< SD Rx Transfer size */
__IO uint32_t Context; /*!< SD transfer context */
__IO HAL_SD_StateTypeDef State; /*!< SD card State */
__IO uint32_t ErrorCode; /*!< SD Card Error codes */
DMA_HandleTypeDef *hdmatx; /*!< SD Tx DMA handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< SD Rx DMA handle parameters */
HAL_SD_CardInfoTypeDef SdCard; /*!< SD Card information */
uint32_t CSD[4]; /*!< SD card specific data table */
uint32_t CID[4]; /*!< SD card identification number table */
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
void (* TxCpltCallback) (struct __SD_HandleTypeDef *hsd);
void (* RxCpltCallback) (struct __SD_HandleTypeDef *hsd);
void (* ErrorCallback) (struct __SD_HandleTypeDef *hsd);
void (* AbortCpltCallback) (struct __SD_HandleTypeDef *hsd);
void (* MspInitCallback) (struct __SD_HandleTypeDef *hsd);
void (* MspDeInitCallback) (struct __SD_HandleTypeDef *hsd);
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
}SD_HandleTypeDef;
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group4 Card Specific Data: CSD Register
* @{
*/
typedef struct
{
__IO uint8_t CSDStruct; /*!< CSD structure */
__IO uint8_t SysSpecVersion; /*!< System specification version */
__IO uint8_t Reserved1; /*!< Reserved */
__IO uint8_t TAAC; /*!< Data read access time 1 */
__IO uint8_t NSAC; /*!< Data read access time 2 in CLK cycles */
__IO uint8_t MaxBusClkFrec; /*!< Max. bus clock frequency */
__IO uint16_t CardComdClasses; /*!< Card command classes */
__IO uint8_t RdBlockLen; /*!< Max. read data block length */
__IO uint8_t PartBlockRead; /*!< Partial blocks for read allowed */
__IO uint8_t WrBlockMisalign; /*!< Write block misalignment */
__IO uint8_t RdBlockMisalign; /*!< Read block misalignment */
__IO uint8_t DSRImpl; /*!< DSR implemented */
__IO uint8_t Reserved2; /*!< Reserved */
__IO uint32_t DeviceSize; /*!< Device Size */
__IO uint8_t MaxRdCurrentVDDMin; /*!< Max. read current @ VDD min */
__IO uint8_t MaxRdCurrentVDDMax; /*!< Max. read current @ VDD max */
__IO uint8_t MaxWrCurrentVDDMin; /*!< Max. write current @ VDD min */
__IO uint8_t MaxWrCurrentVDDMax; /*!< Max. write current @ VDD max */
__IO uint8_t DeviceSizeMul; /*!< Device size multiplier */
__IO uint8_t EraseGrSize; /*!< Erase group size */
__IO uint8_t EraseGrMul; /*!< Erase group size multiplier */
__IO uint8_t WrProtectGrSize; /*!< Write protect group size */
__IO uint8_t WrProtectGrEnable; /*!< Write protect group enable */
__IO uint8_t ManDeflECC; /*!< Manufacturer default ECC */
__IO uint8_t WrSpeedFact; /*!< Write speed factor */
__IO uint8_t MaxWrBlockLen; /*!< Max. write data block length */
__IO uint8_t WriteBlockPaPartial; /*!< Partial blocks for write allowed */
__IO uint8_t Reserved3; /*!< Reserved */
__IO uint8_t ContentProtectAppli; /*!< Content protection application */
__IO uint8_t FileFormatGroup; /*!< File format group */
__IO uint8_t CopyFlag; /*!< Copy flag (OTP) */
__IO uint8_t PermWrProtect; /*!< Permanent write protection */
__IO uint8_t TempWrProtect; /*!< Temporary write protection */
__IO uint8_t FileFormat; /*!< File format */
__IO uint8_t ECC; /*!< ECC code */
__IO uint8_t CSD_CRC; /*!< CSD CRC */
__IO uint8_t Reserved4; /*!< Always 1 */
}HAL_SD_CardCSDTypeDef;
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group5 Card Identification Data: CID Register
* @{
*/
typedef struct
{
__IO uint8_t ManufacturerID; /*!< Manufacturer ID */
__IO uint16_t OEM_AppliID; /*!< OEM/Application ID */
__IO uint32_t ProdName1; /*!< Product Name part1 */
__IO uint8_t ProdName2; /*!< Product Name part2 */
__IO uint8_t ProdRev; /*!< Product Revision */
__IO uint32_t ProdSN; /*!< Product Serial Number */
__IO uint8_t Reserved1; /*!< Reserved1 */
__IO uint16_t ManufactDate; /*!< Manufacturing Date */
__IO uint8_t CID_CRC; /*!< CID CRC */
__IO uint8_t Reserved2; /*!< Always 1 */
}HAL_SD_CardCIDTypeDef;
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group6 SD Card Status returned by ACMD13
* @{
*/
typedef struct
{
__IO uint8_t DataBusWidth; /*!< Shows the currently defined data bus width */
__IO uint8_t SecuredMode; /*!< Card is in secured mode of operation */
__IO uint16_t CardType; /*!< Carries information about card type */
__IO uint32_t ProtectedAreaSize; /*!< Carries information about the capacity of protected area */
__IO uint8_t SpeedClass; /*!< Carries information about the speed class of the card */
__IO uint8_t PerformanceMove; /*!< Carries information about the card's performance move */
__IO uint8_t AllocationUnitSize; /*!< Carries information about the card's allocation unit size */
__IO uint16_t EraseSize; /*!< Determines the number of AUs to be erased in one operation */
__IO uint8_t EraseTimeout; /*!< Determines the timeout for any number of AU erase */
__IO uint8_t EraseOffset; /*!< Carries information about the erase offset */
}HAL_SD_CardStatusTypeDef;
/**
* @}
*/
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
/** @defgroup SD_Exported_Types_Group7 SD Callback ID enumeration definition
* @{
*/
typedef enum
{
HAL_SD_TX_CPLT_CB_ID = 0x00U, /*!< SD Tx Complete Callback ID */
HAL_SD_RX_CPLT_CB_ID = 0x01U, /*!< SD Rx Complete Callback ID */
HAL_SD_ERROR_CB_ID = 0x02U, /*!< SD Error Callback ID */
HAL_SD_ABORT_CB_ID = 0x03U, /*!< SD Abort Callback ID */
HAL_SD_MSP_INIT_CB_ID = 0x10U, /*!< SD MspInit Callback ID */
HAL_SD_MSP_DEINIT_CB_ID = 0x11U /*!< SD MspDeInit Callback ID */
}HAL_SD_CallbackIDTypeDef;
/**
* @}
*/
/** @defgroup SD_Exported_Types_Group8 SD Callback pointer definition
* @{
*/
typedef void (*pSD_CallbackTypeDef) (SD_HandleTypeDef *hsd);
/**
* @}
*/
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SD_Exported_Constants Exported Constants
* @{
*/
#define BLOCKSIZE 512U /*!< Block size is 512 bytes */
/** @defgroup SD_Exported_Constansts_Group1 SD Error status enumeration Structure definition
* @{
*/
#define HAL_SD_ERROR_NONE SDMMC_ERROR_NONE /*!< No error */
#define HAL_SD_ERROR_CMD_CRC_FAIL SDMMC_ERROR_CMD_CRC_FAIL /*!< Command response received (but CRC check failed) */
#define HAL_SD_ERROR_DATA_CRC_FAIL SDMMC_ERROR_DATA_CRC_FAIL /*!< Data block sent/received (CRC check failed) */
#define HAL_SD_ERROR_CMD_RSP_TIMEOUT SDMMC_ERROR_CMD_RSP_TIMEOUT /*!< Command response timeout */
#define HAL_SD_ERROR_DATA_TIMEOUT SDMMC_ERROR_DATA_TIMEOUT /*!< Data timeout */
#define HAL_SD_ERROR_TX_UNDERRUN SDMMC_ERROR_TX_UNDERRUN /*!< Transmit FIFO underrun */
#define HAL_SD_ERROR_RX_OVERRUN SDMMC_ERROR_RX_OVERRUN /*!< Receive FIFO overrun */
#define HAL_SD_ERROR_ADDR_MISALIGNED SDMMC_ERROR_ADDR_MISALIGNED /*!< Misaligned address */
#define HAL_SD_ERROR_BLOCK_LEN_ERR SDMMC_ERROR_BLOCK_LEN_ERR /*!< Transferred block length is not allowed for the card or the
number of transferred bytes does not match the block length */
#define HAL_SD_ERROR_ERASE_SEQ_ERR SDMMC_ERROR_ERASE_SEQ_ERR /*!< An error in the sequence of erase command occurs */
#define HAL_SD_ERROR_BAD_ERASE_PARAM SDMMC_ERROR_BAD_ERASE_PARAM /*!< An invalid selection for erase groups */
#define HAL_SD_ERROR_WRITE_PROT_VIOLATION SDMMC_ERROR_WRITE_PROT_VIOLATION /*!< Attempt to program a write protect block */
#define HAL_SD_ERROR_LOCK_UNLOCK_FAILED SDMMC_ERROR_LOCK_UNLOCK_FAILED /*!< Sequence or password error has been detected in unlock
command or if there was an attempt to access a locked card */
#define HAL_SD_ERROR_COM_CRC_FAILED SDMMC_ERROR_COM_CRC_FAILED /*!< CRC check of the previous command failed */
#define HAL_SD_ERROR_ILLEGAL_CMD SDMMC_ERROR_ILLEGAL_CMD /*!< Command is not legal for the card state */
#define HAL_SD_ERROR_CARD_ECC_FAILED SDMMC_ERROR_CARD_ECC_FAILED /*!< Card internal ECC was applied but failed to correct the data */
#define HAL_SD_ERROR_CC_ERR SDMMC_ERROR_CC_ERR /*!< Internal card controller error */
#define HAL_SD_ERROR_GENERAL_UNKNOWN_ERR SDMMC_ERROR_GENERAL_UNKNOWN_ERR /*!< General or unknown error */
#define HAL_SD_ERROR_STREAM_READ_UNDERRUN SDMMC_ERROR_STREAM_READ_UNDERRUN /*!< The card could not sustain data reading in stream rmode */
#define HAL_SD_ERROR_STREAM_WRITE_OVERRUN SDMMC_ERROR_STREAM_WRITE_OVERRUN /*!< The card could not sustain data programming in stream mode */
#define HAL_SD_ERROR_CID_CSD_OVERWRITE SDMMC_ERROR_CID_CSD_OVERWRITE /*!< CID/CSD overwrite error */
#define HAL_SD_ERROR_WP_ERASE_SKIP SDMMC_ERROR_WP_ERASE_SKIP /*!< Only partial address space was erased */
#define HAL_SD_ERROR_CARD_ECC_DISABLED SDMMC_ERROR_CARD_ECC_DISABLED /*!< Command has been executed without using internal ECC */
#define HAL_SD_ERROR_ERASE_RESET SDMMC_ERROR_ERASE_RESET /*!< Erase sequence was cleared before executing because an out
of erase sequence command was received */
#define HAL_SD_ERROR_AKE_SEQ_ERR SDMMC_ERROR_AKE_SEQ_ERR /*!< Error in sequence of authentication */
#define HAL_SD_ERROR_INVALID_VOLTRANGE SDMMC_ERROR_INVALID_VOLTRANGE /*!< Error in case of invalid voltage range */
#define HAL_SD_ERROR_ADDR_OUT_OF_RANGE SDMMC_ERROR_ADDR_OUT_OF_RANGE /*!< Error when addressed block is out of range */
#define HAL_SD_ERROR_REQUEST_NOT_APPLICABLE SDMMC_ERROR_REQUEST_NOT_APPLICABLE /*!< Error when command request is not applicable */
#define HAL_SD_ERROR_PARAM SDMMC_ERROR_INVALID_PARAMETER /*!< the used parameter is not valid */
#define HAL_SD_ERROR_UNSUPPORTED_FEATURE SDMMC_ERROR_UNSUPPORTED_FEATURE /*!< Error when feature is not insupported */
#define HAL_SD_ERROR_BUSY SDMMC_ERROR_BUSY /*!< Error when transfer process is busy */
#define HAL_SD_ERROR_DMA SDMMC_ERROR_DMA /*!< Error while DMA transfer */
#define HAL_SD_ERROR_TIMEOUT SDMMC_ERROR_TIMEOUT /*!< Timeout error */
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
#define HAL_SD_ERROR_INVALID_CALLBACK SDMMC_ERROR_INVALID_PARAMETER /*!< Invalid callback error */
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SD_Exported_Constansts_Group2 SD context enumeration
* @{
*/
#define SD_CONTEXT_NONE 0x00000000U /*!< None */
#define SD_CONTEXT_READ_SINGLE_BLOCK 0x00000001U /*!< Read single block operation */
#define SD_CONTEXT_READ_MULTIPLE_BLOCK 0x00000002U /*!< Read multiple blocks operation */
#define SD_CONTEXT_WRITE_SINGLE_BLOCK 0x00000010U /*!< Write single block operation */
#define SD_CONTEXT_WRITE_MULTIPLE_BLOCK 0x00000020U /*!< Write multiple blocks operation */
#define SD_CONTEXT_IT 0x00000008U /*!< Process in Interrupt mode */
#define SD_CONTEXT_DMA 0x00000080U /*!< Process in DMA mode */
/**
* @}
*/
/** @defgroup SD_Exported_Constansts_Group3 SD Supported Memory Cards
* @{
*/
#define CARD_SDSC 0x00000000U /*!< SD Standard Capacity <2Go */
#define CARD_SDHC_SDXC 0x00000001U /*!< SD High Capacity <32Go, SD Extended Capacity <2To */
#define CARD_SECURED 0x00000003U
/**
* @}
*/
/** @defgroup SD_Exported_Constansts_Group4 SD Supported Version
* @{
*/
#define CARD_V1_X 0x00000000U
#define CARD_V2_X 0x00000001U
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SD_Exported_macros SD Exported Macros
* @brief macros to handle interrupts and specific clock configurations
* @{
*/
/** @brief Reset SD handle state.
* @param __HANDLE__ : SD handle.
* @retval None
*/
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
#define __HAL_SD_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_SD_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_SD_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SD_STATE_RESET)
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
/**
* @brief Enable the SD device.
* @retval None
*/
#define __HAL_SD_ENABLE(__HANDLE__) __SDIO_ENABLE((__HANDLE__)->Instance)
/**
* @brief Disable the SD device.
* @retval None
*/
#define __HAL_SD_DISABLE(__HANDLE__) __SDIO_DISABLE((__HANDLE__)->Instance)
/**
* @brief Enable the SDMMC DMA transfer.
* @retval None
*/
#define __HAL_SD_DMA_ENABLE(__HANDLE__) __SDIO_DMA_ENABLE((__HANDLE__)->Instance)
/**
* @brief Disable the SDMMC DMA transfer.
* @retval None
*/
#define __HAL_SD_DMA_DISABLE(__HANDLE__) __SDIO_DMA_DISABLE((__HANDLE__)->Instance)
/**
* @brief Enable the SD device interrupt.
* @param __HANDLE__: SD Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt sources to be enabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SDIO interrupt received interrupt
* @retval None
*/
#define __HAL_SD_ENABLE_IT(__HANDLE__, __INTERRUPT__) __SDIO_ENABLE_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Disable the SD device interrupt.
* @param __HANDLE__: SD Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt sources to be disabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SDIO interrupt received interrupt
* @retval None
*/
#define __HAL_SD_DISABLE_IT(__HANDLE__, __INTERRUPT__) __SDIO_DISABLE_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Check whether the specified SD flag is set or not.
* @param __HANDLE__: SD Handle
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, DATACOUNT, is zero)
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_CMDACT: Command transfer in progress
* @arg SDIO_FLAG_TXACT: Data transmit in progress
* @arg SDIO_FLAG_RXACT: Data receive in progress
* @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty
* @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full
* @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full
* @arg SDIO_FLAG_RXFIFOF: Receive FIFO full
* @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty
* @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty
* @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO
* @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO
* @arg SDIO_FLAG_SDIOIT: SDIO interrupt received
* @retval The new state of SD FLAG (SET or RESET).
*/
#define __HAL_SD_GET_FLAG(__HANDLE__, __FLAG__) __SDIO_GET_FLAG((__HANDLE__)->Instance, (__FLAG__))
/**
* @brief Clear the SD's pending flags.
* @param __HANDLE__: SD Handle
* @param __FLAG__: specifies the flag to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, DATACOUNT, is zero)
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_SDIOIT: SDIO interrupt received
* @retval None
*/
#define __HAL_SD_CLEAR_FLAG(__HANDLE__, __FLAG__) __SDIO_CLEAR_FLAG((__HANDLE__)->Instance, (__FLAG__))
/**
* @brief Check whether the specified SD interrupt has occurred or not.
* @param __HANDLE__: SD Handle
* @param __INTERRUPT__: specifies the SDMMC interrupt source to check.
* This parameter can be one of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SDIO interrupt received interrupt
* @retval The new state of SD IT (SET or RESET).
*/
#define __HAL_SD_GET_IT(__HANDLE__, __INTERRUPT__) __SDIO_GET_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @brief Clear the SD's interrupt pending bits.
* @param __HANDLE__: SD Handle
* @param __INTERRUPT__: specifies the interrupt pending bit to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, DATACOUNT, is zero) interrupt
* @arg SDIO_IT_SDIOIT: SDIO interrupt received interrupt
* @retval None
*/
#define __HAL_SD_CLEAR_IT(__HANDLE__, __INTERRUPT__) __SDIO_CLEAR_IT((__HANDLE__)->Instance, (__INTERRUPT__))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SD_Exported_Functions SD Exported Functions
* @{
*/
/** @defgroup SD_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
HAL_StatusTypeDef HAL_SD_Init(SD_HandleTypeDef *hsd);
HAL_StatusTypeDef HAL_SD_InitCard(SD_HandleTypeDef *hsd);
HAL_StatusTypeDef HAL_SD_DeInit (SD_HandleTypeDef *hsd);
void HAL_SD_MspInit(SD_HandleTypeDef *hsd);
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd);
/**
* @}
*/
/** @defgroup SD_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_SD_ReadBlocks(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout);
HAL_StatusTypeDef HAL_SD_WriteBlocks(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout);
HAL_StatusTypeDef HAL_SD_Erase(SD_HandleTypeDef *hsd, uint32_t BlockStartAdd, uint32_t BlockEndAdd);
/* Non-Blocking mode: IT */
HAL_StatusTypeDef HAL_SD_ReadBlocks_IT(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
HAL_StatusTypeDef HAL_SD_WriteBlocks_IT(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_SD_ReadBlocks_DMA(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
HAL_StatusTypeDef HAL_SD_WriteBlocks_DMA(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks);
void HAL_SD_IRQHandler(SD_HandleTypeDef *hsd);
/* Callback in non blocking modes (DMA) */
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd);
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd);
void HAL_SD_ErrorCallback(SD_HandleTypeDef *hsd);
void HAL_SD_AbortCallback(SD_HandleTypeDef *hsd);
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U)
/* SD callback registering/unregistering */
HAL_StatusTypeDef HAL_SD_RegisterCallback (SD_HandleTypeDef *hsd, HAL_SD_CallbackIDTypeDef CallbackId, pSD_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_SD_UnRegisterCallback(SD_HandleTypeDef *hsd, HAL_SD_CallbackIDTypeDef CallbackId);
#endif /* USE_HAL_SD_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SD_Exported_Functions_Group3 Peripheral Control functions
* @{
*/
HAL_StatusTypeDef HAL_SD_ConfigWideBusOperation(SD_HandleTypeDef *hsd, uint32_t WideMode);
/**
* @}
*/
/** @defgroup SD_Exported_Functions_Group4 SD card related functions
* @{
*/
HAL_StatusTypeDef HAL_SD_SendSDStatus(SD_HandleTypeDef *hsd, uint32_t *pSDstatus);
HAL_SD_CardStateTypeDef HAL_SD_GetCardState(SD_HandleTypeDef *hsd);
HAL_StatusTypeDef HAL_SD_GetCardCID(SD_HandleTypeDef *hsd, HAL_SD_CardCIDTypeDef *pCID);
HAL_StatusTypeDef HAL_SD_GetCardCSD(SD_HandleTypeDef *hsd, HAL_SD_CardCSDTypeDef *pCSD);
HAL_StatusTypeDef HAL_SD_GetCardStatus(SD_HandleTypeDef *hsd, HAL_SD_CardStatusTypeDef *pStatus);
HAL_StatusTypeDef HAL_SD_GetCardInfo(SD_HandleTypeDef *hsd, HAL_SD_CardInfoTypeDef *pCardInfo);
/**
* @}
*/
/** @defgroup SD_Exported_Functions_Group5 Peripheral State and Errors functions
* @{
*/
HAL_SD_StateTypeDef HAL_SD_GetState(SD_HandleTypeDef *hsd);
uint32_t HAL_SD_GetError(SD_HandleTypeDef *hsd);
/**
* @}
*/
/** @defgroup SD_Exported_Functions_Group6 Perioheral Abort management
* @{
*/
HAL_StatusTypeDef HAL_SD_Abort(SD_HandleTypeDef *hsd);
HAL_StatusTypeDef HAL_SD_Abort_IT(SD_HandleTypeDef *hsd);
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/** @defgroup SD_Private_Types SD Private Types
* @{
*/
/**
* @}
*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup SD_Private_Defines SD Private Defines
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup SD_Private_Variables SD Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SD_Private_Constants SD Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SD_Private_Macros SD Private Macros
* @{
*/
/**
* @}
*/
/* Private functions prototypes ----------------------------------------------*/
/** @defgroup SD_Private_Functions_Prototypes SD Private Functions Prototypes
* @{
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SD_Private_Functions SD Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* SDIO */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_SD_H */

View file

@ -0,0 +1,743 @@
/**
******************************************************************************
* @file stm32f1xx_hal_smartcard.h
* @author MCD Application Team
* @brief Header file of SMARTCARD HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_SMARTCARD_H
#define __STM32F1xx_HAL_SMARTCARD_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup SMARTCARD
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup SMARTCARD_Exported_Types SMARTCARD Exported Types
* @{
*/
/**
* @brief SMARTCARD Init Structure definition
*/
typedef struct
{
uint32_t BaudRate; /*!< This member configures the SmartCard communication baud rate.
The baud rate is computed using the following formula:
- IntegerDivider = ((PCLKx) / (16 * (hsc->Init.BaudRate)))
- FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 16) + 0.5 */
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref SMARTCARD_Word_Length */
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref SMARTCARD_Stop_Bits */
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref SMARTCARD_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits).*/
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref SMARTCARD_Mode */
uint32_t CLKPolarity; /*!< Specifies the steady state of the serial clock.
This parameter can be a value of @ref SMARTCARD_Clock_Polarity */
uint32_t CLKPhase; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref SMARTCARD_Clock_Phase */
uint32_t CLKLastBit; /*!< Specifies whether the clock pulse corresponding to the last transmitted
data bit (MSB) has to be output on the SCLK pin in synchronous mode.
This parameter can be a value of @ref SMARTCARD_Last_Bit */
uint32_t Prescaler; /*!< Specifies the SmartCard Prescaler value used for dividing the system clock
to provide the smartcard clock. The value given in the register (5 significant bits)
is multiplied by 2 to give the division factor of the source clock frequency.
This parameter can be a value of @ref SMARTCARD_Prescaler */
uint32_t GuardTime; /*!< Specifies the SmartCard Guard Time value in terms of number of baud clocks */
uint32_t NACKState; /*!< Specifies the SmartCard NACK Transmission state.
This parameter can be a value of @ref SMARTCARD_NACK_State */
}SMARTCARD_InitTypeDef;
/**
* @brief HAL SMARTCARD State structures definition
* @note HAL SMARTCARD State value is a combination of 2 different substates: gState and RxState.
* - gState contains SMARTCARD state information related to global Handle management
* and also information related to Tx operations.
* gState value coding follow below described bitmap :
* b7-b6 Error information
* 00 : No Error
* 01 : (Not Used)
* 10 : Timeout
* 11 : Error
* b5 IP initialization status
* 0 : Reset (IP not initialized)
* 1 : Init done (IP initialized. HAL SMARTCARD Init function already called)
* b4-b3 (not used)
* xx : Should be set to 00
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (IP busy with some configuration or internal operations)
* b1 (not used)
* x : Should be set to 0
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
* - RxState contains information related to Rx operations.
* RxState value coding follow below described bitmap :
* b7-b6 (not used)
* xx : Should be set to 00
* b5 IP initialization status
* 0 : Reset (IP not initialized)
* 1 : Init done (IP initialized)
* b4-b2 (not used)
* xxx : Should be set to 000
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 (not used)
* x : Should be set to 0.
*/
typedef enum
{
HAL_SMARTCARD_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized
Value is allowed for gState and RxState */
HAL_SMARTCARD_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use
Value is allowed for gState and RxState */
HAL_SMARTCARD_STATE_BUSY = 0x24U, /*!< an internal process is ongoing
Value is allowed for gState only */
HAL_SMARTCARD_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing
Value is allowed for gState only */
HAL_SMARTCARD_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing
Value is allowed for RxState only */
HAL_SMARTCARD_STATE_BUSY_TX_RX = 0x23U, /*!< Data Transmission and Reception process is ongoing
Not to be used for neither gState nor RxState.
Value is result of combination (Or) between gState and RxState values */
HAL_SMARTCARD_STATE_TIMEOUT = 0xA0U, /*!< Timeout state
Value is allowed for gState only */
HAL_SMARTCARD_STATE_ERROR = 0xE0U /*!< Error
Value is allowed for gState only */
}HAL_SMARTCARD_StateTypeDef;
/**
* @brief SMARTCARD handle Structure definition
*/
typedef struct __SMARTCARD_HandleTypeDef
{
USART_TypeDef *Instance; /*!< USART registers base address */
SMARTCARD_InitTypeDef Init; /*!< SmartCard communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to SmartCard Tx transfer Buffer */
uint16_t TxXferSize; /*!< SmartCard Tx Transfer size */
__IO uint16_t TxXferCount; /*!< SmartCard Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to SmartCard Rx transfer Buffer */
uint16_t RxXferSize; /*!< SmartCard Rx Transfer size */
__IO uint16_t RxXferCount; /*!< SmartCard Rx Transfer Counter */
DMA_HandleTypeDef *hdmatx; /*!< SmartCard Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< SmartCard Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_SMARTCARD_StateTypeDef gState; /*!< SmartCard state information related to global Handle management
and also related to Tx operations.
This parameter can be a value of @ref HAL_SMARTCARD_StateTypeDef */
__IO HAL_SMARTCARD_StateTypeDef RxState; /*!< SmartCard state information related to Rx operations.
This parameter can be a value of @ref HAL_SMARTCARD_StateTypeDef */
__IO uint32_t ErrorCode; /*!< SmartCard Error code */
#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1)
void (* TxCpltCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Tx Complete Callback */
void (* RxCpltCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Rx Complete Callback */
void (* ErrorCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Error Callback */
void (* AbortCpltCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Abort Complete Callback */
void (* AbortTransmitCpltCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Abort Transmit Complete Callback */
void (* AbortReceiveCpltCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Abort Receive Complete Callback */
void (* MspInitCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Msp Init callback */
void (* MspDeInitCallback)(struct __SMARTCARD_HandleTypeDef *hsc); /*!< SMARTCARD Msp DeInit callback */
#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */
} SMARTCARD_HandleTypeDef;
#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1)
/**
* @brief HAL SMARTCARD Callback ID enumeration definition
*/
typedef enum
{
HAL_SMARTCARD_TX_COMPLETE_CB_ID = 0x00U, /*!< SMARTCARD Tx Complete Callback ID */
HAL_SMARTCARD_RX_COMPLETE_CB_ID = 0x01U, /*!< SMARTCARD Rx Complete Callback ID */
HAL_SMARTCARD_ERROR_CB_ID = 0x02U, /*!< SMARTCARD Error Callback ID */
HAL_SMARTCARD_ABORT_COMPLETE_CB_ID = 0x03U, /*!< SMARTCARD Abort Complete Callback ID */
HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID = 0x04U, /*!< SMARTCARD Abort Transmit Complete Callback ID */
HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID = 0x05U, /*!< SMARTCARD Abort Receive Complete Callback ID */
HAL_SMARTCARD_MSPINIT_CB_ID = 0x08U, /*!< SMARTCARD MspInit callback ID */
HAL_SMARTCARD_MSPDEINIT_CB_ID = 0x09U /*!< SMARTCARD MspDeInit callback ID */
} HAL_SMARTCARD_CallbackIDTypeDef;
/**
* @brief HAL SMARTCARD Callback pointer definition
*/
typedef void (*pSMARTCARD_CallbackTypeDef)(SMARTCARD_HandleTypeDef *hsc); /*!< pointer to an SMARTCARD callback function */
#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SMARTCARD_Exported_Constants SMARTCARD Exported constants
* @{
*/
/** @defgroup SMARTCARD_Error_Code SMARTCARD Error Code
* @{
*/
#define HAL_SMARTCARD_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_SMARTCARD_ERROR_PE 0x00000001U /*!< Parity error */
#define HAL_SMARTCARD_ERROR_NE 0x00000002U /*!< Noise error */
#define HAL_SMARTCARD_ERROR_FE 0x00000004U /*!< Frame error */
#define HAL_SMARTCARD_ERROR_ORE 0x00000008U /*!< Overrun error */
#define HAL_SMARTCARD_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1)
#define HAL_SMARTCARD_ERROR_INVALID_CALLBACK 0x00000020U /*!< Invalid Callback error */
#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SMARTCARD_Word_Length SMARTCARD Word Length
* @{
*/
#define SMARTCARD_WORDLENGTH_9B ((uint32_t)USART_CR1_M)
/**
* @}
*/
/** @defgroup SMARTCARD_Stop_Bits SMARTCARD Number of Stop Bits
* @{
*/
#define SMARTCARD_STOPBITS_0_5 ((uint32_t)USART_CR2_STOP_0)
#define SMARTCARD_STOPBITS_1_5 ((uint32_t)(USART_CR2_STOP_0 | USART_CR2_STOP_1))
/**
* @}
*/
/** @defgroup SMARTCARD_Parity SMARTCARD Parity
* @{
*/
#define SMARTCARD_PARITY_EVEN ((uint32_t)USART_CR1_PCE)
#define SMARTCARD_PARITY_ODD ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
/**
* @}
*/
/** @defgroup SMARTCARD_Mode SMARTCARD Mode
* @{
*/
#define SMARTCARD_MODE_RX ((uint32_t)USART_CR1_RE)
#define SMARTCARD_MODE_TX ((uint32_t)USART_CR1_TE)
#define SMARTCARD_MODE_TX_RX ((uint32_t)(USART_CR1_TE |USART_CR1_RE))
/**
* @}
*/
/** @defgroup SMARTCARD_Clock_Polarity SMARTCARD Clock Polarity
* @{
*/
#define SMARTCARD_POLARITY_LOW 0x00000000U
#define SMARTCARD_POLARITY_HIGH ((uint32_t)USART_CR2_CPOL)
/**
* @}
*/
/** @defgroup SMARTCARD_Clock_Phase SMARTCARD Clock Phase
* @{
*/
#define SMARTCARD_PHASE_1EDGE 0x00000000U
#define SMARTCARD_PHASE_2EDGE ((uint32_t)USART_CR2_CPHA)
/**
* @}
*/
/** @defgroup SMARTCARD_Last_Bit SMARTCARD Last Bit
* @{
*/
#define SMARTCARD_LASTBIT_DISABLE 0x00000000U
#define SMARTCARD_LASTBIT_ENABLE ((uint32_t)USART_CR2_LBCL)
/**
* @}
*/
/** @defgroup SMARTCARD_NACK_State SMARTCARD NACK State
* @{
*/
#define SMARTCARD_NACK_ENABLE ((uint32_t)USART_CR3_NACK)
#define SMARTCARD_NACK_DISABLE 0x00000000U
/**
* @}
*/
/** @defgroup SMARTCARD_DMA_Requests SMARTCARD DMA requests
* @{
*/
#define SMARTCARD_DMAREQ_TX ((uint32_t)USART_CR3_DMAT)
#define SMARTCARD_DMAREQ_RX ((uint32_t)USART_CR3_DMAR)
/**
* @}
*/
/** @defgroup SMARTCARD_Prescaler SMARTCARD Prescaler
* @{
*/
#define SMARTCARD_PRESCALER_SYSCLK_DIV2 0x00000001U /*!< SYSCLK divided by 2 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV4 0x00000002U /*!< SYSCLK divided by 4 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV6 0x00000003U /*!< SYSCLK divided by 6 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV8 0x00000004U /*!< SYSCLK divided by 8 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV10 0x00000005U /*!< SYSCLK divided by 10 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV12 0x00000006U /*!< SYSCLK divided by 12 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV14 0x00000007U /*!< SYSCLK divided by 14 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV16 0x00000008U /*!< SYSCLK divided by 16 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV18 0x00000009U /*!< SYSCLK divided by 18 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV20 0x0000000AU /*!< SYSCLK divided by 20 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV22 0x0000000BU /*!< SYSCLK divided by 22 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV24 0x0000000CU /*!< SYSCLK divided by 24 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV26 0x0000000DU /*!< SYSCLK divided by 26 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV28 0x0000000EU /*!< SYSCLK divided by 28 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV30 0x0000000FU /*!< SYSCLK divided by 30 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV32 0x00000010U /*!< SYSCLK divided by 32 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV34 0x00000011U /*!< SYSCLK divided by 34 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV36 0x00000012U /*!< SYSCLK divided by 36 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV38 0x00000013U /*!< SYSCLK divided by 38 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV40 0x00000014U /*!< SYSCLK divided by 40 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV42 0x00000015U /*!< SYSCLK divided by 42 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV44 0x00000016U /*!< SYSCLK divided by 44 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV46 0x00000017U /*!< SYSCLK divided by 46 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV48 0x00000018U /*!< SYSCLK divided by 48 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV50 0x00000019U /*!< SYSCLK divided by 50 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV52 0x0000001AU /*!< SYSCLK divided by 52 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV54 0x0000001BU /*!< SYSCLK divided by 54 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV56 0x0000001CU /*!< SYSCLK divided by 56 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV58 0x0000001DU /*!< SYSCLK divided by 58 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV60 0x0000001EU /*!< SYSCLK divided by 60 */
#define SMARTCARD_PRESCALER_SYSCLK_DIV62 0x0000001FU /*!< SYSCLK divided by 62 */
/**
* @}
*/
/** @defgroup SmartCard_Flags SMARTCARD Flags
* Elements values convention: 0xXXXX
* - 0xXXXX : Flag mask in the SR register
* @{
*/
#define SMARTCARD_FLAG_TXE ((uint32_t)USART_SR_TXE)
#define SMARTCARD_FLAG_TC ((uint32_t)USART_SR_TC)
#define SMARTCARD_FLAG_RXNE ((uint32_t)USART_SR_RXNE)
#define SMARTCARD_FLAG_IDLE ((uint32_t)USART_SR_IDLE)
#define SMARTCARD_FLAG_ORE ((uint32_t)USART_SR_ORE)
#define SMARTCARD_FLAG_NE ((uint32_t)USART_SR_NE)
#define SMARTCARD_FLAG_FE ((uint32_t)USART_SR_FE)
#define SMARTCARD_FLAG_PE ((uint32_t)USART_SR_PE)
/**
* @}
*/
/** @defgroup SmartCard_Interrupt_definition SMARTCARD Interrupts Definition
* Elements values convention: 0xY000XXXX
* - XXXX : Interrupt mask in the Y register
* - Y : Interrupt source register (2bits)
* - 01: CR1 register
* - 11: CR3 register
* @{
*/
#define SMARTCARD_IT_PE ((uint32_t)(SMARTCARD_CR1_REG_INDEX << 28U | USART_CR1_PEIE))
#define SMARTCARD_IT_TXE ((uint32_t)(SMARTCARD_CR1_REG_INDEX << 28U | USART_CR1_TXEIE))
#define SMARTCARD_IT_TC ((uint32_t)(SMARTCARD_CR1_REG_INDEX << 28U | USART_CR1_TCIE))
#define SMARTCARD_IT_RXNE ((uint32_t)(SMARTCARD_CR1_REG_INDEX << 28U | USART_CR1_RXNEIE))
#define SMARTCARD_IT_IDLE ((uint32_t)(SMARTCARD_CR1_REG_INDEX << 28U | USART_CR1_IDLEIE))
#define SMARTCARD_IT_ERR ((uint32_t)(SMARTCARD_CR3_REG_INDEX << 28U | USART_CR3_EIE))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SMARTCARD_Exported_Macros SMARTCARD Exported Macros
* @{
*/
/** @brief Reset SMARTCARD handle gstate & RxState
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#if USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1
#define __HAL_SMARTCARD_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_SMARTCARD_STATE_RESET; \
(__HANDLE__)->RxState = HAL_SMARTCARD_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0U)
#else
#define __HAL_SMARTCARD_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_SMARTCARD_STATE_RESET; \
(__HANDLE__)->RxState = HAL_SMARTCARD_STATE_RESET; \
} while(0U)
#endif /*USE_HAL_SMARTCARD_REGISTER_CALLBACKS */
/** @brief Flush the Smartcard DR register
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_FLUSH_DRREGISTER(__HANDLE__) ((__HANDLE__)->Instance->DR)
/** @brief Check whether the specified Smartcard flag is set or not.
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg SMARTCARD_FLAG_TXE: Transmit data register empty flag
* @arg SMARTCARD_FLAG_TC: Transmission Complete flag
* @arg SMARTCARD_FLAG_RXNE: Receive data register not empty flag
* @arg SMARTCARD_FLAG_IDLE: Idle Line detection flag
* @arg SMARTCARD_FLAG_ORE: Overrun Error flag
* @arg SMARTCARD_FLAG_NE: Noise Error flag
* @arg SMARTCARD_FLAG_FE: Framing Error flag
* @arg SMARTCARD_FLAG_PE: Parity Error flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_SMARTCARD_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
/** @brief Clear the specified Smartcard pending flags.
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be any combination of the following values:
* @arg SMARTCARD_FLAG_TC: Transmission Complete flag.
* @arg SMARTCARD_FLAG_RXNE: Receive data register not empty flag.
*
* @note PE (Parity error), FE (Framing error), NE (Noise error) and ORE (Overrun
* error) flags are cleared by software sequence: a read operation to
* USART_SR register followed by a read operation to USART_DR register.
* @note RXNE flag can be also cleared by a read to the USART_DR register.
* @note TC flag can be also cleared by software sequence: a read operation to
* USART_SR register followed by a write operation to USART_DR register.
* @note TXE flag is cleared only by a write to the USART_DR register.
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/** @brief Clear the SMARTCARD PE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_PEFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR; \
tmpreg = (__HANDLE__)->Instance->DR; \
UNUSED(tmpreg); \
} while(0U)
/** @brief Clear the SMARTCARD FE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_FEFLAG(__HANDLE__) __HAL_SMARTCARD_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the SMARTCARD NE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_NEFLAG(__HANDLE__) __HAL_SMARTCARD_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the SMARTCARD ORE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_OREFLAG(__HANDLE__) __HAL_SMARTCARD_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the SMARTCARD IDLE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_CLEAR_IDLEFLAG(__HANDLE__) __HAL_SMARTCARD_CLEAR_PEFLAG(__HANDLE__)
/** @brief Enable the specified SmartCard interrupt.
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __INTERRUPT__ specifies the SMARTCARD interrupt to enable.
* This parameter can be one of the following values:
* @arg SMARTCARD_IT_TXE: Transmit Data Register empty interrupt
* @arg SMARTCARD_IT_TC: Transmission complete interrupt
* @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
* @arg SMARTCARD_IT_IDLE: Idle line detection interrupt
* @arg SMARTCARD_IT_PE: Parity Error interrupt
* @arg SMARTCARD_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_SMARTCARD_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == SMARTCARD_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & SMARTCARD_IT_MASK)): \
((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & SMARTCARD_IT_MASK)))
/** @brief Disable the specified SmartCard interrupt.
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __INTERRUPT__ specifies the SMARTCARD interrupt to disable.
* This parameter can be one of the following values:
* @arg SMARTCARD_IT_TXE: Transmit Data Register empty interrupt
* @arg SMARTCARD_IT_TC: Transmission complete interrupt
* @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
* @arg SMARTCARD_IT_IDLE: Idle line detection interrupt
* @arg SMARTCARD_IT_PE: Parity Error interrupt
* @arg SMARTCARD_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_SMARTCARD_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == SMARTCARD_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & SMARTCARD_IT_MASK)): \
((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & SMARTCARD_IT_MASK)))
/** @brief Checks whether the specified SmartCard interrupt has occurred or not.
* @param __HANDLE__ specifies the SmartCard Handle.
* @param __IT__ specifies the SMARTCARD interrupt source to check.
* This parameter can be one of the following values:
* @arg SMARTCARD_IT_TXE: Transmit Data Register empty interrupt
* @arg SMARTCARD_IT_TC: Transmission complete interrupt
* @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
* @arg SMARTCARD_IT_IDLE: Idle line detection interrupt
* @arg SMARTCARD_IT_ERR: Error interrupt
* @arg SMARTCARD_IT_PE: Parity Error interrupt
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_SMARTCARD_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28U) == SMARTCARD_CR1_REG_INDEX)? (__HANDLE__)->Instance->CR1: (__HANDLE__)->Instance->CR3) & (((uint32_t)(__IT__)) & SMARTCARD_IT_MASK))
/** @brief Enable the USART associated to the SMARTCARD Handle
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= USART_CR1_UE)
/** @brief Disable the USART associated to the SMARTCARD Handle
* @param __HANDLE__ specifies the SMARTCARD Handle.
* SMARTCARD Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_SMARTCARD_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~USART_CR1_UE)
/** @brief Macros to enable the SmartCard DMA request.
* @param __HANDLE__ specifies the SmartCard Handle.
* @param __REQUEST__ specifies the SmartCard DMA request.
* This parameter can be one of the following values:
* @arg SMARTCARD_DMAREQ_TX: SmartCard DMA transmit request
* @arg SMARTCARD_DMAREQ_RX: SmartCard DMA receive request
* @retval None
*/
#define __HAL_SMARTCARD_DMA_REQUEST_ENABLE(__HANDLE__, __REQUEST__) ((__HANDLE__)->Instance->CR3 |= (__REQUEST__))
/** @brief Macros to disable the SmartCard DMA request.
* @param __HANDLE__ specifies the SmartCard Handle.
* @param __REQUEST__ specifies the SmartCard DMA request.
* This parameter can be one of the following values:
* @arg SMARTCARD_DMAREQ_TX: SmartCard DMA transmit request
* @arg SMARTCARD_DMAREQ_RX: SmartCard DMA receive request
* @retval None
*/
#define __HAL_SMARTCARD_DMA_REQUEST_DISABLE(__HANDLE__, __REQUEST__) ((__HANDLE__)->Instance->CR3 &= ~(__REQUEST__))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SMARTCARD_Exported_Functions
* @{
*/
/** @addtogroup SMARTCARD_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_ReInit(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsc);
#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1)
/* Callbacks Register/UnRegister functions ***********************************/
HAL_StatusTypeDef HAL_SMARTCARD_RegisterCallback(SMARTCARD_HandleTypeDef *hsc, HAL_SMARTCARD_CallbackIDTypeDef CallbackID, pSMARTCARD_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_SMARTCARD_UnRegisterCallback(SMARTCARD_HandleTypeDef *hsc, HAL_SMARTCARD_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup SMARTCARD_Exported_Functions_Group2
* @{
*/
/* IO operation functions *******************************************************/
HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsc, const uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsc, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_SMARTCARD_Abort(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_Abort_IT(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit_IT(SMARTCARD_HandleTypeDef *hsc);
HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive_IT(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_AbortCpltCallback(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_AbortTransmitCpltCallback(SMARTCARD_HandleTypeDef *hsc);
void HAL_SMARTCARD_AbortReceiveCpltCallback(SMARTCARD_HandleTypeDef *hsc);
/**
* @}
*/
/** @addtogroup SMARTCARD_Exported_Functions_Group3
* @{
*/
/* Peripheral State functions **************************************************/
HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(const SMARTCARD_HandleTypeDef *hsc);
uint32_t HAL_SMARTCARD_GetError(const SMARTCARD_HandleTypeDef *hsc);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SMARTCARD_Private_Constants SMARTCARD Private Constants
* @{
*/
/** @brief SMARTCARD interruptions flag mask
*
*/
#define SMARTCARD_IT_MASK ((uint32_t) USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RXNEIE | \
USART_CR1_IDLEIE | USART_CR3_EIE )
#define SMARTCARD_CR1_REG_INDEX 1U
#define SMARTCARD_CR3_REG_INDEX 3U
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @defgroup SMARTCARD_Private_Macros SMARTCARD Private Macros
* @{
*/
#define IS_SMARTCARD_WORD_LENGTH(LENGTH) ((LENGTH) == SMARTCARD_WORDLENGTH_9B)
#define IS_SMARTCARD_STOPBITS(STOPBITS) (((STOPBITS) == SMARTCARD_STOPBITS_0_5) || \
((STOPBITS) == SMARTCARD_STOPBITS_1_5))
#define IS_SMARTCARD_PARITY(PARITY) (((PARITY) == SMARTCARD_PARITY_EVEN) || \
((PARITY) == SMARTCARD_PARITY_ODD))
#define IS_SMARTCARD_MODE(MODE) ((((MODE) & 0x0000FFF3U) == 0x00U) && ((MODE) != 0x000000U))
#define IS_SMARTCARD_POLARITY(CPOL) (((CPOL) == SMARTCARD_POLARITY_LOW) || ((CPOL) == SMARTCARD_POLARITY_HIGH))
#define IS_SMARTCARD_PHASE(CPHA) (((CPHA) == SMARTCARD_PHASE_1EDGE) || ((CPHA) == SMARTCARD_PHASE_2EDGE))
#define IS_SMARTCARD_LASTBIT(LASTBIT) (((LASTBIT) == SMARTCARD_LASTBIT_DISABLE) || \
((LASTBIT) == SMARTCARD_LASTBIT_ENABLE))
#define IS_SMARTCARD_NACK_STATE(NACK) (((NACK) == SMARTCARD_NACK_ENABLE) || \
((NACK) == SMARTCARD_NACK_DISABLE))
#define IS_SMARTCARD_BAUDRATE(BAUDRATE) ((BAUDRATE) < 4500001U)
#define SMARTCARD_DIV(__PCLK__, __BAUD__) (((__PCLK__)*25U)/(4U*(__BAUD__)))
#define SMARTCARD_DIVMANT(__PCLK__, __BAUD__) (SMARTCARD_DIV((__PCLK__), (__BAUD__))/100U)
#define SMARTCARD_DIVFRAQ(__PCLK__, __BAUD__) ((((SMARTCARD_DIV((__PCLK__), (__BAUD__)) - (SMARTCARD_DIVMANT((__PCLK__), (__BAUD__)) * 100U)) * 16U) + 50U) / 100U)
/* SMARTCARD BRR = mantissa + overflow + fraction
= (SMARTCARD DIVMANT << 4) + (SMARTCARD DIVFRAQ & 0xF0) + (SMARTCARD DIVFRAQ & 0x0FU) */
#define SMARTCARD_BRR(__PCLK__, __BAUD__) (((SMARTCARD_DIVMANT((__PCLK__), (__BAUD__)) << 4U) + \
(SMARTCARD_DIVFRAQ((__PCLK__), (__BAUD__)) & 0xF0U)) + \
(SMARTCARD_DIVFRAQ((__PCLK__), (__BAUD__)) & 0x0FU))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SMARTCARD_Private_Functions SMARTCARD Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_SMARTCARD_H */

View file

@ -0,0 +1,730 @@
/**
******************************************************************************
* @file stm32f1xx_hal_spi.h
* @author MCD Application Team
* @brief Header file of SPI HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_SPI_H
#define STM32F1xx_HAL_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup SPI
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup SPI_Exported_Types SPI Exported Types
* @{
*/
/**
* @brief SPI Configuration Structure definition
*/
typedef struct
{
uint32_t Mode; /*!< Specifies the SPI operating mode.
This parameter can be a value of @ref SPI_Mode */
uint32_t Direction; /*!< Specifies the SPI bidirectional mode state.
This parameter can be a value of @ref SPI_Direction */
uint32_t DataSize; /*!< Specifies the SPI data size.
This parameter can be a value of @ref SPI_Data_Size */
uint32_t CLKPolarity; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_Clock_Polarity */
uint32_t CLKPhase; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_Clock_Phase */
uint32_t NSS; /*!< Specifies whether the NSS signal is managed by
hardware (NSS pin) or by software using the SSI bit.
This parameter can be a value of @ref SPI_Slave_Select_management */
uint32_t BaudRatePrescaler; /*!< Specifies the Baud Rate prescaler value which will be
used to configure the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_BaudRate_Prescaler
@note The communication clock is derived from the master
clock. The slave clock does not need to be set. */
uint32_t FirstBit; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_MSB_LSB_transmission */
uint32_t TIMode; /*!< Specifies if the TI mode is enabled or not.
This parameter can be a value of @ref SPI_TI_mode */
uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
This parameter can be a value of @ref SPI_CRC_Calculation */
uint32_t CRCPolynomial; /*!< Specifies the polynomial used for the CRC calculation.
This parameter must be an odd number between Min_Data = 1 and Max_Data = 65535 */
} SPI_InitTypeDef;
/**
* @brief HAL SPI State structure definition
*/
typedef enum
{
HAL_SPI_STATE_RESET = 0x00U, /*!< Peripheral not Initialized */
HAL_SPI_STATE_READY = 0x01U, /*!< Peripheral Initialized and ready for use */
HAL_SPI_STATE_BUSY = 0x02U, /*!< an internal process is ongoing */
HAL_SPI_STATE_BUSY_TX = 0x03U, /*!< Data Transmission process is ongoing */
HAL_SPI_STATE_BUSY_RX = 0x04U, /*!< Data Reception process is ongoing */
HAL_SPI_STATE_BUSY_TX_RX = 0x05U, /*!< Data Transmission and Reception process is ongoing */
HAL_SPI_STATE_ERROR = 0x06U, /*!< SPI error state */
HAL_SPI_STATE_ABORT = 0x07U /*!< SPI abort is ongoing */
} HAL_SPI_StateTypeDef;
/**
* @brief SPI handle Structure definition
*/
typedef struct __SPI_HandleTypeDef
{
SPI_TypeDef *Instance; /*!< SPI registers base address */
SPI_InitTypeDef Init; /*!< SPI communication parameters */
uint8_t *pTxBuffPtr; /*!< Pointer to SPI Tx transfer Buffer */
uint16_t TxXferSize; /*!< SPI Tx Transfer size */
__IO uint16_t TxXferCount; /*!< SPI Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to SPI Rx transfer Buffer */
uint16_t RxXferSize; /*!< SPI Rx Transfer size */
__IO uint16_t RxXferCount; /*!< SPI Rx Transfer Counter */
void (*RxISR)(struct __SPI_HandleTypeDef *hspi); /*!< function pointer on Rx ISR */
void (*TxISR)(struct __SPI_HandleTypeDef *hspi); /*!< function pointer on Tx ISR */
DMA_HandleTypeDef *hdmatx; /*!< SPI Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< SPI Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_SPI_StateTypeDef State; /*!< SPI communication state */
__IO uint32_t ErrorCode; /*!< SPI Error code */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
void (* TxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Tx Completed callback */
void (* RxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Rx Completed callback */
void (* TxRxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI TxRx Completed callback */
void (* TxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Tx Half Completed callback */
void (* RxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Rx Half Completed callback */
void (* TxRxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI TxRx Half Completed callback */
void (* ErrorCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Error callback */
void (* AbortCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Abort callback */
void (* MspInitCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Msp Init callback */
void (* MspDeInitCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Msp DeInit callback */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
} SPI_HandleTypeDef;
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
/**
* @brief HAL SPI Callback ID enumeration definition
*/
typedef enum
{
HAL_SPI_TX_COMPLETE_CB_ID = 0x00U, /*!< SPI Tx Completed callback ID */
HAL_SPI_RX_COMPLETE_CB_ID = 0x01U, /*!< SPI Rx Completed callback ID */
HAL_SPI_TX_RX_COMPLETE_CB_ID = 0x02U, /*!< SPI TxRx Completed callback ID */
HAL_SPI_TX_HALF_COMPLETE_CB_ID = 0x03U, /*!< SPI Tx Half Completed callback ID */
HAL_SPI_RX_HALF_COMPLETE_CB_ID = 0x04U, /*!< SPI Rx Half Completed callback ID */
HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID = 0x05U, /*!< SPI TxRx Half Completed callback ID */
HAL_SPI_ERROR_CB_ID = 0x06U, /*!< SPI Error callback ID */
HAL_SPI_ABORT_CB_ID = 0x07U, /*!< SPI Abort callback ID */
HAL_SPI_MSPINIT_CB_ID = 0x08U, /*!< SPI Msp Init callback ID */
HAL_SPI_MSPDEINIT_CB_ID = 0x09U /*!< SPI Msp DeInit callback ID */
} HAL_SPI_CallbackIDTypeDef;
/**
* @brief HAL SPI Callback pointer definition
*/
typedef void (*pSPI_CallbackTypeDef)(SPI_HandleTypeDef *hspi); /*!< pointer to an SPI callback function */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_Exported_Constants SPI Exported Constants
* @{
*/
/** @defgroup SPI_Error_Code SPI Error Code
* @{
*/
#define HAL_SPI_ERROR_NONE (0x00000000U) /*!< No error */
#define HAL_SPI_ERROR_MODF (0x00000001U) /*!< MODF error */
#define HAL_SPI_ERROR_CRC (0x00000002U) /*!< CRC error */
#define HAL_SPI_ERROR_OVR (0x00000004U) /*!< OVR error */
#define HAL_SPI_ERROR_DMA (0x00000010U) /*!< DMA transfer error */
#define HAL_SPI_ERROR_FLAG (0x00000020U) /*!< Error on RXNE/TXE/BSY Flag */
#define HAL_SPI_ERROR_ABORT (0x00000040U) /*!< Error during SPI Abort procedure */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
#define HAL_SPI_ERROR_INVALID_CALLBACK (0x00000080U) /*!< Invalid Callback error */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SPI_Mode SPI Mode
* @{
*/
#define SPI_MODE_SLAVE (0x00000000U)
#define SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI)
/**
* @}
*/
/** @defgroup SPI_Direction SPI Direction Mode
* @{
*/
#define SPI_DIRECTION_2LINES (0x00000000U)
#define SPI_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
#define SPI_DIRECTION_1LINE SPI_CR1_BIDIMODE
/**
* @}
*/
/** @defgroup SPI_Data_Size SPI Data Size
* @{
*/
#define SPI_DATASIZE_8BIT (0x00000000U)
#define SPI_DATASIZE_16BIT SPI_CR1_DFF
/**
* @}
*/
/** @defgroup SPI_Clock_Polarity SPI Clock Polarity
* @{
*/
#define SPI_POLARITY_LOW (0x00000000U)
#define SPI_POLARITY_HIGH SPI_CR1_CPOL
/**
* @}
*/
/** @defgroup SPI_Clock_Phase SPI Clock Phase
* @{
*/
#define SPI_PHASE_1EDGE (0x00000000U)
#define SPI_PHASE_2EDGE SPI_CR1_CPHA
/**
* @}
*/
/** @defgroup SPI_Slave_Select_management SPI Slave Select Management
* @{
*/
#define SPI_NSS_SOFT SPI_CR1_SSM
#define SPI_NSS_HARD_INPUT (0x00000000U)
#define SPI_NSS_HARD_OUTPUT (SPI_CR2_SSOE << 16U)
/**
* @}
*/
/** @defgroup SPI_BaudRate_Prescaler SPI BaudRate Prescaler
* @{
*/
#define SPI_BAUDRATEPRESCALER_2 (0x00000000U)
#define SPI_BAUDRATEPRESCALER_4 (SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_8 (SPI_CR1_BR_1)
#define SPI_BAUDRATEPRESCALER_16 (SPI_CR1_BR_1 | SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_32 (SPI_CR1_BR_2)
#define SPI_BAUDRATEPRESCALER_64 (SPI_CR1_BR_2 | SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_128 (SPI_CR1_BR_2 | SPI_CR1_BR_1)
#define SPI_BAUDRATEPRESCALER_256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)
/**
* @}
*/
/** @defgroup SPI_MSB_LSB_transmission SPI MSB LSB Transmission
* @{
*/
#define SPI_FIRSTBIT_MSB (0x00000000U)
#define SPI_FIRSTBIT_LSB SPI_CR1_LSBFIRST
/**
* @}
*/
/** @defgroup SPI_TI_mode SPI TI Mode
* @{
*/
#define SPI_TIMODE_DISABLE (0x00000000U)
/**
* @}
*/
/** @defgroup SPI_CRC_Calculation SPI CRC Calculation
* @{
*/
#define SPI_CRCCALCULATION_DISABLE (0x00000000U)
#define SPI_CRCCALCULATION_ENABLE SPI_CR1_CRCEN
/**
* @}
*/
/** @defgroup SPI_Interrupt_definition SPI Interrupt Definition
* @{
*/
#define SPI_IT_TXE SPI_CR2_TXEIE
#define SPI_IT_RXNE SPI_CR2_RXNEIE
#define SPI_IT_ERR SPI_CR2_ERRIE
/**
* @}
*/
/** @defgroup SPI_Flags_definition SPI Flags Definition
* @{
*/
#define SPI_FLAG_RXNE SPI_SR_RXNE /* SPI status flag: Rx buffer not empty flag */
#define SPI_FLAG_TXE SPI_SR_TXE /* SPI status flag: Tx buffer empty flag */
#define SPI_FLAG_BSY SPI_SR_BSY /* SPI status flag: Busy flag */
#define SPI_FLAG_CRCERR SPI_SR_CRCERR /* SPI Error flag: CRC error flag */
#define SPI_FLAG_MODF SPI_SR_MODF /* SPI Error flag: Mode fault flag */
#define SPI_FLAG_OVR SPI_SR_OVR /* SPI Error flag: Overrun flag */
#define SPI_FLAG_MASK (SPI_SR_RXNE | SPI_SR_TXE | SPI_SR_BSY\
| SPI_SR_CRCERR | SPI_SR_MODF | SPI_SR_OVR)
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup SPI_Exported_Macros SPI Exported Macros
* @{
*/
/** @brief Reset SPI handle state.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
#define __HAL_SPI_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_SPI_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_SPI_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SPI_STATE_RESET)
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/** @brief Enable the specified SPI interrupts.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the interrupt source to enable.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_SPI_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
/** @brief Disable the specified SPI interrupts.
* @param __HANDLE__ specifies the SPI handle.
* This parameter can be SPIx where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the interrupt source to disable.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_SPI_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
/** @brief Check whether the specified SPI interrupt source is enabled or not.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_SPI_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2\
& (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Check whether the specified SPI flag is set or not.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag
* @arg SPI_FLAG_TXE: Transmit buffer empty flag
* @arg SPI_FLAG_CRCERR: CRC error flag
* @arg SPI_FLAG_MODF: Mode fault flag
* @arg SPI_FLAG_OVR: Overrun flag
* @arg SPI_FLAG_BSY: Busy flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_SPI_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
/** @brief Clear the SPI CRCERR pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_CRCERRFLAG(__HANDLE__) ((__HANDLE__)->Instance->SR = (uint16_t)(~SPI_FLAG_CRCERR))
/** @brief Clear the SPI MODF pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_MODFFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg_modf = 0x00U; \
tmpreg_modf = (__HANDLE__)->Instance->SR; \
CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE); \
UNUSED(tmpreg_modf); \
} while(0U)
/** @brief Clear the SPI OVR pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_OVRFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg_ovr = 0x00U; \
tmpreg_ovr = (__HANDLE__)->Instance->DR; \
tmpreg_ovr = (__HANDLE__)->Instance->SR; \
UNUSED(tmpreg_ovr); \
} while(0U)
/** @brief Enable the SPI peripheral.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE)
/** @brief Disable the SPI peripheral.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_DISABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE)
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SPI_Private_Constants SPI Private Constants
* @{
*/
#define SPI_INVALID_CRC_ERROR 0U /* CRC error wrongly detected */
#define SPI_VALID_CRC_ERROR 1U /* CRC error is true */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_Private_Macros SPI Private Macros
* @{
*/
/** @brief Set the SPI transmit-only mode.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_1LINE_TX(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_BIDIOE)
/** @brief Set the SPI receive-only mode.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_1LINE_RX(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_BIDIOE)
/** @brief Reset the CRC calculation of the SPI.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_RESET_CRC(__HANDLE__) do{CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_CRCEN);\
SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_CRCEN);}while(0U)
/** @brief Check whether the specified SPI flag is set or not.
* @param __SR__ copy of SPI SR register.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag
* @arg SPI_FLAG_TXE: Transmit buffer empty flag
* @arg SPI_FLAG_CRCERR: CRC error flag
* @arg SPI_FLAG_MODF: Mode fault flag
* @arg SPI_FLAG_OVR: Overrun flag
* @arg SPI_FLAG_BSY: Busy flag
* @retval SET or RESET.
*/
#define SPI_CHECK_FLAG(__SR__, __FLAG__) ((((__SR__) & ((__FLAG__) & SPI_FLAG_MASK)) == \
((__FLAG__) & SPI_FLAG_MASK)) ? SET : RESET)
/** @brief Check whether the specified SPI Interrupt is set or not.
* @param __CR2__ copy of SPI CR2 register.
* @param __INTERRUPT__ specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval SET or RESET.
*/
#define SPI_CHECK_IT_SOURCE(__CR2__, __INTERRUPT__) ((((__CR2__) & (__INTERRUPT__)) == \
(__INTERRUPT__)) ? SET : RESET)
/** @brief Checks if SPI Mode parameter is in allowed range.
* @param __MODE__ specifies the SPI Mode.
* This parameter can be a value of @ref SPI_Mode
* @retval None
*/
#define IS_SPI_MODE(__MODE__) (((__MODE__) == SPI_MODE_SLAVE) || \
((__MODE__) == SPI_MODE_MASTER))
/** @brief Checks if SPI Direction Mode parameter is in allowed range.
* @param __MODE__ specifies the SPI Direction Mode.
* This parameter can be a value of @ref SPI_Direction
* @retval None
*/
#define IS_SPI_DIRECTION(__MODE__) (((__MODE__) == SPI_DIRECTION_2LINES) || \
((__MODE__) == SPI_DIRECTION_2LINES_RXONLY) || \
((__MODE__) == SPI_DIRECTION_1LINE))
/** @brief Checks if SPI Direction Mode parameter is 2 lines.
* @param __MODE__ specifies the SPI Direction Mode.
* @retval None
*/
#define IS_SPI_DIRECTION_2LINES(__MODE__) ((__MODE__) == SPI_DIRECTION_2LINES)
/** @brief Checks if SPI Direction Mode parameter is 1 or 2 lines.
* @param __MODE__ specifies the SPI Direction Mode.
* @retval None
*/
#define IS_SPI_DIRECTION_2LINES_OR_1LINE(__MODE__) (((__MODE__) == SPI_DIRECTION_2LINES) || \
((__MODE__) == SPI_DIRECTION_1LINE))
/** @brief Checks if SPI Data Size parameter is in allowed range.
* @param __DATASIZE__ specifies the SPI Data Size.
* This parameter can be a value of @ref SPI_Data_Size
* @retval None
*/
#define IS_SPI_DATASIZE(__DATASIZE__) (((__DATASIZE__) == SPI_DATASIZE_16BIT) || \
((__DATASIZE__) == SPI_DATASIZE_8BIT))
/** @brief Checks if SPI Serial clock steady state parameter is in allowed range.
* @param __CPOL__ specifies the SPI serial clock steady state.
* This parameter can be a value of @ref SPI_Clock_Polarity
* @retval None
*/
#define IS_SPI_CPOL(__CPOL__) (((__CPOL__) == SPI_POLARITY_LOW) || \
((__CPOL__) == SPI_POLARITY_HIGH))
/** @brief Checks if SPI Clock Phase parameter is in allowed range.
* @param __CPHA__ specifies the SPI Clock Phase.
* This parameter can be a value of @ref SPI_Clock_Phase
* @retval None
*/
#define IS_SPI_CPHA(__CPHA__) (((__CPHA__) == SPI_PHASE_1EDGE) || \
((__CPHA__) == SPI_PHASE_2EDGE))
/** @brief Checks if SPI Slave Select parameter is in allowed range.
* @param __NSS__ specifies the SPI Slave Select management parameter.
* This parameter can be a value of @ref SPI_Slave_Select_management
* @retval None
*/
#define IS_SPI_NSS(__NSS__) (((__NSS__) == SPI_NSS_SOFT) || \
((__NSS__) == SPI_NSS_HARD_INPUT) || \
((__NSS__) == SPI_NSS_HARD_OUTPUT))
/** @brief Checks if SPI Baudrate prescaler parameter is in allowed range.
* @param __PRESCALER__ specifies the SPI Baudrate prescaler.
* This parameter can be a value of @ref SPI_BaudRate_Prescaler
* @retval None
*/
#define IS_SPI_BAUDRATE_PRESCALER(__PRESCALER__) (((__PRESCALER__) == SPI_BAUDRATEPRESCALER_2) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_4) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_8) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_16) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_32) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_64) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_128) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_256))
/** @brief Checks if SPI MSB LSB transmission parameter is in allowed range.
* @param __BIT__ specifies the SPI MSB LSB transmission (whether data transfer starts from MSB or LSB bit).
* This parameter can be a value of @ref SPI_MSB_LSB_transmission
* @retval None
*/
#define IS_SPI_FIRST_BIT(__BIT__) (((__BIT__) == SPI_FIRSTBIT_MSB) || \
((__BIT__) == SPI_FIRSTBIT_LSB))
/** @brief Checks if SPI TI mode parameter is disabled.
* @param __MODE__ SPI_TIMODE_DISABLE. Device not support Ti Mode.
* This parameter can be a value of @ref SPI_TI_mode
* @retval None
*/
#define IS_SPI_TIMODE(__MODE__) ((__MODE__) == SPI_TIMODE_DISABLE)
/** @brief Checks if SPI CRC calculation enabled state is in allowed range.
* @param __CALCULATION__ specifies the SPI CRC calculation enable state.
* This parameter can be a value of @ref SPI_CRC_Calculation
* @retval None
*/
#define IS_SPI_CRC_CALCULATION(__CALCULATION__) (((__CALCULATION__) == SPI_CRCCALCULATION_DISABLE) || \
((__CALCULATION__) == SPI_CRCCALCULATION_ENABLE))
/** @brief Checks if SPI polynomial value to be used for the CRC calculation, is in allowed range.
* @param __POLYNOMIAL__ specifies the SPI polynomial value to be used for the CRC calculation.
* This parameter must be a number between Min_Data = 0 and Max_Data = 65535
* @retval None
*/
#define IS_SPI_CRC_POLYNOMIAL(__POLYNOMIAL__) (((__POLYNOMIAL__) >= 0x1U) && \
((__POLYNOMIAL__) <= 0xFFFFU) && \
(((__POLYNOMIAL__)&0x1U) != 0U))
/** @brief Checks if DMA handle is valid.
* @param __HANDLE__ specifies a DMA Handle.
* @retval None
*/
#define IS_SPI_DMA_HANDLE(__HANDLE__) ((__HANDLE__) != NULL)
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SPI_Private_Functions SPI Private Functions
* @{
*/
uint8_t SPI_ISCRCErrorValid(SPI_HandleTypeDef *hspi);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPI_Exported_Functions
* @{
*/
/** @addtogroup SPI_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi);
void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi);
void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID,
pSPI_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup SPI_Exported_Functions_Group2
* @{
*/
/* I/O operation functions ***************************************************/
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size,
uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi);
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi);
/**
* @}
*/
/** @addtogroup SPI_Exported_Functions_Group3
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi);
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_SPI_H */

View file

@ -0,0 +1,232 @@
/**
******************************************************************************
* @file stm32f1xx_hal_sram.h
* @author MCD Application Team
* @brief Header file of SRAM HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_SRAM_H
#define STM32F1xx_HAL_SRAM_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(FSMC_BANK1)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_fsmc.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup SRAM
* @{
*/
/* Exported typedef ----------------------------------------------------------*/
/** @defgroup SRAM_Exported_Types SRAM Exported Types
* @{
*/
/**
* @brief HAL SRAM State structures definition
*/
typedef enum
{
HAL_SRAM_STATE_RESET = 0x00U, /*!< SRAM not yet initialized or disabled */
HAL_SRAM_STATE_READY = 0x01U, /*!< SRAM initialized and ready for use */
HAL_SRAM_STATE_BUSY = 0x02U, /*!< SRAM internal process is ongoing */
HAL_SRAM_STATE_ERROR = 0x03U, /*!< SRAM error state */
HAL_SRAM_STATE_PROTECTED = 0x04U /*!< SRAM peripheral NORSRAM device write protected */
} HAL_SRAM_StateTypeDef;
/**
* @brief SRAM handle Structure definition
*/
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
typedef struct __SRAM_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_SRAM_REGISTER_CALLBACKS */
{
FSMC_NORSRAM_TypeDef *Instance; /*!< Register base address */
FSMC_NORSRAM_EXTENDED_TypeDef *Extended; /*!< Extended mode register base address */
FSMC_NORSRAM_InitTypeDef Init; /*!< SRAM device control configuration parameters */
HAL_LockTypeDef Lock; /*!< SRAM locking object */
__IO HAL_SRAM_StateTypeDef State; /*!< SRAM device access state */
DMA_HandleTypeDef *hdma; /*!< Pointer DMA handler */
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
void (* MspInitCallback)(struct __SRAM_HandleTypeDef *hsram); /*!< SRAM Msp Init callback */
void (* MspDeInitCallback)(struct __SRAM_HandleTypeDef *hsram); /*!< SRAM Msp DeInit callback */
void (* DmaXferCpltCallback)(DMA_HandleTypeDef *hdma); /*!< SRAM DMA Xfer Complete callback */
void (* DmaXferErrorCallback)(DMA_HandleTypeDef *hdma); /*!< SRAM DMA Xfer Error callback */
#endif /* USE_HAL_SRAM_REGISTER_CALLBACKS */
} SRAM_HandleTypeDef;
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
/**
* @brief HAL SRAM Callback ID enumeration definition
*/
typedef enum
{
HAL_SRAM_MSP_INIT_CB_ID = 0x00U, /*!< SRAM MspInit Callback ID */
HAL_SRAM_MSP_DEINIT_CB_ID = 0x01U, /*!< SRAM MspDeInit Callback ID */
HAL_SRAM_DMA_XFER_CPLT_CB_ID = 0x02U, /*!< SRAM DMA Xfer Complete Callback ID */
HAL_SRAM_DMA_XFER_ERR_CB_ID = 0x03U /*!< SRAM DMA Xfer Complete Callback ID */
} HAL_SRAM_CallbackIDTypeDef;
/**
* @brief HAL SRAM Callback pointer definition
*/
typedef void (*pSRAM_CallbackTypeDef)(SRAM_HandleTypeDef *hsram);
typedef void (*pSRAM_DmaCallbackTypeDef)(DMA_HandleTypeDef *hdma);
#endif /* USE_HAL_SRAM_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SRAM_Exported_Macros SRAM Exported Macros
* @{
*/
/** @brief Reset SRAM handle state
* @param __HANDLE__ SRAM handle
* @retval None
*/
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
#define __HAL_SRAM_RESET_HANDLE_STATE(__HANDLE__) do { \
(__HANDLE__)->State = HAL_SRAM_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_SRAM_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SRAM_STATE_RESET)
#endif /* USE_HAL_SRAM_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SRAM_Exported_Functions SRAM Exported Functions
* @{
*/
/** @addtogroup SRAM_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_SRAM_Init(SRAM_HandleTypeDef *hsram, FSMC_NORSRAM_TimingTypeDef *Timing,
FSMC_NORSRAM_TimingTypeDef *ExtTiming);
HAL_StatusTypeDef HAL_SRAM_DeInit(SRAM_HandleTypeDef *hsram);
void HAL_SRAM_MspInit(SRAM_HandleTypeDef *hsram);
void HAL_SRAM_MspDeInit(SRAM_HandleTypeDef *hsram);
/**
* @}
*/
/** @addtogroup SRAM_Exported_Functions_Group2 Input Output and memory control functions
* @{
*/
/* I/O operation functions ***************************************************/
HAL_StatusTypeDef HAL_SRAM_Read_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pDstBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Write_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pSrcBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Read_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pDstBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Write_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pSrcBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Read_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Write_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Read_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer,
uint32_t BufferSize);
HAL_StatusTypeDef HAL_SRAM_Write_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer,
uint32_t BufferSize);
void HAL_SRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma);
void HAL_SRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma);
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
/* SRAM callback registering/unregistering */
HAL_StatusTypeDef HAL_SRAM_RegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId,
pSRAM_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_SRAM_UnRegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId);
HAL_StatusTypeDef HAL_SRAM_RegisterDmaCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId,
pSRAM_DmaCallbackTypeDef pCallback);
#endif /* USE_HAL_SRAM_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup SRAM_Exported_Functions_Group3 Control functions
* @{
*/
/* SRAM Control functions ****************************************************/
HAL_StatusTypeDef HAL_SRAM_WriteOperation_Enable(SRAM_HandleTypeDef *hsram);
HAL_StatusTypeDef HAL_SRAM_WriteOperation_Disable(SRAM_HandleTypeDef *hsram);
/**
* @}
*/
/** @addtogroup SRAM_Exported_Functions_Group4 Peripheral State functions
* @{
*/
/* SRAM State functions ******************************************************/
HAL_SRAM_StateTypeDef HAL_SRAM_GetState(const SRAM_HandleTypeDef *hsram);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK1 */
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_SRAM_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,261 @@
/**
******************************************************************************
* @file stm32f1xx_hal_tim_ex.h
* @author MCD Application Team
* @brief Header file of TIM HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_TIM_EX_H
#define STM32F1xx_HAL_TIM_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup TIMEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types
* @{
*/
/**
* @brief TIM Hall sensor Configuration Structure definition
*/
typedef struct
{
uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
uint32_t IC1Filter; /*!< Specifies the input capture filter.
This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
} TIM_HallSensor_InitTypeDef;
/**
* @}
*/
/* End of exported types -----------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants
* @{
*/
/** @defgroup TIMEx_Remap TIM Extended Remapping
* @{
*/
/**
* @}
*/
/**
* @}
*/
/* End of exported constants -------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros
* @{
*/
/**
* @}
*/
/* End of exported macro -----------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros
* @{
*/
/**
* @}
*/
/* End of private macro ------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions
* @{
*/
/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
* @brief Timer Hall Sensor functions
* @{
*/
/* Timer Hall Sensor functions **********************************************/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim);
void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim);
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
* @brief Timer Complementary Output Compare functions
* @{
*/
/* Timer Complementary Output Compare functions *****************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
* @brief Timer Complementary PWM functions
* @{
*/
/* Timer Complementary PWM functions ****************************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
* @brief Timer Complementary One Pulse functions
* @{
*/
/* Timer Complementary One Pulse functions **********************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
* @brief Peripheral Control functions
* @{
*/
/* Extended Control functions ************************************************/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
const TIM_MasterConfigTypeDef *sMasterConfig);
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
* @brief Extended Callbacks functions
* @{
*/
/* Extended Callback **********************************************************/
void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
* @brief Extended Peripheral State functions
* @{
*/
/* Extended Peripheral State functions ***************************************/
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim);
HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN);
/**
* @}
*/
/**
* @}
*/
/* End of exported functions -------------------------------------------------*/
/* Private functions----------------------------------------------------------*/
/** @addtogroup TIMEx_Private_Functions TIM Extended Private Functions
* @{
*/
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* End of private functions --------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_TIM_EX_H */

View file

@ -0,0 +1,915 @@
/**
******************************************************************************
* @file stm32f1xx_hal_uart.h
* @author MCD Application Team
* @brief Header file of UART HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_UART_H
#define __STM32F1xx_HAL_UART_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup UART
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup UART_Exported_Types UART Exported Types
* @{
*/
/**
* @brief UART Init Structure definition
*/
typedef struct
{
uint32_t BaudRate; /*!< This member configures the UART communication baud rate.
The baud rate is computed using the following formula:
- IntegerDivider = ((PCLKx) / (16 * (huart->Init.BaudRate)))
- FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 16) + 0.5 */
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref UART_Word_Length */
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref UART_Stop_Bits */
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref UART_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits). */
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref UART_Mode */
uint32_t HwFlowCtl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
This parameter can be a value of @ref UART_Hardware_Flow_Control */
uint32_t OverSampling; /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8).
This parameter can be a value of @ref UART_Over_Sampling. This feature is only available
on STM32F100xx family, so OverSampling parameter should always be set to 16. */
} UART_InitTypeDef;
/**
* @brief HAL UART State structures definition
* @note HAL UART State value is a combination of 2 different substates: gState and RxState.
* - gState contains UART state information related to global Handle management
* and also information related to Tx operations.
* gState value coding follow below described bitmap :
* b7-b6 Error information
* 00 : No Error
* 01 : (Not Used)
* 10 : Timeout
* 11 : Error
* b5 Peripheral initialization status
* 0 : Reset (Peripheral not initialized)
* 1 : Init done (Peripheral initialized. HAL UART Init function already called)
* b4-b3 (not used)
* xx : Should be set to 00
* b2 Intrinsic process state
* 0 : Ready
* 1 : Busy (Peripheral busy with some configuration or internal operations)
* b1 (not used)
* x : Should be set to 0
* b0 Tx state
* 0 : Ready (no Tx operation ongoing)
* 1 : Busy (Tx operation ongoing)
* - RxState contains information related to Rx operations.
* RxState value coding follow below described bitmap :
* b7-b6 (not used)
* xx : Should be set to 00
* b5 Peripheral initialization status
* 0 : Reset (Peripheral not initialized)
* 1 : Init done (Peripheral initialized)
* b4-b2 (not used)
* xxx : Should be set to 000
* b1 Rx state
* 0 : Ready (no Rx operation ongoing)
* 1 : Busy (Rx operation ongoing)
* b0 (not used)
* x : Should be set to 0.
*/
typedef enum
{
HAL_UART_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized
Value is allowed for gState and RxState */
HAL_UART_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use
Value is allowed for gState and RxState */
HAL_UART_STATE_BUSY = 0x24U, /*!< an internal process is ongoing
Value is allowed for gState only */
HAL_UART_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing
Value is allowed for gState only */
HAL_UART_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing
Value is allowed for RxState only */
HAL_UART_STATE_BUSY_TX_RX = 0x23U, /*!< Data Transmission and Reception process is ongoing
Not to be used for neither gState nor RxState.
Value is result of combination (Or) between gState and RxState values */
HAL_UART_STATE_TIMEOUT = 0xA0U, /*!< Timeout state
Value is allowed for gState only */
HAL_UART_STATE_ERROR = 0xE0U /*!< Error
Value is allowed for gState only */
} HAL_UART_StateTypeDef;
/**
* @brief HAL UART Reception type definition
* @note HAL UART Reception type value aims to identify which type of Reception is ongoing.
* This parameter can be a value of @ref UART_Reception_Type_Values :
* HAL_UART_RECEPTION_STANDARD = 0x00U,
* HAL_UART_RECEPTION_TOIDLE = 0x01U,
*/
typedef uint32_t HAL_UART_RxTypeTypeDef;
/**
* @brief HAL UART Rx Event type definition
* @note HAL UART Rx Event type value aims to identify which type of Event has occurred
* leading to call of the RxEvent callback.
* This parameter can be a value of @ref UART_RxEvent_Type_Values :
* HAL_UART_RXEVENT_TC = 0x00U,
* HAL_UART_RXEVENT_HT = 0x01U,
* HAL_UART_RXEVENT_IDLE = 0x02U,
*/
typedef uint32_t HAL_UART_RxEventTypeTypeDef;
/**
* @brief UART handle Structure definition
*/
typedef struct __UART_HandleTypeDef
{
USART_TypeDef *Instance; /*!< UART registers base address */
UART_InitTypeDef Init; /*!< UART communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */
uint16_t TxXferSize; /*!< UART Tx Transfer size */
__IO uint16_t TxXferCount; /*!< UART Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */
uint16_t RxXferSize; /*!< UART Rx Transfer size */
__IO uint16_t RxXferCount; /*!< UART Rx Transfer Counter */
__IO HAL_UART_RxTypeTypeDef ReceptionType; /*!< Type of ongoing reception */
__IO HAL_UART_RxEventTypeTypeDef RxEventType; /*!< Type of Rx Event */
DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_UART_StateTypeDef gState; /*!< UART state information related to global Handle management
and also related to Tx operations.
This parameter can be a value of @ref HAL_UART_StateTypeDef */
__IO HAL_UART_StateTypeDef RxState; /*!< UART state information related to Rx operations.
This parameter can be a value of @ref HAL_UART_StateTypeDef */
__IO uint32_t ErrorCode; /*!< UART Error code */
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
void (* TxHalfCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Tx Half Complete Callback */
void (* TxCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Tx Complete Callback */
void (* RxHalfCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Rx Half Complete Callback */
void (* RxCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Rx Complete Callback */
void (* ErrorCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Error Callback */
void (* AbortCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Complete Callback */
void (* AbortTransmitCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Transmit Complete Callback */
void (* AbortReceiveCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Receive Complete Callback */
void (* WakeupCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Wakeup Callback */
void (* RxEventCallback)(struct __UART_HandleTypeDef *huart, uint16_t Pos); /*!< UART Reception Event Callback */
void (* MspInitCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Msp Init callback */
void (* MspDeInitCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Msp DeInit callback */
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
} UART_HandleTypeDef;
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
/**
* @brief HAL UART Callback ID enumeration definition
*/
typedef enum
{
HAL_UART_TX_HALFCOMPLETE_CB_ID = 0x00U, /*!< UART Tx Half Complete Callback ID */
HAL_UART_TX_COMPLETE_CB_ID = 0x01U, /*!< UART Tx Complete Callback ID */
HAL_UART_RX_HALFCOMPLETE_CB_ID = 0x02U, /*!< UART Rx Half Complete Callback ID */
HAL_UART_RX_COMPLETE_CB_ID = 0x03U, /*!< UART Rx Complete Callback ID */
HAL_UART_ERROR_CB_ID = 0x04U, /*!< UART Error Callback ID */
HAL_UART_ABORT_COMPLETE_CB_ID = 0x05U, /*!< UART Abort Complete Callback ID */
HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID = 0x06U, /*!< UART Abort Transmit Complete Callback ID */
HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID = 0x07U, /*!< UART Abort Receive Complete Callback ID */
HAL_UART_WAKEUP_CB_ID = 0x08U, /*!< UART Wakeup Callback ID */
HAL_UART_MSPINIT_CB_ID = 0x0BU, /*!< UART MspInit callback ID */
HAL_UART_MSPDEINIT_CB_ID = 0x0CU /*!< UART MspDeInit callback ID */
} HAL_UART_CallbackIDTypeDef;
/**
* @brief HAL UART Callback pointer definition
*/
typedef void (*pUART_CallbackTypeDef)(UART_HandleTypeDef *huart); /*!< pointer to an UART callback function */
typedef void (*pUART_RxEventCallbackTypeDef)(struct __UART_HandleTypeDef *huart, uint16_t Pos); /*!< pointer to a UART Rx Event specific callback function */
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup UART_Exported_Constants UART Exported Constants
* @{
*/
/** @defgroup UART_Error_Code UART Error Code
* @{
*/
#define HAL_UART_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_UART_ERROR_PE 0x00000001U /*!< Parity error */
#define HAL_UART_ERROR_NE 0x00000002U /*!< Noise error */
#define HAL_UART_ERROR_FE 0x00000004U /*!< Frame error */
#define HAL_UART_ERROR_ORE 0x00000008U /*!< Overrun error */
#define HAL_UART_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
#define HAL_UART_ERROR_INVALID_CALLBACK 0x00000020U /*!< Invalid Callback error */
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup UART_Word_Length UART Word Length
* @{
*/
#define UART_WORDLENGTH_8B 0x00000000U
#define UART_WORDLENGTH_9B ((uint32_t)USART_CR1_M)
/**
* @}
*/
/** @defgroup UART_Stop_Bits UART Number of Stop Bits
* @{
*/
#define UART_STOPBITS_1 0x00000000U
#define UART_STOPBITS_2 ((uint32_t)USART_CR2_STOP_1)
/**
* @}
*/
/** @defgroup UART_Parity UART Parity
* @{
*/
#define UART_PARITY_NONE 0x00000000U
#define UART_PARITY_EVEN ((uint32_t)USART_CR1_PCE)
#define UART_PARITY_ODD ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
/**
* @}
*/
/** @defgroup UART_Hardware_Flow_Control UART Hardware Flow Control
* @{
*/
#define UART_HWCONTROL_NONE 0x00000000U
#define UART_HWCONTROL_RTS ((uint32_t)USART_CR3_RTSE)
#define UART_HWCONTROL_CTS ((uint32_t)USART_CR3_CTSE)
#define UART_HWCONTROL_RTS_CTS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE))
/**
* @}
*/
/** @defgroup UART_Mode UART Transfer Mode
* @{
*/
#define UART_MODE_RX ((uint32_t)USART_CR1_RE)
#define UART_MODE_TX ((uint32_t)USART_CR1_TE)
#define UART_MODE_TX_RX ((uint32_t)(USART_CR1_TE | USART_CR1_RE))
/**
* @}
*/
/** @defgroup UART_State UART State
* @{
*/
#define UART_STATE_DISABLE 0x00000000U
#define UART_STATE_ENABLE ((uint32_t)USART_CR1_UE)
/**
* @}
*/
/** @defgroup UART_Over_Sampling UART Over Sampling
* @{
*/
#define UART_OVERSAMPLING_16 0x00000000U
#if defined(USART_CR1_OVER8)
#define UART_OVERSAMPLING_8 ((uint32_t)USART_CR1_OVER8)
#endif /* USART_CR1_OVER8 */
/**
* @}
*/
/** @defgroup UART_LIN_Break_Detection_Length UART LIN Break Detection Length
* @{
*/
#define UART_LINBREAKDETECTLENGTH_10B 0x00000000U
#define UART_LINBREAKDETECTLENGTH_11B ((uint32_t)USART_CR2_LBDL)
/**
* @}
*/
/** @defgroup UART_WakeUp_functions UART Wakeup Functions
* @{
*/
#define UART_WAKEUPMETHOD_IDLELINE 0x00000000U
#define UART_WAKEUPMETHOD_ADDRESSMARK ((uint32_t)USART_CR1_WAKE)
/**
* @}
*/
/** @defgroup UART_Flags UART FLags
* Elements values convention: 0xXXXX
* - 0xXXXX : Flag mask in the SR register
* @{
*/
#define UART_FLAG_CTS ((uint32_t)USART_SR_CTS)
#define UART_FLAG_LBD ((uint32_t)USART_SR_LBD)
#define UART_FLAG_TXE ((uint32_t)USART_SR_TXE)
#define UART_FLAG_TC ((uint32_t)USART_SR_TC)
#define UART_FLAG_RXNE ((uint32_t)USART_SR_RXNE)
#define UART_FLAG_IDLE ((uint32_t)USART_SR_IDLE)
#define UART_FLAG_ORE ((uint32_t)USART_SR_ORE)
#define UART_FLAG_NE ((uint32_t)USART_SR_NE)
#define UART_FLAG_FE ((uint32_t)USART_SR_FE)
#define UART_FLAG_PE ((uint32_t)USART_SR_PE)
/**
* @}
*/
/** @defgroup UART_Interrupt_definition UART Interrupt Definitions
* Elements values convention: 0xY000XXXX
* - XXXX : Interrupt mask (16 bits) in the Y register
* - Y : Interrupt source register (2bits)
* - 0001: CR1 register
* - 0010: CR2 register
* - 0011: CR3 register
* @{
*/
#define UART_IT_PE ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_PEIE))
#define UART_IT_TXE ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_TXEIE))
#define UART_IT_TC ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_TCIE))
#define UART_IT_RXNE ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_RXNEIE))
#define UART_IT_IDLE ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_IDLEIE))
#define UART_IT_LBD ((uint32_t)(UART_CR2_REG_INDEX << 28U | USART_CR2_LBDIE))
#define UART_IT_CTS ((uint32_t)(UART_CR3_REG_INDEX << 28U | USART_CR3_CTSIE))
#define UART_IT_ERR ((uint32_t)(UART_CR3_REG_INDEX << 28U | USART_CR3_EIE))
/**
* @}
*/
/** @defgroup UART_Reception_Type_Values UART Reception type values
* @{
*/
#define HAL_UART_RECEPTION_STANDARD (0x00000000U) /*!< Standard reception */
#define HAL_UART_RECEPTION_TOIDLE (0x00000001U) /*!< Reception till completion or IDLE event */
/**
* @}
*/
/** @defgroup UART_RxEvent_Type_Values UART RxEvent type values
* @{
*/
#define HAL_UART_RXEVENT_TC (0x00000000U) /*!< RxEvent linked to Transfer Complete event */
#define HAL_UART_RXEVENT_HT (0x00000001U) /*!< RxEvent linked to Half Transfer event */
#define HAL_UART_RXEVENT_IDLE (0x00000002U)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup UART_Exported_Macros UART Exported Macros
* @{
*/
/** @brief Reset UART handle gstate & RxState
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_UART_STATE_RESET; \
(__HANDLE__)->RxState = HAL_UART_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0U)
#else
#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->gState = HAL_UART_STATE_RESET; \
(__HANDLE__)->RxState = HAL_UART_STATE_RESET; \
} while(0U)
#endif /*USE_HAL_UART_REGISTER_CALLBACKS */
/** @brief Flushes the UART DR register
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
*/
#define __HAL_UART_FLUSH_DRREGISTER(__HANDLE__) ((__HANDLE__)->Instance->DR)
/** @brief Checks whether the specified UART flag is set or not.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg UART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5)
* @arg UART_FLAG_LBD: LIN Break detection flag
* @arg UART_FLAG_TXE: Transmit data register empty flag
* @arg UART_FLAG_TC: Transmission Complete flag
* @arg UART_FLAG_RXNE: Receive data register not empty flag
* @arg UART_FLAG_IDLE: Idle Line detection flag
* @arg UART_FLAG_ORE: Overrun Error flag
* @arg UART_FLAG_NE: Noise Error flag
* @arg UART_FLAG_FE: Framing Error flag
* @arg UART_FLAG_PE: Parity Error flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
/** @brief Clears the specified UART pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be any combination of the following values:
* @arg UART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5).
* @arg UART_FLAG_LBD: LIN Break detection flag.
* @arg UART_FLAG_TC: Transmission Complete flag.
* @arg UART_FLAG_RXNE: Receive data register not empty flag.
*
* @note PE (Parity error), FE (Framing error), NE (Noise error), ORE (Overrun
* error) and IDLE (Idle line detected) flags are cleared by software
* sequence: a read operation to USART_SR register followed by a read
* operation to USART_DR register.
* @note RXNE flag can be also cleared by a read to the USART_DR register.
* @note TC flag can be also cleared by software sequence: a read operation to
* USART_SR register followed by a write operation to USART_DR register.
* @note TXE flag is cleared only by a write to the USART_DR register.
*
* @retval None
*/
#define __HAL_UART_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/** @brief Clears the UART PE pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_UART_CLEAR_PEFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR; \
tmpreg = (__HANDLE__)->Instance->DR; \
UNUSED(tmpreg); \
} while(0U)
/** @brief Clears the UART FE pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_UART_CLEAR_FEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clears the UART NE pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_UART_CLEAR_NEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clears the UART ORE pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_UART_CLEAR_OREFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clears the UART IDLE pending flag.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @retval None
*/
#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Enable the specified UART interrupt.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __INTERRUPT__ specifies the UART interrupt source to enable.
* This parameter can be one of the following values:
* @arg UART_IT_CTS: CTS change interrupt
* @arg UART_IT_LBD: LIN Break detection interrupt
* @arg UART_IT_TXE: Transmit Data Register empty interrupt
* @arg UART_IT_TC: Transmission complete interrupt
* @arg UART_IT_RXNE: Receive Data register not empty interrupt
* @arg UART_IT_IDLE: Idle line detection interrupt
* @arg UART_IT_PE: Parity Error interrupt
* @arg UART_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & UART_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 |= ((__INTERRUPT__) & UART_IT_MASK)): \
((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
/** @brief Disable the specified UART interrupt.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __INTERRUPT__ specifies the UART interrupt source to disable.
* This parameter can be one of the following values:
* @arg UART_IT_CTS: CTS change interrupt
* @arg UART_IT_LBD: LIN Break detection interrupt
* @arg UART_IT_TXE: Transmit Data Register empty interrupt
* @arg UART_IT_TC: Transmission complete interrupt
* @arg UART_IT_RXNE: Receive Data register not empty interrupt
* @arg UART_IT_IDLE: Idle line detection interrupt
* @arg UART_IT_PE: Parity Error interrupt
* @arg UART_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_UART_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & UART_IT_MASK)))
/** @brief Checks whether the specified UART interrupt source is enabled or not.
* @param __HANDLE__ specifies the UART Handle.
* UART Handle selects the USARTx or UARTy peripheral
* (USART,UART availability and x,y values depending on device).
* @param __IT__ specifies the UART interrupt source to check.
* This parameter can be one of the following values:
* @arg UART_IT_CTS: CTS change interrupt (not available for UART4 and UART5)
* @arg UART_IT_LBD: LIN Break detection interrupt
* @arg UART_IT_TXE: Transmit Data Register empty interrupt
* @arg UART_IT_TC: Transmission complete interrupt
* @arg UART_IT_RXNE: Receive Data register not empty interrupt
* @arg UART_IT_IDLE: Idle line detection interrupt
* @arg UART_IT_ERR: Error interrupt
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_UART_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28U) == UART_CR1_REG_INDEX)? (__HANDLE__)->Instance->CR1:(((((uint32_t)(__IT__)) >> 28U) == UART_CR2_REG_INDEX)? \
(__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & (((uint32_t)(__IT__)) & UART_IT_MASK))
/** @brief Enable CTS flow control
* @note This macro allows to enable CTS hardware flow control for a given UART instance,
* without need to call HAL_UART_Init() function.
* As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
* @note As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
* for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
* - UART instance should have already been initialised (through call of HAL_UART_Init() )
* - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
* and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
* @param __HANDLE__ specifies the UART Handle.
* The Handle Instance can be any USARTx (supporting the HW Flow control feature).
* It is used to select the USART peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_UART_HWCONTROL_CTS_ENABLE(__HANDLE__) \
do{ \
ATOMIC_SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \
(__HANDLE__)->Init.HwFlowCtl |= USART_CR3_CTSE; \
} while(0U)
/** @brief Disable CTS flow control
* @note This macro allows to disable CTS hardware flow control for a given UART instance,
* without need to call HAL_UART_Init() function.
* As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
* @note As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
* for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
* - UART instance should have already been initialised (through call of HAL_UART_Init() )
* - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
* and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
* @param __HANDLE__ specifies the UART Handle.
* The Handle Instance can be any USARTx (supporting the HW Flow control feature).
* It is used to select the USART peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_UART_HWCONTROL_CTS_DISABLE(__HANDLE__) \
do{ \
ATOMIC_CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \
(__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_CTSE); \
} while(0U)
/** @brief Enable RTS flow control
* This macro allows to enable RTS hardware flow control for a given UART instance,
* without need to call HAL_UART_Init() function.
* As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
* @note As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
* for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
* - UART instance should have already been initialised (through call of HAL_UART_Init() )
* - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
* and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
* @param __HANDLE__ specifies the UART Handle.
* The Handle Instance can be any USARTx (supporting the HW Flow control feature).
* It is used to select the USART peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_UART_HWCONTROL_RTS_ENABLE(__HANDLE__) \
do{ \
ATOMIC_SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE); \
(__HANDLE__)->Init.HwFlowCtl |= USART_CR3_RTSE; \
} while(0U)
/** @brief Disable RTS flow control
* This macro allows to disable RTS hardware flow control for a given UART instance,
* without need to call HAL_UART_Init() function.
* As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
* @note As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
* for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
* - UART instance should have already been initialised (through call of HAL_UART_Init() )
* - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
* and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
* @param __HANDLE__ specifies the UART Handle.
* The Handle Instance can be any USARTx (supporting the HW Flow control feature).
* It is used to select the USART peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_UART_HWCONTROL_RTS_DISABLE(__HANDLE__) \
do{ \
ATOMIC_CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE);\
(__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_RTSE); \
} while(0U)
#if defined(USART_CR3_ONEBIT)
/** @brief Macro to enable the UART's one bit sample method
* @param __HANDLE__ specifies the UART Handle.
* @retval None
*/
#define __HAL_UART_ONE_BIT_SAMPLE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3|= USART_CR3_ONEBIT)
/** @brief Macro to disable the UART's one bit sample method
* @param __HANDLE__ specifies the UART Handle.
* @retval None
*/
#define __HAL_UART_ONE_BIT_SAMPLE_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3\
&= (uint16_t)~((uint16_t)USART_CR3_ONEBIT))
#endif /* UART_ONE_BIT_SAMPLE_Feature */
/** @brief Enable UART
* @param __HANDLE__ specifies the UART Handle.
* @retval None
*/
#define __HAL_UART_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= USART_CR1_UE)
/** @brief Disable UART
* @param __HANDLE__ specifies the UART Handle.
* @retval None
*/
#define __HAL_UART_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~USART_CR1_UE)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup UART_Exported_Functions
* @{
*/
/** @addtogroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength);
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod);
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart);
void HAL_UART_MspInit(UART_HandleTypeDef *huart);
void HAL_UART_MspDeInit(UART_HandleTypeDef *huart);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
pUART_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart);
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup UART_Exported_Functions_Group2 IO operation functions
* @{
*/
/* IO operation functions *******************************************************/
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
uint32_t Timeout);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart);
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart);
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart);
void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart);
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size);
/**
* @}
*/
/** @addtogroup UART_Exported_Functions_Group3
* @{
*/
/* Peripheral Control functions ************************************************/
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart);
/**
* @}
*/
/** @addtogroup UART_Exported_Functions_Group4
* @{
*/
/* Peripheral State functions **************************************************/
HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart);
uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup UART_Private_Constants UART Private Constants
* @{
*/
/** @brief UART interruptions flag mask
*
*/
#define UART_IT_MASK 0x0000FFFFU
#define UART_CR1_REG_INDEX 1U
#define UART_CR2_REG_INDEX 2U
#define UART_CR3_REG_INDEX 3U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup UART_Private_Macros UART Private Macros
* @{
*/
#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B) || \
((LENGTH) == UART_WORDLENGTH_9B))
#define IS_UART_LIN_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B))
#define IS_UART_STOPBITS(STOPBITS) (((STOPBITS) == UART_STOPBITS_1) || \
((STOPBITS) == UART_STOPBITS_2))
#define IS_UART_PARITY(PARITY) (((PARITY) == UART_PARITY_NONE) || \
((PARITY) == UART_PARITY_EVEN) || \
((PARITY) == UART_PARITY_ODD))
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
(((CONTROL) == UART_HWCONTROL_NONE) || \
((CONTROL) == UART_HWCONTROL_RTS) || \
((CONTROL) == UART_HWCONTROL_CTS) || \
((CONTROL) == UART_HWCONTROL_RTS_CTS))
#define IS_UART_MODE(MODE) ((((MODE) & 0x0000FFF3U) == 0x00U) && ((MODE) != 0x00U))
#define IS_UART_STATE(STATE) (((STATE) == UART_STATE_DISABLE) || \
((STATE) == UART_STATE_ENABLE))
#if defined(USART_CR1_OVER8)
#define IS_UART_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16) || \
((SAMPLING) == UART_OVERSAMPLING_8))
#endif /* USART_CR1_OVER8 */
#define IS_UART_LIN_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16))
#define IS_UART_LIN_BREAK_DETECT_LENGTH(LENGTH) (((LENGTH) == UART_LINBREAKDETECTLENGTH_10B) || \
((LENGTH) == UART_LINBREAKDETECTLENGTH_11B))
#define IS_UART_WAKEUPMETHOD(WAKEUP) (((WAKEUP) == UART_WAKEUPMETHOD_IDLELINE) || \
((WAKEUP) == UART_WAKEUPMETHOD_ADDRESSMARK))
#define IS_UART_BAUDRATE(BAUDRATE) ((BAUDRATE) <= 4500000U)
#define IS_UART_ADDRESS(ADDRESS) ((ADDRESS) <= 0x0FU)
#define UART_DIV_SAMPLING16(_PCLK_, _BAUD_) (((_PCLK_)*25U)/(4U*(_BAUD_)))
#define UART_DIVMANT_SAMPLING16(_PCLK_, _BAUD_) (UART_DIV_SAMPLING16((_PCLK_), (_BAUD_))/100U)
#define UART_DIVFRAQ_SAMPLING16(_PCLK_, _BAUD_) ((((UART_DIV_SAMPLING16((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) * 100U)) * 16U)\
+ 50U) / 100U)
/* UART BRR = mantissa + overflow + fraction
= (UART DIVMANT << 4) + (UART DIVFRAQ & 0xF0) + (UART DIVFRAQ & 0x0FU) */
#define UART_BRR_SAMPLING16(_PCLK_, _BAUD_) (((UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) << 4U) + \
(UART_DIVFRAQ_SAMPLING16((_PCLK_), (_BAUD_)) & 0xF0U)) + \
(UART_DIVFRAQ_SAMPLING16((_PCLK_), (_BAUD_)) & 0x0FU))
#define UART_DIV_SAMPLING8(_PCLK_, _BAUD_) (((_PCLK_)*25U)/(2U*(_BAUD_)))
#define UART_DIVMANT_SAMPLING8(_PCLK_, _BAUD_) (UART_DIV_SAMPLING8((_PCLK_), (_BAUD_))/100U)
#define UART_DIVFRAQ_SAMPLING8(_PCLK_, _BAUD_) ((((UART_DIV_SAMPLING8((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) * 100U)) * 8U)\
+ 50U) / 100U)
/* UART BRR = mantissa + overflow + fraction
= (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07U) */
#define UART_BRR_SAMPLING8(_PCLK_, _BAUD_) (((UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) << 4U) + \
((UART_DIVFRAQ_SAMPLING8((_PCLK_), (_BAUD_)) & 0xF8U) << 1U)) + \
(UART_DIVFRAQ_SAMPLING8((_PCLK_), (_BAUD_)) & 0x07U))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup UART_Private_Functions UART Private Functions
* @{
*/
HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_UART_H */

View file

@ -0,0 +1,648 @@
/**
******************************************************************************
* @file stm32f1xx_hal_usart.h
* @author MCD Application Team
* @brief Header file of USART HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_HAL_USART_H
#define __STM32F1xx_HAL_USART_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup USART
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup USART_Exported_Types USART Exported Types
* @{
*/
/**
* @brief USART Init Structure definition
*/
typedef struct
{
uint32_t BaudRate; /*!< This member configures the Usart communication baud rate.
The baud rate is computed using the following formula:
- IntegerDivider = ((PCLKx) / (16 * (husart->Init.BaudRate)))
- FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 16) + 0.5 */
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref USART_Word_Length */
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref USART_Stop_Bits */
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref USART_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits). */
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref USART_Mode */
uint32_t CLKPolarity; /*!< Specifies the steady state of the serial clock.
This parameter can be a value of @ref USART_Clock_Polarity */
uint32_t CLKPhase; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref USART_Clock_Phase */
uint32_t CLKLastBit; /*!< Specifies whether the clock pulse corresponding to the last transmitted
data bit (MSB) has to be output on the SCLK pin in synchronous mode.
This parameter can be a value of @ref USART_Last_Bit */
} USART_InitTypeDef;
/**
* @brief HAL State structures definition
*/
typedef enum
{
HAL_USART_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */
HAL_USART_STATE_READY = 0x01U, /*!< Peripheral Initialized and ready for use */
HAL_USART_STATE_BUSY = 0x02U, /*!< an internal process is ongoing */
HAL_USART_STATE_BUSY_TX = 0x12U, /*!< Data Transmission process is ongoing */
HAL_USART_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */
HAL_USART_STATE_BUSY_TX_RX = 0x32U, /*!< Data Transmission Reception process is ongoing */
HAL_USART_STATE_TIMEOUT = 0x03U, /*!< Timeout state */
HAL_USART_STATE_ERROR = 0x04U /*!< Error */
} HAL_USART_StateTypeDef;
/**
* @brief USART handle Structure definition
*/
typedef struct __USART_HandleTypeDef
{
USART_TypeDef *Instance; /*!< USART registers base address */
USART_InitTypeDef Init; /*!< Usart communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to Usart Tx transfer Buffer */
uint16_t TxXferSize; /*!< Usart Tx Transfer size */
__IO uint16_t TxXferCount; /*!< Usart Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to Usart Rx transfer Buffer */
uint16_t RxXferSize; /*!< Usart Rx Transfer size */
__IO uint16_t RxXferCount; /*!< Usart Rx Transfer Counter */
DMA_HandleTypeDef *hdmatx; /*!< Usart Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< Usart Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_USART_StateTypeDef State; /*!< Usart communication state */
__IO uint32_t ErrorCode; /*!< USART Error code */
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
void (* TxHalfCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Tx Half Complete Callback */
void (* TxCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Tx Complete Callback */
void (* RxHalfCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Rx Half Complete Callback */
void (* RxCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Rx Complete Callback */
void (* TxRxCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Tx Rx Complete Callback */
void (* ErrorCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Error Callback */
void (* AbortCpltCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Abort Complete Callback */
void (* MspInitCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Msp Init callback */
void (* MspDeInitCallback)(struct __USART_HandleTypeDef *husart); /*!< USART Msp DeInit callback */
#endif /* USE_HAL_USART_REGISTER_CALLBACKS */
} USART_HandleTypeDef;
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
/**
* @brief HAL USART Callback ID enumeration definition
*/
typedef enum
{
HAL_USART_TX_HALFCOMPLETE_CB_ID = 0x00U, /*!< USART Tx Half Complete Callback ID */
HAL_USART_TX_COMPLETE_CB_ID = 0x01U, /*!< USART Tx Complete Callback ID */
HAL_USART_RX_HALFCOMPLETE_CB_ID = 0x02U, /*!< USART Rx Half Complete Callback ID */
HAL_USART_RX_COMPLETE_CB_ID = 0x03U, /*!< USART Rx Complete Callback ID */
HAL_USART_TX_RX_COMPLETE_CB_ID = 0x04U, /*!< USART Tx Rx Complete Callback ID */
HAL_USART_ERROR_CB_ID = 0x05U, /*!< USART Error Callback ID */
HAL_USART_ABORT_COMPLETE_CB_ID = 0x06U, /*!< USART Abort Complete Callback ID */
HAL_USART_MSPINIT_CB_ID = 0x07U, /*!< USART MspInit callback ID */
HAL_USART_MSPDEINIT_CB_ID = 0x08U /*!< USART MspDeInit callback ID */
} HAL_USART_CallbackIDTypeDef;
/**
* @brief HAL USART Callback pointer definition
*/
typedef void (*pUSART_CallbackTypeDef)(USART_HandleTypeDef *husart); /*!< pointer to an USART callback function */
#endif /* USE_HAL_USART_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup USART_Exported_Constants USART Exported Constants
* @{
*/
/** @defgroup USART_Error_Code USART Error Code
* @brief USART Error Code
* @{
*/
#define HAL_USART_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_USART_ERROR_PE 0x00000001U /*!< Parity error */
#define HAL_USART_ERROR_NE 0x00000002U /*!< Noise error */
#define HAL_USART_ERROR_FE 0x00000004U /*!< Frame error */
#define HAL_USART_ERROR_ORE 0x00000008U /*!< Overrun error */
#define HAL_USART_ERROR_DMA 0x00000010U /*!< DMA transfer error */
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
#define HAL_USART_ERROR_INVALID_CALLBACK 0x00000020U /*!< Invalid Callback error */
#endif /* USE_HAL_USART_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup USART_Word_Length USART Word Length
* @{
*/
#define USART_WORDLENGTH_8B 0x00000000U
#define USART_WORDLENGTH_9B ((uint32_t)USART_CR1_M)
/**
* @}
*/
/** @defgroup USART_Stop_Bits USART Number of Stop Bits
* @{
*/
#define USART_STOPBITS_1 0x00000000U
#define USART_STOPBITS_0_5 ((uint32_t)USART_CR2_STOP_0)
#define USART_STOPBITS_2 ((uint32_t)USART_CR2_STOP_1)
#define USART_STOPBITS_1_5 ((uint32_t)(USART_CR2_STOP_0 | USART_CR2_STOP_1))
/**
* @}
*/
/** @defgroup USART_Parity USART Parity
* @{
*/
#define USART_PARITY_NONE 0x00000000U
#define USART_PARITY_EVEN ((uint32_t)USART_CR1_PCE)
#define USART_PARITY_ODD ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
/**
* @}
*/
/** @defgroup USART_Mode USART Mode
* @{
*/
#define USART_MODE_RX ((uint32_t)USART_CR1_RE)
#define USART_MODE_TX ((uint32_t)USART_CR1_TE)
#define USART_MODE_TX_RX ((uint32_t)(USART_CR1_TE | USART_CR1_RE))
/**
* @}
*/
/** @defgroup USART_Clock USART Clock
* @{
*/
#define USART_CLOCK_DISABLE 0x00000000U
#define USART_CLOCK_ENABLE ((uint32_t)USART_CR2_CLKEN)
/**
* @}
*/
/** @defgroup USART_Clock_Polarity USART Clock Polarity
* @{
*/
#define USART_POLARITY_LOW 0x00000000U
#define USART_POLARITY_HIGH ((uint32_t)USART_CR2_CPOL)
/**
* @}
*/
/** @defgroup USART_Clock_Phase USART Clock Phase
* @{
*/
#define USART_PHASE_1EDGE 0x00000000U
#define USART_PHASE_2EDGE ((uint32_t)USART_CR2_CPHA)
/**
* @}
*/
/** @defgroup USART_Last_Bit USART Last Bit
* @{
*/
#define USART_LASTBIT_DISABLE 0x00000000U
#define USART_LASTBIT_ENABLE ((uint32_t)USART_CR2_LBCL)
/**
* @}
*/
/** @defgroup USART_NACK_State USART NACK State
* @{
*/
#define USART_NACK_ENABLE ((uint32_t)USART_CR3_NACK)
#define USART_NACK_DISABLE 0x00000000U
/**
* @}
*/
/** @defgroup USART_Flags USART Flags
* Elements values convention: 0xXXXX
* - 0xXXXX : Flag mask in the SR register
* @{
*/
#define USART_FLAG_TXE ((uint32_t)USART_SR_TXE)
#define USART_FLAG_TC ((uint32_t)USART_SR_TC)
#define USART_FLAG_RXNE ((uint32_t)USART_SR_RXNE)
#define USART_FLAG_IDLE ((uint32_t)USART_SR_IDLE)
#define USART_FLAG_ORE ((uint32_t)USART_SR_ORE)
#define USART_FLAG_NE ((uint32_t)USART_SR_NE)
#define USART_FLAG_FE ((uint32_t)USART_SR_FE)
#define USART_FLAG_PE ((uint32_t)USART_SR_PE)
/**
* @}
*/
/** @defgroup USART_Interrupt_definition USART Interrupts Definition
* Elements values convention: 0xY000XXXX
* - XXXX : Interrupt mask in the XX register
* - Y : Interrupt source register (2bits)
* - 01: CR1 register
* - 10: CR2 register
* - 11: CR3 register
* @{
*/
#define USART_IT_PE ((uint32_t)(USART_CR1_REG_INDEX << 28U | USART_CR1_PEIE))
#define USART_IT_TXE ((uint32_t)(USART_CR1_REG_INDEX << 28U | USART_CR1_TXEIE))
#define USART_IT_TC ((uint32_t)(USART_CR1_REG_INDEX << 28U | USART_CR1_TCIE))
#define USART_IT_RXNE ((uint32_t)(USART_CR1_REG_INDEX << 28U | USART_CR1_RXNEIE))
#define USART_IT_IDLE ((uint32_t)(USART_CR1_REG_INDEX << 28U | USART_CR1_IDLEIE))
#define USART_IT_ERR ((uint32_t)(USART_CR3_REG_INDEX << 28U | USART_CR3_EIE))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup USART_Exported_Macros USART Exported Macros
* @{
*/
/** @brief Reset USART handle state
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
#define __HAL_USART_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_USART_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0U)
#else
#define __HAL_USART_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_USART_STATE_RESET)
#endif /* USE_HAL_USART_REGISTER_CALLBACKS */
/** @brief Check whether the specified USART flag is set or not.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg USART_FLAG_TXE: Transmit data register empty flag
* @arg USART_FLAG_TC: Transmission Complete flag
* @arg USART_FLAG_RXNE: Receive data register not empty flag
* @arg USART_FLAG_IDLE: Idle Line detection flag
* @arg USART_FLAG_ORE: Overrun Error flag
* @arg USART_FLAG_NE: Noise Error flag
* @arg USART_FLAG_FE: Framing Error flag
* @arg USART_FLAG_PE: Parity Error flag
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_USART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
/** @brief Clear the specified USART pending flags.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __FLAG__ specifies the flag to check.
* This parameter can be any combination of the following values:
* @arg USART_FLAG_TC: Transmission Complete flag.
* @arg USART_FLAG_RXNE: Receive data register not empty flag.
*
* @note PE (Parity error), FE (Framing error), NE (Noise error), ORE (Overrun
* error) and IDLE (Idle line detected) flags are cleared by software
* sequence: a read operation to USART_SR register followed by a read
* operation to USART_DR register.
* @note RXNE flag can be also cleared by a read to the USART_DR register.
* @note TC flag can be also cleared by software sequence: a read operation to
* USART_SR register followed by a write operation to USART_DR register.
* @note TXE flag is cleared only by a write to the USART_DR register.
*
* @retval None
*/
#define __HAL_USART_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/** @brief Clear the USART PE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_CLEAR_PEFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg = 0x00U; \
tmpreg = (__HANDLE__)->Instance->SR; \
tmpreg = (__HANDLE__)->Instance->DR; \
UNUSED(tmpreg); \
} while(0U)
/** @brief Clear the USART FE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_CLEAR_FEFLAG(__HANDLE__) __HAL_USART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the USART NE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_CLEAR_NEFLAG(__HANDLE__) __HAL_USART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the USART ORE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_CLEAR_OREFLAG(__HANDLE__) __HAL_USART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Clear the USART IDLE pending flag.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_USART_CLEAR_PEFLAG(__HANDLE__)
/** @brief Enables or disables the specified USART interrupts.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __INTERRUPT__ specifies the USART interrupt source to check.
* This parameter can be one of the following values:
* @arg USART_IT_TXE: Transmit Data Register empty interrupt
* @arg USART_IT_TC: Transmission complete interrupt
* @arg USART_IT_RXNE: Receive Data register not empty interrupt
* @arg USART_IT_IDLE: Idle line detection interrupt
* @arg USART_IT_PE: Parity Error interrupt
* @arg USART_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
* @retval None
*/
#define __HAL_USART_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == USART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & USART_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == USART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 |= ((__INTERRUPT__) & USART_IT_MASK)): \
((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & USART_IT_MASK)))
#define __HAL_USART_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U) == USART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & USART_IT_MASK)): \
(((__INTERRUPT__) >> 28U) == USART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 &= ~((__INTERRUPT__) & USART_IT_MASK)): \
((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & USART_IT_MASK)))
/** @brief Checks whether the specified USART interrupt has occurred or not.
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @param __IT__ specifies the USART interrupt source to check.
* This parameter can be one of the following values:
* @arg USART_IT_TXE: Transmit Data Register empty interrupt
* @arg USART_IT_TC: Transmission complete interrupt
* @arg USART_IT_RXNE: Receive Data register not empty interrupt
* @arg USART_IT_IDLE: Idle line detection interrupt
* @arg USART_IT_ERR: Error interrupt
* @arg USART_IT_PE: Parity Error interrupt
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_USART_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28U) == USART_CR1_REG_INDEX)? (__HANDLE__)->Instance->CR1:(((((uint32_t)(__IT__)) >> 28U) == USART_CR2_REG_INDEX)? \
(__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & (((uint32_t)(__IT__)) & USART_IT_MASK))
/** @brief Macro to enable the USART's one bit sample method
* @param __HANDLE__ specifies the USART Handle.
* @retval None
*/
#define __HAL_USART_ONE_BIT_SAMPLE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3 |= USART_CR3_ONEBIT)
/** @brief Macro to disable the USART's one bit sample method
* @param __HANDLE__ specifies the USART Handle.
* @retval None
*/
#define __HAL_USART_ONE_BIT_SAMPLE_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3\
&= (uint16_t)~((uint16_t)USART_CR3_ONEBIT))
/** @brief Enable USART
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= USART_CR1_UE)
/** @brief Disable USART
* @param __HANDLE__ specifies the USART Handle.
* USART Handle selects the USARTx peripheral (USART availability and x value depending on device).
* @retval None
*/
#define __HAL_USART_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~USART_CR1_UE)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup USART_Exported_Functions
* @{
*/
/** @addtogroup USART_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart);
HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart);
void HAL_USART_MspInit(USART_HandleTypeDef *husart);
void HAL_USART_MspDeInit(USART_HandleTypeDef *husart);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_USART_RegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID,
pUSART_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_USART_UnRegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_USART_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup USART_Exported_Functions_Group2
* @{
*/
/* IO operation functions *******************************************************/
HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size);
HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size);
HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size);
HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size);
HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart);
HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart);
HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_USART_Abort(USART_HandleTypeDef *husart);
HAL_StatusTypeDef HAL_USART_Abort_IT(USART_HandleTypeDef *husart);
void HAL_USART_IRQHandler(USART_HandleTypeDef *husart);
void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart);
void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart);
void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart);
void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart);
void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart);
void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart);
void HAL_USART_AbortCpltCallback(USART_HandleTypeDef *husart);
/**
* @}
*/
/** @addtogroup USART_Exported_Functions_Group3
* @{
*/
/* Peripheral State functions ************************************************/
HAL_USART_StateTypeDef HAL_USART_GetState(const USART_HandleTypeDef *husart);
uint32_t HAL_USART_GetError(const USART_HandleTypeDef *husart);
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup USART_Private_Constants USART Private Constants
* @{
*/
/** @brief USART interruptions flag mask
*
*/
#define USART_IT_MASK ((uint32_t) USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RXNEIE | \
USART_CR1_IDLEIE | USART_CR2_LBDIE | USART_CR3_CTSIE | USART_CR3_EIE )
#define USART_CR1_REG_INDEX 1U
#define USART_CR2_REG_INDEX 2U
#define USART_CR3_REG_INDEX 3U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup USART_Private_Macros USART Private Macros
* @{
*/
#define IS_USART_NACK_STATE(NACK) (((NACK) == USART_NACK_ENABLE) || \
((NACK) == USART_NACK_DISABLE))
#define IS_USART_LASTBIT(LASTBIT) (((LASTBIT) == USART_LASTBIT_DISABLE) || \
((LASTBIT) == USART_LASTBIT_ENABLE))
#define IS_USART_PHASE(CPHA) (((CPHA) == USART_PHASE_1EDGE) || \
((CPHA) == USART_PHASE_2EDGE))
#define IS_USART_POLARITY(CPOL) (((CPOL) == USART_POLARITY_LOW) || \
((CPOL) == USART_POLARITY_HIGH))
#define IS_USART_CLOCK(CLOCK) (((CLOCK) == USART_CLOCK_DISABLE) || \
((CLOCK) == USART_CLOCK_ENABLE))
#define IS_USART_WORD_LENGTH(LENGTH) (((LENGTH) == USART_WORDLENGTH_8B) || \
((LENGTH) == USART_WORDLENGTH_9B))
#define IS_USART_STOPBITS(STOPBITS) (((STOPBITS) == USART_STOPBITS_1) || \
((STOPBITS) == USART_STOPBITS_0_5) || \
((STOPBITS) == USART_STOPBITS_1_5) || \
((STOPBITS) == USART_STOPBITS_2))
#define IS_USART_PARITY(PARITY) (((PARITY) == USART_PARITY_NONE) || \
((PARITY) == USART_PARITY_EVEN) || \
((PARITY) == USART_PARITY_ODD))
#define IS_USART_MODE(MODE) ((((MODE) & (~((uint32_t)USART_MODE_TX_RX))) == 0x00U) && ((MODE) != 0x00U))
#define IS_USART_BAUDRATE(BAUDRATE) ((BAUDRATE) <= 4500000U)
#define USART_DIV(_PCLK_, _BAUD_) (((_PCLK_)*25U)/(4U*(_BAUD_)))
#define USART_DIVMANT(_PCLK_, _BAUD_) (USART_DIV((_PCLK_), (_BAUD_))/100U)
#define USART_DIVFRAQ(_PCLK_, _BAUD_) ((((USART_DIV((_PCLK_), (_BAUD_)) - (USART_DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U)
/* UART BRR = mantissa + overflow + fraction
= (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF0) << 1) + (UART DIVFRAQ & 0x0FU) */
#define USART_BRR(_PCLK_, _BAUD_) (((USART_DIVMANT((_PCLK_), (_BAUD_)) << 4U) + \
((USART_DIVFRAQ((_PCLK_), (_BAUD_)) & 0xF0U) << 1U)) + \
(USART_DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup USART_Private_Functions USART Private Functions
* @{
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_HAL_USART_H */

View file

@ -0,0 +1,298 @@
/**
******************************************************************************
* @file stm32f1xx_hal_wwdg.h
* @author MCD Application Team
* @brief Header file of WWDG HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_HAL_WWDG_H
#define STM32F1xx_HAL_WWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup WWDG
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup WWDG_Exported_Types WWDG Exported Types
* @{
*/
/**
* @brief WWDG Init structure definition
*/
typedef struct
{
uint32_t Prescaler; /*!< Specifies the prescaler value of the WWDG.
This parameter can be a value of @ref WWDG_Prescaler */
uint32_t Window; /*!< Specifies the WWDG window value to be compared to the downcounter.
This parameter must be a number Min_Data = 0x40 and Max_Data = 0x7F */
uint32_t Counter; /*!< Specifies the WWDG free-running downcounter value.
This parameter must be a number between Min_Data = 0x40 and Max_Data = 0x7F */
uint32_t EWIMode ; /*!< Specifies if WWDG Early Wakeup Interrupt is enable or not.
This parameter can be a value of @ref WWDG_EWI_Mode */
} WWDG_InitTypeDef;
/**
* @brief WWDG handle Structure definition
*/
#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1)
typedef struct __WWDG_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */
{
WWDG_TypeDef *Instance; /*!< Register base address */
WWDG_InitTypeDef Init; /*!< WWDG required parameters */
#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1)
void (* EwiCallback)(struct __WWDG_HandleTypeDef *hwwdg); /*!< WWDG Early WakeUp Interrupt callback */
void (* MspInitCallback)(struct __WWDG_HandleTypeDef *hwwdg); /*!< WWDG Msp Init callback */
#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */
} WWDG_HandleTypeDef;
#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1)
/**
* @brief HAL WWDG common Callback ID enumeration definition
*/
typedef enum
{
HAL_WWDG_EWI_CB_ID = 0x00U, /*!< WWDG EWI callback ID */
HAL_WWDG_MSPINIT_CB_ID = 0x01U, /*!< WWDG MspInit callback ID */
} HAL_WWDG_CallbackIDTypeDef;
/**
* @brief HAL WWDG Callback pointer definition
*/
typedef void (*pWWDG_CallbackTypeDef)(WWDG_HandleTypeDef *hppp); /*!< pointer to a WWDG common callback functions */
#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup WWDG_Exported_Constants WWDG Exported Constants
* @{
*/
/** @defgroup WWDG_Interrupt_definition WWDG Interrupt definition
* @{
*/
#define WWDG_IT_EWI WWDG_CFR_EWI /*!< Early wakeup interrupt */
/**
* @}
*/
/** @defgroup WWDG_Flag_definition WWDG Flag definition
* @brief WWDG Flag definition
* @{
*/
#define WWDG_FLAG_EWIF WWDG_SR_EWIF /*!< Early wakeup interrupt flag */
/**
* @}
*/
/** @defgroup WWDG_Prescaler WWDG Prescaler
* @{
*/
#define WWDG_PRESCALER_1 0x00000000u /*!< WWDG counter clock = (PCLK1/4096)/1 */
#define WWDG_PRESCALER_2 WWDG_CFR_WDGTB_0 /*!< WWDG counter clock = (PCLK1/4096)/2 */
#define WWDG_PRESCALER_4 WWDG_CFR_WDGTB_1 /*!< WWDG counter clock = (PCLK1/4096)/4 */
#define WWDG_PRESCALER_8 (WWDG_CFR_WDGTB_1 | WWDG_CFR_WDGTB_0) /*!< WWDG counter clock = (PCLK1/4096)/8 */
/**
* @}
*/
/** @defgroup WWDG_EWI_Mode WWDG Early Wakeup Interrupt Mode
* @{
*/
#define WWDG_EWI_DISABLE 0x00000000u /*!< EWI Disable */
#define WWDG_EWI_ENABLE WWDG_CFR_EWI /*!< EWI Enable */
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup WWDG_Private_Macros WWDG Private Macros
* @{
*/
#define IS_WWDG_PRESCALER(__PRESCALER__) (((__PRESCALER__) == WWDG_PRESCALER_1) || \
((__PRESCALER__) == WWDG_PRESCALER_2) || \
((__PRESCALER__) == WWDG_PRESCALER_4) || \
((__PRESCALER__) == WWDG_PRESCALER_8))
#define IS_WWDG_WINDOW(__WINDOW__) (((__WINDOW__) >= WWDG_CFR_W_6) && ((__WINDOW__) <= WWDG_CFR_W))
#define IS_WWDG_COUNTER(__COUNTER__) (((__COUNTER__) >= WWDG_CR_T_6) && ((__COUNTER__) <= WWDG_CR_T))
#define IS_WWDG_EWI_MODE(__MODE__) (((__MODE__) == WWDG_EWI_ENABLE) || \
((__MODE__) == WWDG_EWI_DISABLE))
/**
* @}
*/
/* Exported macros ------------------------------------------------------------*/
/** @defgroup WWDG_Exported_Macros WWDG Exported Macros
* @{
*/
/**
* @brief Enable the WWDG peripheral.
* @param __HANDLE__ WWDG handle
* @retval None
*/
#define __HAL_WWDG_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR, WWDG_CR_WDGA)
/**
* @brief Enable the WWDG early wakeup interrupt.
* @param __HANDLE__ WWDG handle
* @param __INTERRUPT__ specifies the interrupt to enable.
* This parameter can be one of the following values:
* @arg WWDG_IT_EWI: Early wakeup interrupt
* @note Once enabled this interrupt cannot be disabled except by a system reset.
* @retval None
*/
#define __HAL_WWDG_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CFR, (__INTERRUPT__))
/**
* @brief Check whether the selected WWDG interrupt has occurred or not.
* @param __HANDLE__ WWDG handle
* @param __INTERRUPT__ specifies the it to check.
* This parameter can be one of the following values:
* @arg WWDG_FLAG_EWIF: Early wakeup interrupt IT
* @retval The new state of WWDG_FLAG (SET or RESET).
*/
#define __HAL_WWDG_GET_IT(__HANDLE__, __INTERRUPT__) __HAL_WWDG_GET_FLAG((__HANDLE__),(__INTERRUPT__))
/** @brief Clear the WWDG interrupt pending bits.
* bits to clear the selected interrupt pending bits.
* @param __HANDLE__ WWDG handle
* @param __INTERRUPT__ specifies the interrupt pending bit to clear.
* This parameter can be one of the following values:
* @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
*/
#define __HAL_WWDG_CLEAR_IT(__HANDLE__, __INTERRUPT__) __HAL_WWDG_CLEAR_FLAG((__HANDLE__), (__INTERRUPT__))
/**
* @brief Check whether the specified WWDG flag is set or not.
* @param __HANDLE__ WWDG handle
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
* @retval The new state of WWDG_FLAG (SET or RESET).
*/
#define __HAL_WWDG_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
/**
* @brief Clear the WWDG's pending flags.
* @param __HANDLE__ WWDG handle
* @param __FLAG__ specifies the flag to clear.
* This parameter can be one of the following values:
* @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
* @retval None
*/
#define __HAL_WWDG_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/** @brief Check whether the specified WWDG interrupt source is enabled or not.
* @param __HANDLE__ WWDG Handle.
* @param __INTERRUPT__ specifies the WWDG interrupt source to check.
* This parameter can be one of the following values:
* @arg WWDG_IT_EWI: Early Wakeup Interrupt
* @retval state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_WWDG_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CFR\
& (__INTERRUPT__)) == (__INTERRUPT__))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup WWDG_Exported_Functions
* @{
*/
/** @addtogroup WWDG_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions **********************************/
HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg);
void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_WWDG_RegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID,
pWWDG_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_WWDG_UnRegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup WWDG_Exported_Functions_Group2
* @{
*/
/* I/O operation functions ******************************************************/
HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg);
void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg);
void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef *hwwdg);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_HAL_WWDG_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,638 @@
/**
******************************************************************************
* @file stm32f1xx_ll_cortex.h
* @author MCD Application Team
* @brief Header file of CORTEX LL module.
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL CORTEX driver contains a set of generic APIs that can be
used by user:
(+) SYSTICK configuration used by LL_mDelay and LL_Init1msTick
functions
(+) Low power mode configuration (SCB register of Cortex-MCU)
(+) MPU API to configure and enable regions
(MPU services provided only on some devices)
(+) API to access to MCU info (CPUID register)
(+) API to enable fault handler (SHCSR accesses)
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_CORTEX_H
#define __STM32F1xx_LL_CORTEX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
/** @defgroup CORTEX_LL CORTEX
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Constants CORTEX Exported Constants
* @{
*/
/** @defgroup CORTEX_LL_EC_CLKSOURCE_HCLK SYSTICK Clock Source
* @{
*/
#define LL_SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U /*!< AHB clock divided by 8 selected as SysTick clock source.*/
#define LL_SYSTICK_CLKSOURCE_HCLK SysTick_CTRL_CLKSOURCE_Msk /*!< AHB clock selected as SysTick clock source. */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_FAULT Handler Fault type
* @{
*/
#define LL_HANDLER_FAULT_USG SCB_SHCSR_USGFAULTENA_Msk /*!< Usage fault */
#define LL_HANDLER_FAULT_BUS SCB_SHCSR_BUSFAULTENA_Msk /*!< Bus fault */
#define LL_HANDLER_FAULT_MEM SCB_SHCSR_MEMFAULTENA_Msk /*!< Memory management fault */
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EC_CTRL_HFNMI_PRIVDEF MPU Control
* @{
*/
#define LL_MPU_CTRL_HFNMI_PRIVDEF_NONE 0x00000000U /*!< Disable NMI and privileged SW access */
#define LL_MPU_CTRL_HARDFAULT_NMI MPU_CTRL_HFNMIENA_Msk /*!< Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers */
#define LL_MPU_CTRL_PRIVILEGED_DEFAULT MPU_CTRL_PRIVDEFENA_Msk /*!< Enable privileged software access to default memory map */
#define LL_MPU_CTRL_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk) /*!< Enable NMI and privileged SW access */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION MPU Region Number
* @{
*/
#define LL_MPU_REGION_NUMBER0 0x00U /*!< REGION Number 0 */
#define LL_MPU_REGION_NUMBER1 0x01U /*!< REGION Number 1 */
#define LL_MPU_REGION_NUMBER2 0x02U /*!< REGION Number 2 */
#define LL_MPU_REGION_NUMBER3 0x03U /*!< REGION Number 3 */
#define LL_MPU_REGION_NUMBER4 0x04U /*!< REGION Number 4 */
#define LL_MPU_REGION_NUMBER5 0x05U /*!< REGION Number 5 */
#define LL_MPU_REGION_NUMBER6 0x06U /*!< REGION Number 6 */
#define LL_MPU_REGION_NUMBER7 0x07U /*!< REGION Number 7 */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_SIZE MPU Region Size
* @{
*/
#define LL_MPU_REGION_SIZE_32B (0x04U << MPU_RASR_SIZE_Pos) /*!< 32B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64B (0x05U << MPU_RASR_SIZE_Pos) /*!< 64B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128B (0x06U << MPU_RASR_SIZE_Pos) /*!< 128B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256B (0x07U << MPU_RASR_SIZE_Pos) /*!< 256B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512B (0x08U << MPU_RASR_SIZE_Pos) /*!< 512B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1KB (0x09U << MPU_RASR_SIZE_Pos) /*!< 1KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2KB (0x0AU << MPU_RASR_SIZE_Pos) /*!< 2KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4KB (0x0BU << MPU_RASR_SIZE_Pos) /*!< 4KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8KB (0x0CU << MPU_RASR_SIZE_Pos) /*!< 8KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16KB (0x0DU << MPU_RASR_SIZE_Pos) /*!< 16KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32KB (0x0EU << MPU_RASR_SIZE_Pos) /*!< 32KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64KB (0x0FU << MPU_RASR_SIZE_Pos) /*!< 64KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128KB (0x10U << MPU_RASR_SIZE_Pos) /*!< 128KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256KB (0x11U << MPU_RASR_SIZE_Pos) /*!< 256KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512KB (0x12U << MPU_RASR_SIZE_Pos) /*!< 512KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1MB (0x13U << MPU_RASR_SIZE_Pos) /*!< 1MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2MB (0x14U << MPU_RASR_SIZE_Pos) /*!< 2MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4MB (0x15U << MPU_RASR_SIZE_Pos) /*!< 4MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8MB (0x16U << MPU_RASR_SIZE_Pos) /*!< 8MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16MB (0x17U << MPU_RASR_SIZE_Pos) /*!< 16MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32MB (0x18U << MPU_RASR_SIZE_Pos) /*!< 32MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64MB (0x19U << MPU_RASR_SIZE_Pos) /*!< 64MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128MB (0x1AU << MPU_RASR_SIZE_Pos) /*!< 128MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256MB (0x1BU << MPU_RASR_SIZE_Pos) /*!< 256MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512MB (0x1CU << MPU_RASR_SIZE_Pos) /*!< 512MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1GB (0x1DU << MPU_RASR_SIZE_Pos) /*!< 1GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2GB (0x1EU << MPU_RASR_SIZE_Pos) /*!< 2GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4GB (0x1FU << MPU_RASR_SIZE_Pos) /*!< 4GB Size of the MPU protection region */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_PRIVILEDGES MPU Region Privileges
* @{
*/
#define LL_MPU_REGION_NO_ACCESS (0x00U << MPU_RASR_AP_Pos) /*!< No access*/
#define LL_MPU_REGION_PRIV_RW (0x01U << MPU_RASR_AP_Pos) /*!< RW privileged (privileged access only)*/
#define LL_MPU_REGION_PRIV_RW_URO (0x02U << MPU_RASR_AP_Pos) /*!< RW privileged - RO user (Write in a user program generates a fault) */
#define LL_MPU_REGION_FULL_ACCESS (0x03U << MPU_RASR_AP_Pos) /*!< RW privileged & user (Full access) */
#define LL_MPU_REGION_PRIV_RO (0x05U << MPU_RASR_AP_Pos) /*!< RO privileged (privileged read only)*/
#define LL_MPU_REGION_PRIV_RO_URO (0x06U << MPU_RASR_AP_Pos) /*!< RO privileged & user (read only) */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_TEX MPU TEX Level
* @{
*/
#define LL_MPU_TEX_LEVEL0 (0x00U << MPU_RASR_TEX_Pos) /*!< b000 for TEX bits */
#define LL_MPU_TEX_LEVEL1 (0x01U << MPU_RASR_TEX_Pos) /*!< b001 for TEX bits */
#define LL_MPU_TEX_LEVEL2 (0x02U << MPU_RASR_TEX_Pos) /*!< b010 for TEX bits */
#define LL_MPU_TEX_LEVEL4 (0x04U << MPU_RASR_TEX_Pos) /*!< b100 for TEX bits */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_INSTRUCTION_ACCESS MPU Instruction Access
* @{
*/
#define LL_MPU_INSTRUCTION_ACCESS_ENABLE 0x00U /*!< Instruction fetches enabled */
#define LL_MPU_INSTRUCTION_ACCESS_DISABLE MPU_RASR_XN_Msk /*!< Instruction fetches disabled*/
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_SHAREABLE_ACCESS MPU Shareable Access
* @{
*/
#define LL_MPU_ACCESS_SHAREABLE MPU_RASR_S_Msk /*!< Shareable memory attribute */
#define LL_MPU_ACCESS_NOT_SHAREABLE 0x00U /*!< Not Shareable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_CACHEABLE_ACCESS MPU Cacheable Access
* @{
*/
#define LL_MPU_ACCESS_CACHEABLE MPU_RASR_C_Msk /*!< Cacheable memory attribute */
#define LL_MPU_ACCESS_NOT_CACHEABLE 0x00U /*!< Not Cacheable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_BUFFERABLE_ACCESS MPU Bufferable Access
* @{
*/
#define LL_MPU_ACCESS_BUFFERABLE MPU_RASR_B_Msk /*!< Bufferable memory attribute */
#define LL_MPU_ACCESS_NOT_BUFFERABLE 0x00U /*!< Not Bufferable memory attribute */
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_LL_EF_SYSTICK SYSTICK
* @{
*/
/**
* @brief This function checks if the Systick counter flag is active or not.
* @note It can be used in timeout function on application side.
* @rmtoll STK_CTRL COUNTFLAG LL_SYSTICK_IsActiveCounterFlag
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsActiveCounterFlag(void)
{
return ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == (SysTick_CTRL_COUNTFLAG_Msk));
}
/**
* @brief Configures the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_SetClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_SetClkSource(uint32_t Source)
{
if (Source == LL_SYSTICK_CLKSOURCE_HCLK)
{
SET_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
else
{
CLEAR_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
}
/**
* @brief Get the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_GetClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
*/
__STATIC_INLINE uint32_t LL_SYSTICK_GetClkSource(void)
{
return READ_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
/**
* @brief Enable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_EnableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_EnableIT(void)
{
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Disable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_DisableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_DisableIT(void)
{
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Checks if the SYSTICK interrupt is enabled or disabled.
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_IsEnabledIT
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsEnabledIT(void)
{
return (READ_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk) == (SysTick_CTRL_TICKINT_Msk));
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_LOW_POWER_MODE LOW POWER MODE
* @{
*/
/**
* @brief Processor uses sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleep(void)
{
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Processor uses deep sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableDeepSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableDeepSleep(void)
{
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Configures sleep-on-exit when returning from Handler mode to Thread mode.
* @note Setting this bit to 1 enables an interrupt-driven application to avoid returning to an
* empty main application.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_EnableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Do not sleep when returning to Thread mode.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_DisableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enabled events and all interrupts, including disabled interrupts, can wakeup the
* processor.
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_EnableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableEventOnPend(void)
{
/* Set SEVEONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Only enabled interrupts or events can wakeup the processor, disabled interrupts are
* excluded
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_DisableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableEventOnPend(void)
{
/* Clear SEVEONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_HANDLER HANDLER
* @{
*/
/**
* @brief Enable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_EnableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_EnableFault(uint32_t Fault)
{
/* Enable the system handler fault */
SET_BIT(SCB->SHCSR, Fault);
}
/**
* @brief Disable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_DisableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_DisableFault(uint32_t Fault)
{
/* Disable the system handler fault */
CLEAR_BIT(SCB->SHCSR, Fault);
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_MCU_INFO MCU INFO
* @{
*/
/**
* @brief Get Implementer code
* @rmtoll SCB_CPUID IMPLEMENTER LL_CPUID_GetImplementer
* @retval Value should be equal to 0x41 for ARM
*/
__STATIC_INLINE uint32_t LL_CPUID_GetImplementer(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_IMPLEMENTER_Msk) >> SCB_CPUID_IMPLEMENTER_Pos);
}
/**
* @brief Get Variant number (The r value in the rnpn product revision identifier)
* @rmtoll SCB_CPUID VARIANT LL_CPUID_GetVariant
* @retval Value between 0 and 255 (0x1: revision 1, 0x2: revision 2)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetVariant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_VARIANT_Msk) >> SCB_CPUID_VARIANT_Pos);
}
/**
* @brief Get Constant number
* @rmtoll SCB_CPUID ARCHITECTURE LL_CPUID_GetConstant
* @retval Value should be equal to 0xF for Cortex-M3 devices
*/
__STATIC_INLINE uint32_t LL_CPUID_GetConstant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_ARCHITECTURE_Msk) >> SCB_CPUID_ARCHITECTURE_Pos);
}
/**
* @brief Get Part number
* @rmtoll SCB_CPUID PARTNO LL_CPUID_GetParNo
* @retval Value should be equal to 0xC23 for Cortex-M3
*/
__STATIC_INLINE uint32_t LL_CPUID_GetParNo(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_PARTNO_Msk) >> SCB_CPUID_PARTNO_Pos);
}
/**
* @brief Get Revision number (The p value in the rnpn product revision identifier, indicates patch release)
* @rmtoll SCB_CPUID REVISION LL_CPUID_GetRevision
* @retval Value between 0 and 255 (0x0: patch 0, 0x1: patch 1)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetRevision(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_REVISION_Msk) >> SCB_CPUID_REVISION_Pos);
}
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EF_MPU MPU
* @{
*/
/**
* @brief Enable MPU with input options
* @rmtoll MPU_CTRL ENABLE LL_MPU_Enable
* @param Options This parameter can be one of the following values:
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF_NONE
* @arg @ref LL_MPU_CTRL_HARDFAULT_NMI
* @arg @ref LL_MPU_CTRL_PRIVILEGED_DEFAULT
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF
* @retval None
*/
__STATIC_INLINE void LL_MPU_Enable(uint32_t Options)
{
/* Enable the MPU*/
WRITE_REG(MPU->CTRL, (MPU_CTRL_ENABLE_Msk | Options));
/* Ensure MPU settings take effects */
__DSB();
/* Sequence instruction fetches using update settings */
__ISB();
}
/**
* @brief Disable MPU
* @rmtoll MPU_CTRL ENABLE LL_MPU_Disable
* @retval None
*/
__STATIC_INLINE void LL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable MPU*/
WRITE_REG(MPU->CTRL, 0U);
}
/**
* @brief Check if MPU is enabled or not
* @rmtoll MPU_CTRL ENABLE LL_MPU_IsEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_MPU_IsEnabled(void)
{
return (READ_BIT(MPU->CTRL, MPU_CTRL_ENABLE_Msk) == (MPU_CTRL_ENABLE_Msk));
}
/**
* @brief Enable a MPU region
* @rmtoll MPU_RASR ENABLE LL_MPU_EnableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_EnableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Enable the MPU region */
SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Configure and enable a region
* @rmtoll MPU_RNR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR ADDR LL_MPU_ConfigRegion\n
* MPU_RASR XN LL_MPU_ConfigRegion\n
* MPU_RASR AP LL_MPU_ConfigRegion\n
* MPU_RASR S LL_MPU_ConfigRegion\n
* MPU_RASR C LL_MPU_ConfigRegion\n
* MPU_RASR B LL_MPU_ConfigRegion\n
* MPU_RASR SIZE LL_MPU_ConfigRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @param Address Value of region base address
* @param SubRegionDisable Sub-region disable value between Min_Data = 0x00 and Max_Data = 0xFF
* @param Attributes This parameter can be a combination of the following values:
* @arg @ref LL_MPU_REGION_SIZE_32B or @ref LL_MPU_REGION_SIZE_64B or @ref LL_MPU_REGION_SIZE_128B or @ref LL_MPU_REGION_SIZE_256B or @ref LL_MPU_REGION_SIZE_512B
* or @ref LL_MPU_REGION_SIZE_1KB or @ref LL_MPU_REGION_SIZE_2KB or @ref LL_MPU_REGION_SIZE_4KB or @ref LL_MPU_REGION_SIZE_8KB or @ref LL_MPU_REGION_SIZE_16KB
* or @ref LL_MPU_REGION_SIZE_32KB or @ref LL_MPU_REGION_SIZE_64KB or @ref LL_MPU_REGION_SIZE_128KB or @ref LL_MPU_REGION_SIZE_256KB or @ref LL_MPU_REGION_SIZE_512KB
* or @ref LL_MPU_REGION_SIZE_1MB or @ref LL_MPU_REGION_SIZE_2MB or @ref LL_MPU_REGION_SIZE_4MB or @ref LL_MPU_REGION_SIZE_8MB or @ref LL_MPU_REGION_SIZE_16MB
* or @ref LL_MPU_REGION_SIZE_32MB or @ref LL_MPU_REGION_SIZE_64MB or @ref LL_MPU_REGION_SIZE_128MB or @ref LL_MPU_REGION_SIZE_256MB or @ref LL_MPU_REGION_SIZE_512MB
* or @ref LL_MPU_REGION_SIZE_1GB or @ref LL_MPU_REGION_SIZE_2GB or @ref LL_MPU_REGION_SIZE_4GB
* @arg @ref LL_MPU_REGION_NO_ACCESS or @ref LL_MPU_REGION_PRIV_RW or @ref LL_MPU_REGION_PRIV_RW_URO or @ref LL_MPU_REGION_FULL_ACCESS
* or @ref LL_MPU_REGION_PRIV_RO or @ref LL_MPU_REGION_PRIV_RO_URO
* @arg @ref LL_MPU_TEX_LEVEL0 or @ref LL_MPU_TEX_LEVEL1 or @ref LL_MPU_TEX_LEVEL2 or @ref LL_MPU_TEX_LEVEL4
* @arg @ref LL_MPU_INSTRUCTION_ACCESS_ENABLE or @ref LL_MPU_INSTRUCTION_ACCESS_DISABLE
* @arg @ref LL_MPU_ACCESS_SHAREABLE or @ref LL_MPU_ACCESS_NOT_SHAREABLE
* @arg @ref LL_MPU_ACCESS_CACHEABLE or @ref LL_MPU_ACCESS_NOT_CACHEABLE
* @arg @ref LL_MPU_ACCESS_BUFFERABLE or @ref LL_MPU_ACCESS_NOT_BUFFERABLE
* @retval None
*/
__STATIC_INLINE void LL_MPU_ConfigRegion(uint32_t Region, uint32_t SubRegionDisable, uint32_t Address, uint32_t Attributes)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Set base address */
WRITE_REG(MPU->RBAR, (Address & 0xFFFFFFE0U));
/* Configure MPU */
WRITE_REG(MPU->RASR, (MPU_RASR_ENABLE_Msk | Attributes | SubRegionDisable << MPU_RASR_SRD_Pos));
}
/**
* @brief Disable a region
* @rmtoll MPU_RNR REGION LL_MPU_DisableRegion\n
* MPU_RASR ENABLE LL_MPU_DisableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_DisableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Disable the MPU region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_CORTEX_H */

View file

@ -0,0 +1,201 @@
/**
******************************************************************************
* @file stm32f1xx_ll_crc.h
* @author MCD Application Team
* @brief Header file of CRC LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_CRC_H
#define STM32F1xx_LL_CRC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined(CRC)
/** @defgroup CRC_LL CRC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRC_LL_Exported_Constants CRC Exported Constants
* @{
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup CRC_LL_Exported_Macros CRC Exported Macros
* @{
*/
/** @defgroup CRC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in CRC register
* @param __INSTANCE__ CRC Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_CRC_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, __VALUE__)
/**
* @brief Read a value in CRC register
* @param __INSTANCE__ CRC Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_CRC_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRC_LL_Exported_Functions CRC Exported Functions
* @{
*/
/** @defgroup CRC_LL_EF_Configuration CRC Configuration functions
* @{
*/
/**
* @brief Reset the CRC calculation unit.
* @note If Programmable Initial CRC value feature
* is available, also set the Data Register to the value stored in the
* CRC_INIT register, otherwise, reset Data Register to its default value.
* @rmtoll CR RESET LL_CRC_ResetCRCCalculationUnit
* @param CRCx CRC Instance
* @retval None
*/
__STATIC_INLINE void LL_CRC_ResetCRCCalculationUnit(CRC_TypeDef *CRCx)
{
SET_BIT(CRCx->CR, CRC_CR_RESET);
}
/**
* @}
*/
/** @defgroup CRC_LL_EF_Data_Management Data_Management
* @{
*/
/**
* @brief Write given 32-bit data to the CRC calculator
* @rmtoll DR DR LL_CRC_FeedData32
* @param CRCx CRC Instance
* @param InData value to be provided to CRC calculator between between Min_Data=0 and Max_Data=0xFFFFFFFF
* @retval None
*/
__STATIC_INLINE void LL_CRC_FeedData32(CRC_TypeDef *CRCx, uint32_t InData)
{
WRITE_REG(CRCx->DR, InData);
}
/**
* @brief Return current CRC calculation result. 32 bits value is returned.
* @rmtoll DR DR LL_CRC_ReadData32
* @param CRCx CRC Instance
* @retval Current CRC calculation result as stored in CRC_DR register (32 bits).
*/
__STATIC_INLINE uint32_t LL_CRC_ReadData32(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_REG(CRCx->DR));
}
/**
* @brief Return data stored in the Independent Data(IDR) register.
* @note This register can be used as a temporary storage location for one byte.
* @rmtoll IDR IDR LL_CRC_Read_IDR
* @param CRCx CRC Instance
* @retval Value stored in CRC_IDR register (General-purpose 8-bit data register).
*/
__STATIC_INLINE uint32_t LL_CRC_Read_IDR(CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_REG(CRCx->IDR));
}
/**
* @brief Store data in the Independent Data(IDR) register.
* @note This register can be used as a temporary storage location for one byte.
* @rmtoll IDR IDR LL_CRC_Write_IDR
* @param CRCx CRC Instance
* @param InData value to be stored in CRC_IDR register (8-bit) between Min_Data=0 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_CRC_Write_IDR(CRC_TypeDef *CRCx, uint32_t InData)
{
*((uint8_t __IO *)(&CRCx->IDR)) = (uint8_t) InData;
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup CRC_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_CRC_DeInit(CRC_TypeDef *CRCx);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(CRC) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_LL_CRC_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,886 @@
/**
******************************************************************************
* @file stm32f1xx_ll_exti.h
* @author MCD Application Team
* @brief Header file of EXTI LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_EXTI_H
#define STM32F1xx_LL_EXTI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined (EXTI)
/** @defgroup EXTI_LL EXTI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private Macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup EXTI_LL_Private_Macros EXTI Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup EXTI_LL_ES_INIT EXTI Exported Init structure
* @{
*/
typedef struct
{
uint32_t Line_0_31; /*!< Specifies the EXTI lines to be enabled or disabled for Lines in range 0 to 31
This parameter can be any combination of @ref EXTI_LL_EC_LINE */
FunctionalState LineCommand; /*!< Specifies the new state of the selected EXTI lines.
This parameter can be set either to ENABLE or DISABLE */
uint8_t Mode; /*!< Specifies the mode for the EXTI lines.
This parameter can be a value of @ref EXTI_LL_EC_MODE. */
uint8_t Trigger; /*!< Specifies the trigger signal active edge for the EXTI lines.
This parameter can be a value of @ref EXTI_LL_EC_TRIGGER. */
} LL_EXTI_InitTypeDef;
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup EXTI_LL_Exported_Constants EXTI Exported Constants
* @{
*/
/** @defgroup EXTI_LL_EC_LINE LINE
* @{
*/
#define LL_EXTI_LINE_0 EXTI_IMR_IM0 /*!< Extended line 0 */
#define LL_EXTI_LINE_1 EXTI_IMR_IM1 /*!< Extended line 1 */
#define LL_EXTI_LINE_2 EXTI_IMR_IM2 /*!< Extended line 2 */
#define LL_EXTI_LINE_3 EXTI_IMR_IM3 /*!< Extended line 3 */
#define LL_EXTI_LINE_4 EXTI_IMR_IM4 /*!< Extended line 4 */
#define LL_EXTI_LINE_5 EXTI_IMR_IM5 /*!< Extended line 5 */
#define LL_EXTI_LINE_6 EXTI_IMR_IM6 /*!< Extended line 6 */
#define LL_EXTI_LINE_7 EXTI_IMR_IM7 /*!< Extended line 7 */
#define LL_EXTI_LINE_8 EXTI_IMR_IM8 /*!< Extended line 8 */
#define LL_EXTI_LINE_9 EXTI_IMR_IM9 /*!< Extended line 9 */
#define LL_EXTI_LINE_10 EXTI_IMR_IM10 /*!< Extended line 10 */
#define LL_EXTI_LINE_11 EXTI_IMR_IM11 /*!< Extended line 11 */
#define LL_EXTI_LINE_12 EXTI_IMR_IM12 /*!< Extended line 12 */
#define LL_EXTI_LINE_13 EXTI_IMR_IM13 /*!< Extended line 13 */
#define LL_EXTI_LINE_14 EXTI_IMR_IM14 /*!< Extended line 14 */
#define LL_EXTI_LINE_15 EXTI_IMR_IM15 /*!< Extended line 15 */
#if defined(EXTI_IMR_IM16)
#define LL_EXTI_LINE_16 EXTI_IMR_IM16 /*!< Extended line 16 */
#endif
#define LL_EXTI_LINE_17 EXTI_IMR_IM17 /*!< Extended line 17 */
#if defined(EXTI_IMR_IM18)
#define LL_EXTI_LINE_18 EXTI_IMR_IM18 /*!< Extended line 18 */
#endif
#if defined(EXTI_IMR_IM19)
#define LL_EXTI_LINE_19 EXTI_IMR_IM19 /*!< Extended line 19 */
#endif
#if defined(EXTI_IMR_IM20)
#define LL_EXTI_LINE_20 EXTI_IMR_IM20 /*!< Extended line 20 */
#endif
#if defined(EXTI_IMR_IM21)
#define LL_EXTI_LINE_21 EXTI_IMR_IM21 /*!< Extended line 21 */
#endif
#if defined(EXTI_IMR_IM22)
#define LL_EXTI_LINE_22 EXTI_IMR_IM22 /*!< Extended line 22 */
#endif
#if defined(EXTI_IMR_IM23)
#define LL_EXTI_LINE_23 EXTI_IMR_IM23 /*!< Extended line 23 */
#endif
#if defined(EXTI_IMR_IM24)
#define LL_EXTI_LINE_24 EXTI_IMR_IM24 /*!< Extended line 24 */
#endif
#if defined(EXTI_IMR_IM25)
#define LL_EXTI_LINE_25 EXTI_IMR_IM25 /*!< Extended line 25 */
#endif
#if defined(EXTI_IMR_IM26)
#define LL_EXTI_LINE_26 EXTI_IMR_IM26 /*!< Extended line 26 */
#endif
#if defined(EXTI_IMR_IM27)
#define LL_EXTI_LINE_27 EXTI_IMR_IM27 /*!< Extended line 27 */
#endif
#if defined(EXTI_IMR_IM28)
#define LL_EXTI_LINE_28 EXTI_IMR_IM28 /*!< Extended line 28 */
#endif
#if defined(EXTI_IMR_IM29)
#define LL_EXTI_LINE_29 EXTI_IMR_IM29 /*!< Extended line 29 */
#endif
#if defined(EXTI_IMR_IM30)
#define LL_EXTI_LINE_30 EXTI_IMR_IM30 /*!< Extended line 30 */
#endif
#if defined(EXTI_IMR_IM31)
#define LL_EXTI_LINE_31 EXTI_IMR_IM31 /*!< Extended line 31 */
#endif
#define LL_EXTI_LINE_ALL_0_31 EXTI_IMR_IM /*!< All Extended line not reserved*/
#define LL_EXTI_LINE_ALL (0xFFFFFFFFU) /*!< All Extended line */
#if defined(USE_FULL_LL_DRIVER)
#define LL_EXTI_LINE_NONE (0x00000000U) /*!< None Extended line */
#endif /*USE_FULL_LL_DRIVER*/
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup EXTI_LL_EC_MODE Mode
* @{
*/
#define LL_EXTI_MODE_IT ((uint8_t)0x00) /*!< Interrupt Mode */
#define LL_EXTI_MODE_EVENT ((uint8_t)0x01) /*!< Event Mode */
#define LL_EXTI_MODE_IT_EVENT ((uint8_t)0x02) /*!< Interrupt & Event Mode */
/**
* @}
*/
/** @defgroup EXTI_LL_EC_TRIGGER Edge Trigger
* @{
*/
#define LL_EXTI_TRIGGER_NONE ((uint8_t)0x00) /*!< No Trigger Mode */
#define LL_EXTI_TRIGGER_RISING ((uint8_t)0x01) /*!< Trigger Rising Mode */
#define LL_EXTI_TRIGGER_FALLING ((uint8_t)0x02) /*!< Trigger Falling Mode */
#define LL_EXTI_TRIGGER_RISING_FALLING ((uint8_t)0x03) /*!< Trigger Rising & Falling Mode */
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup EXTI_LL_Exported_Macros EXTI Exported Macros
* @{
*/
/** @defgroup EXTI_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in EXTI register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_EXTI_WriteReg(__REG__, __VALUE__) WRITE_REG(EXTI->__REG__, (__VALUE__))
/**
* @brief Read a value in EXTI register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_EXTI_ReadReg(__REG__) READ_REG(EXTI->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup EXTI_LL_Exported_Functions EXTI Exported Functions
* @{
*/
/** @defgroup EXTI_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable ExtiLine Interrupt request for Lines in range 0 to 31
* @note The reset value for the direct or internal lines (see RM)
* is set to 1 in order to enable the interrupt by default.
* Bits are set automatically at Power on.
* @rmtoll IMR IMx LL_EXTI_EnableIT_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_EnableIT_0_31(uint32_t ExtiLine)
{
SET_BIT(EXTI->IMR, ExtiLine);
}
/**
* @brief Disable ExtiLine Interrupt request for Lines in range 0 to 31
* @note The reset value for the direct or internal lines (see RM)
* is set to 1 in order to enable the interrupt by default.
* Bits are set automatically at Power on.
* @rmtoll IMR IMx LL_EXTI_DisableIT_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_DisableIT_0_31(uint32_t ExtiLine)
{
CLEAR_BIT(EXTI->IMR, ExtiLine);
}
/**
* @brief Indicate if ExtiLine Interrupt request is enabled for Lines in range 0 to 31
* @note The reset value for the direct or internal lines (see RM)
* is set to 1 in order to enable the interrupt by default.
* Bits are set automatically at Power on.
* @rmtoll IMR IMx LL_EXTI_IsEnabledIT_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_EXTI_IsEnabledIT_0_31(uint32_t ExtiLine)
{
return (READ_BIT(EXTI->IMR, ExtiLine) == (ExtiLine));
}
/**
* @}
*/
/** @defgroup EXTI_LL_EF_Event_Management Event_Management
* @{
*/
/**
* @brief Enable ExtiLine Event request for Lines in range 0 to 31
* @rmtoll EMR EMx LL_EXTI_EnableEvent_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_EnableEvent_0_31(uint32_t ExtiLine)
{
SET_BIT(EXTI->EMR, ExtiLine);
}
/**
* @brief Disable ExtiLine Event request for Lines in range 0 to 31
* @rmtoll EMR EMx LL_EXTI_DisableEvent_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_DisableEvent_0_31(uint32_t ExtiLine)
{
CLEAR_BIT(EXTI->EMR, ExtiLine);
}
/**
* @brief Indicate if ExtiLine Event request is enabled for Lines in range 0 to 31
* @rmtoll EMR EMx LL_EXTI_IsEnabledEvent_0_31
* @param ExtiLine This parameter can be one of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_17
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @arg @ref LL_EXTI_LINE_ALL_0_31
* @note Please check each device line mapping for EXTI Line availability
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_EXTI_IsEnabledEvent_0_31(uint32_t ExtiLine)
{
return (READ_BIT(EXTI->EMR, ExtiLine) == (ExtiLine));
}
/**
* @}
*/
/** @defgroup EXTI_LL_EF_Rising_Trigger_Management Rising_Trigger_Management
* @{
*/
/**
* @brief Enable ExtiLine Rising Edge Trigger for Lines in range 0 to 31
* @note The configurable wakeup lines are edge-triggered. No glitch must be
* generated on these lines. If a rising edge on a configurable interrupt
* line occurs during a write operation in the EXTI_RTSR register, the
* pending bit is not set.
* Rising and falling edge triggers can be set for
* the same interrupt line. In this case, both generate a trigger
* condition.
* @rmtoll RTSR RTx LL_EXTI_EnableRisingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_EnableRisingTrig_0_31(uint32_t ExtiLine)
{
SET_BIT(EXTI->RTSR, ExtiLine);
}
/**
* @brief Disable ExtiLine Rising Edge Trigger for Lines in range 0 to 31
* @note The configurable wakeup lines are edge-triggered. No glitch must be
* generated on these lines. If a rising edge on a configurable interrupt
* line occurs during a write operation in the EXTI_RTSR register, the
* pending bit is not set.
* Rising and falling edge triggers can be set for
* the same interrupt line. In this case, both generate a trigger
* condition.
* @rmtoll RTSR RTx LL_EXTI_DisableRisingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_DisableRisingTrig_0_31(uint32_t ExtiLine)
{
CLEAR_BIT(EXTI->RTSR, ExtiLine);
}
/**
* @brief Check if rising edge trigger is enabled for Lines in range 0 to 31
* @rmtoll RTSR RTx LL_EXTI_IsEnabledRisingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_EXTI_IsEnabledRisingTrig_0_31(uint32_t ExtiLine)
{
return (READ_BIT(EXTI->RTSR, ExtiLine) == (ExtiLine));
}
/**
* @}
*/
/** @defgroup EXTI_LL_EF_Falling_Trigger_Management Falling_Trigger_Management
* @{
*/
/**
* @brief Enable ExtiLine Falling Edge Trigger for Lines in range 0 to 31
* @note The configurable wakeup lines are edge-triggered. No glitch must be
* generated on these lines. If a falling edge on a configurable interrupt
* line occurs during a write operation in the EXTI_FTSR register, the
* pending bit is not set.
* Rising and falling edge triggers can be set for
* the same interrupt line. In this case, both generate a trigger
* condition.
* @rmtoll FTSR FTx LL_EXTI_EnableFallingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_EnableFallingTrig_0_31(uint32_t ExtiLine)
{
SET_BIT(EXTI->FTSR, ExtiLine);
}
/**
* @brief Disable ExtiLine Falling Edge Trigger for Lines in range 0 to 31
* @note The configurable wakeup lines are edge-triggered. No glitch must be
* generated on these lines. If a Falling edge on a configurable interrupt
* line occurs during a write operation in the EXTI_FTSR register, the
* pending bit is not set.
* Rising and falling edge triggers can be set for the same interrupt line.
* In this case, both generate a trigger condition.
* @rmtoll FTSR FTx LL_EXTI_DisableFallingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_DisableFallingTrig_0_31(uint32_t ExtiLine)
{
CLEAR_BIT(EXTI->FTSR, ExtiLine);
}
/**
* @brief Check if falling edge trigger is enabled for Lines in range 0 to 31
* @rmtoll FTSR FTx LL_EXTI_IsEnabledFallingTrig_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_EXTI_IsEnabledFallingTrig_0_31(uint32_t ExtiLine)
{
return (READ_BIT(EXTI->FTSR, ExtiLine) == (ExtiLine));
}
/**
* @}
*/
/** @defgroup EXTI_LL_EF_Software_Interrupt_Management Software_Interrupt_Management
* @{
*/
/**
* @brief Generate a software Interrupt Event for Lines in range 0 to 31
* @note If the interrupt is enabled on this line in the EXTI_IMR, writing a 1 to
* this bit when it is at '0' sets the corresponding pending bit in EXTI_PR
* resulting in an interrupt request generation.
* This bit is cleared by clearing the corresponding bit in the EXTI_PR
* register (by writing a 1 into the bit)
* @rmtoll SWIER SWIx LL_EXTI_GenerateSWI_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_GenerateSWI_0_31(uint32_t ExtiLine)
{
SET_BIT(EXTI->SWIER, ExtiLine);
}
/**
* @}
*/
/** @defgroup EXTI_LL_EF_Flag_Management Flag_Management
* @{
*/
/**
* @brief Check if the ExtLine Flag is set or not for Lines in range 0 to 31
* @note This bit is set when the selected edge event arrives on the interrupt
* line. This bit is cleared by writing a 1 to the bit.
* @rmtoll PR PIFx LL_EXTI_IsActiveFlag_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_EXTI_IsActiveFlag_0_31(uint32_t ExtiLine)
{
return (READ_BIT(EXTI->PR, ExtiLine) == (ExtiLine));
}
/**
* @brief Read ExtLine Combination Flag for Lines in range 0 to 31
* @note This bit is set when the selected edge event arrives on the interrupt
* line. This bit is cleared by writing a 1 to the bit.
* @rmtoll PR PIFx LL_EXTI_ReadFlag_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval @note This bit is set when the selected edge event arrives on the interrupt
*/
__STATIC_INLINE uint32_t LL_EXTI_ReadFlag_0_31(uint32_t ExtiLine)
{
return (uint32_t)(READ_BIT(EXTI->PR, ExtiLine));
}
/**
* @brief Clear ExtLine Flags for Lines in range 0 to 31
* @note This bit is set when the selected edge event arrives on the interrupt
* line. This bit is cleared by writing a 1 to the bit.
* @rmtoll PR PIFx LL_EXTI_ClearFlag_0_31
* @param ExtiLine This parameter can be a combination of the following values:
* @arg @ref LL_EXTI_LINE_0
* @arg @ref LL_EXTI_LINE_1
* @arg @ref LL_EXTI_LINE_2
* @arg @ref LL_EXTI_LINE_3
* @arg @ref LL_EXTI_LINE_4
* @arg @ref LL_EXTI_LINE_5
* @arg @ref LL_EXTI_LINE_6
* @arg @ref LL_EXTI_LINE_7
* @arg @ref LL_EXTI_LINE_8
* @arg @ref LL_EXTI_LINE_9
* @arg @ref LL_EXTI_LINE_10
* @arg @ref LL_EXTI_LINE_11
* @arg @ref LL_EXTI_LINE_12
* @arg @ref LL_EXTI_LINE_13
* @arg @ref LL_EXTI_LINE_14
* @arg @ref LL_EXTI_LINE_15
* @arg @ref LL_EXTI_LINE_16
* @arg @ref LL_EXTI_LINE_18
* @arg @ref LL_EXTI_LINE_19
* @note Please check each device line mapping for EXTI Line availability
* @retval None
*/
__STATIC_INLINE void LL_EXTI_ClearFlag_0_31(uint32_t ExtiLine)
{
WRITE_REG(EXTI->PR, ExtiLine);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup EXTI_LL_EF_Init Initialization and de-initialization functions
* @{
*/
uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct);
uint32_t LL_EXTI_DeInit(void);
void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* EXTI */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_LL_EXTI_H */

View file

@ -0,0 +1,962 @@
/**
******************************************************************************
* @file stm32f1xx_ll_fsmc.h
* @author MCD Application Team
* @brief Header file of FSMC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_FSMC_H
#define STM32F1xx_LL_FSMC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup FSMC_LL
* @{
*/
/** @addtogroup FSMC_LL_Private_Macros
* @{
*/
#if defined(FSMC_BANK1)
#define IS_FSMC_NORSRAM_BANK(__BANK__) (((__BANK__) == FSMC_NORSRAM_BANK1) || \
((__BANK__) == FSMC_NORSRAM_BANK2) || \
((__BANK__) == FSMC_NORSRAM_BANK3) || \
((__BANK__) == FSMC_NORSRAM_BANK4))
#define IS_FSMC_MUX(__MUX__) (((__MUX__) == FSMC_DATA_ADDRESS_MUX_DISABLE) || \
((__MUX__) == FSMC_DATA_ADDRESS_MUX_ENABLE))
#define IS_FSMC_MEMORY(__MEMORY__) (((__MEMORY__) == FSMC_MEMORY_TYPE_SRAM) || \
((__MEMORY__) == FSMC_MEMORY_TYPE_PSRAM)|| \
((__MEMORY__) == FSMC_MEMORY_TYPE_NOR))
#define IS_FSMC_NORSRAM_MEMORY_WIDTH(__WIDTH__) (((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_8) || \
((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_16) || \
((__WIDTH__) == FSMC_NORSRAM_MEM_BUS_WIDTH_32))
#define IS_FSMC_PAGESIZE(__SIZE__) (((__SIZE__) == FSMC_PAGE_SIZE_NONE) || \
((__SIZE__) == FSMC_PAGE_SIZE_128) || \
((__SIZE__) == FSMC_PAGE_SIZE_256) || \
((__SIZE__) == FSMC_PAGE_SIZE_512) || \
((__SIZE__) == FSMC_PAGE_SIZE_1024))
#define IS_FSMC_ACCESS_MODE(__MODE__) (((__MODE__) == FSMC_ACCESS_MODE_A) || \
((__MODE__) == FSMC_ACCESS_MODE_B) || \
((__MODE__) == FSMC_ACCESS_MODE_C) || \
((__MODE__) == FSMC_ACCESS_MODE_D))
#define IS_FSMC_BURSTMODE(__STATE__) (((__STATE__) == FSMC_BURST_ACCESS_MODE_DISABLE) || \
((__STATE__) == FSMC_BURST_ACCESS_MODE_ENABLE))
#define IS_FSMC_WAIT_POLARITY(__POLARITY__) (((__POLARITY__) == FSMC_WAIT_SIGNAL_POLARITY_LOW) || \
((__POLARITY__) == FSMC_WAIT_SIGNAL_POLARITY_HIGH))
#define IS_FSMC_WRAP_MODE(__MODE__) (((__MODE__) == FSMC_WRAP_MODE_DISABLE) || \
((__MODE__) == FSMC_WRAP_MODE_ENABLE))
#define IS_FSMC_WAIT_SIGNAL_ACTIVE(__ACTIVE__) (((__ACTIVE__) == FSMC_WAIT_TIMING_BEFORE_WS) || \
((__ACTIVE__) == FSMC_WAIT_TIMING_DURING_WS))
#define IS_FSMC_WRITE_OPERATION(__OPERATION__) (((__OPERATION__) == FSMC_WRITE_OPERATION_DISABLE) || \
((__OPERATION__) == FSMC_WRITE_OPERATION_ENABLE))
#define IS_FSMC_WAITE_SIGNAL(__SIGNAL__) (((__SIGNAL__) == FSMC_WAIT_SIGNAL_DISABLE) || \
((__SIGNAL__) == FSMC_WAIT_SIGNAL_ENABLE))
#define IS_FSMC_EXTENDED_MODE(__MODE__) (((__MODE__) == FSMC_EXTENDED_MODE_DISABLE) || \
((__MODE__) == FSMC_EXTENDED_MODE_ENABLE))
#define IS_FSMC_ASYNWAIT(__STATE__) (((__STATE__) == FSMC_ASYNCHRONOUS_WAIT_DISABLE) || \
((__STATE__) == FSMC_ASYNCHRONOUS_WAIT_ENABLE))
#define IS_FSMC_DATA_LATENCY(__LATENCY__) (((__LATENCY__) > 1U) && ((__LATENCY__) <= 17U))
#define IS_FSMC_WRITE_BURST(__BURST__) (((__BURST__) == FSMC_WRITE_BURST_DISABLE) || \
((__BURST__) == FSMC_WRITE_BURST_ENABLE))
#define IS_FSMC_CONTINOUS_CLOCK(__CCLOCK__) (((__CCLOCK__) == FSMC_CONTINUOUS_CLOCK_SYNC_ONLY) || \
((__CCLOCK__) == FSMC_CONTINUOUS_CLOCK_SYNC_ASYNC))
#define IS_FSMC_ADDRESS_SETUP_TIME(__TIME__) ((__TIME__) <= 15U)
#define IS_FSMC_ADDRESS_HOLD_TIME(__TIME__) (((__TIME__) > 0U) && ((__TIME__) <= 15U))
#define IS_FSMC_DATASETUP_TIME(__TIME__) (((__TIME__) > 0U) && ((__TIME__) <= 255U))
#define IS_FSMC_DATAHOLD_DURATION(__DATAHOLD__) ((__DATAHOLD__) <= 3U)
#define IS_FSMC_TURNAROUND_TIME(__TIME__) ((__TIME__) <= 15U)
#define IS_FSMC_CLK_DIV(__DIV__) (((__DIV__) > 1U) && ((__DIV__) <= 16U))
#define IS_FSMC_NORSRAM_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NORSRAM_DEVICE)
#define IS_FSMC_NORSRAM_EXTENDED_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NORSRAM_EXTENDED_DEVICE)
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
#define IS_FSMC_NAND_BANK(__BANK__) ((__BANK__) == FSMC_NAND_BANK3)
#define IS_FSMC_WAIT_FEATURE(__FEATURE__) (((__FEATURE__) == FSMC_NAND_PCC_WAIT_FEATURE_DISABLE) || \
((__FEATURE__) == FSMC_NAND_PCC_WAIT_FEATURE_ENABLE))
#define IS_FSMC_NAND_MEMORY_WIDTH(__WIDTH__) (((__WIDTH__) == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) || \
((__WIDTH__) == FSMC_NAND_PCC_MEM_BUS_WIDTH_16))
#define IS_FSMC_ECC_STATE(__STATE__) (((__STATE__) == FSMC_NAND_ECC_DISABLE) || \
((__STATE__) == FSMC_NAND_ECC_ENABLE))
#define IS_FSMC_ECCPAGE_SIZE(__SIZE__) (((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_256BYTE) || \
((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_512BYTE) || \
((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_1024BYTE) || \
((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_2048BYTE) || \
((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_4096BYTE) || \
((__SIZE__) == FSMC_NAND_ECC_PAGE_SIZE_8192BYTE))
#define IS_FSMC_TCLR_TIME(__TIME__) ((__TIME__) <= 255U)
#define IS_FSMC_TAR_TIME(__TIME__) ((__TIME__) <= 255U)
#define IS_FSMC_SETUP_TIME(__TIME__) ((__TIME__) <= 254U)
#define IS_FSMC_WAIT_TIME(__TIME__) ((__TIME__) <= 254U)
#define IS_FSMC_HOLD_TIME(__TIME__) ((__TIME__) <= 254U)
#define IS_FSMC_HIZ_TIME(__TIME__) ((__TIME__) <= 254U)
#define IS_FSMC_NAND_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_NAND_DEVICE)
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
#define IS_FSMC_PCCARD_DEVICE(__INSTANCE__) ((__INSTANCE__) == FSMC_PCCARD_DEVICE)
#endif /* FSMC_BANK4 */
/**
* @}
*/
/* Exported typedef ----------------------------------------------------------*/
/** @defgroup FSMC_LL_Exported_typedef FSMC Low Layer Exported Types
* @{
*/
#if defined(FSMC_BANK1)
#define FSMC_NORSRAM_TypeDef FSMC_Bank1_TypeDef
#define FSMC_NORSRAM_EXTENDED_TypeDef FSMC_Bank1E_TypeDef
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
#define FSMC_NAND_TypeDef FSMC_Bank2_3_TypeDef
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
#define FSMC_PCCARD_TypeDef FSMC_Bank4_TypeDef
#endif /* FSMC_BANK4 */
#if defined(FSMC_BANK1)
#define FSMC_NORSRAM_DEVICE FSMC_Bank1
#define FSMC_NORSRAM_EXTENDED_DEVICE FSMC_Bank1E
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
#define FSMC_NAND_DEVICE FSMC_Bank2_3
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
#define FSMC_PCCARD_DEVICE FSMC_Bank4
#endif /* FSMC_BANK4 */
#if defined(FSMC_BANK1)
/**
* @brief FSMC NORSRAM Configuration Structure definition
*/
typedef struct
{
uint32_t NSBank; /*!< Specifies the NORSRAM memory device that will be used.
This parameter can be a value of @ref FSMC_NORSRAM_Bank */
uint32_t DataAddressMux; /*!< Specifies whether the address and data values are
multiplexed on the data bus or not.
This parameter can be a value of @ref FSMC_Data_Address_Bus_Multiplexing */
uint32_t MemoryType; /*!< Specifies the type of external memory attached to
the corresponding memory device.
This parameter can be a value of @ref FSMC_Memory_Type */
uint32_t MemoryDataWidth; /*!< Specifies the external memory device width.
This parameter can be a value of @ref FSMC_NORSRAM_Data_Width */
uint32_t BurstAccessMode; /*!< Enables or disables the burst access mode for Flash memory,
valid only with synchronous burst Flash memories.
This parameter can be a value of @ref FSMC_Burst_Access_Mode */
uint32_t WaitSignalPolarity; /*!< Specifies the wait signal polarity, valid only when accessing
the Flash memory in burst mode.
This parameter can be a value of @ref FSMC_Wait_Signal_Polarity */
uint32_t WrapMode; /*!< Enables or disables the Wrapped burst access mode for Flash
memory, valid only when accessing Flash memories in burst mode.
This parameter can be a value of @ref FSMC_Wrap_Mode */
uint32_t WaitSignalActive; /*!< Specifies if the wait signal is asserted by the memory one
clock cycle before the wait state or during the wait state,
valid only when accessing memories in burst mode.
This parameter can be a value of @ref FSMC_Wait_Timing */
uint32_t WriteOperation; /*!< Enables or disables the write operation in the selected device by the FSMC.
This parameter can be a value of @ref FSMC_Write_Operation */
uint32_t WaitSignal; /*!< Enables or disables the wait state insertion via wait
signal, valid for Flash memory access in burst mode.
This parameter can be a value of @ref FSMC_Wait_Signal */
uint32_t ExtendedMode; /*!< Enables or disables the extended mode.
This parameter can be a value of @ref FSMC_Extended_Mode */
uint32_t AsynchronousWait; /*!< Enables or disables wait signal during asynchronous transfers,
valid only with asynchronous Flash memories.
This parameter can be a value of @ref FSMC_AsynchronousWait */
uint32_t WriteBurst; /*!< Enables or disables the write burst operation.
This parameter can be a value of @ref FSMC_Write_Burst */
uint32_t PageSize; /*!< Specifies the memory page size.
This parameter can be a value of @ref FSMC_Page_Size */
} FSMC_NORSRAM_InitTypeDef;
/**
* @brief FSMC NORSRAM Timing parameters structure definition
*/
typedef struct
{
uint32_t AddressSetupTime; /*!< Defines the number of HCLK cycles to configure
the duration of the address setup time.
This parameter can be a value between Min_Data = 0 and Max_Data = 15.
@note This parameter is not used with synchronous NOR Flash memories. */
uint32_t AddressHoldTime; /*!< Defines the number of HCLK cycles to configure
the duration of the address hold time.
This parameter can be a value between Min_Data = 1 and Max_Data = 15.
@note This parameter is not used with synchronous NOR Flash memories. */
uint32_t DataSetupTime; /*!< Defines the number of HCLK cycles to configure
the duration of the data setup time.
This parameter can be a value between Min_Data = 1 and Max_Data = 255.
@note This parameter is used for SRAMs, ROMs and asynchronous multiplexed
NOR Flash memories. */
uint32_t BusTurnAroundDuration; /*!< Defines the number of HCLK cycles to configure
the duration of the bus turnaround.
This parameter can be a value between Min_Data = 0 and Max_Data = 15.
@note This parameter is only used for multiplexed NOR Flash memories. */
uint32_t CLKDivision; /*!< Defines the period of CLK clock output signal, expressed in number of
HCLK cycles. This parameter can be a value between Min_Data = 2 and
Max_Data = 16.
@note This parameter is not used for asynchronous NOR Flash, SRAM or ROM
accesses. */
uint32_t DataLatency; /*!< Defines the number of memory clock cycles to issue
to the memory before getting the first data.
The parameter value depends on the memory type as shown below:
- It must be set to 0 in case of a CRAM
- It is don't care in asynchronous NOR, SRAM or ROM accesses
- It may assume a value between Min_Data = 2 and Max_Data = 17
in NOR Flash memories with synchronous burst mode enable */
uint32_t AccessMode; /*!< Specifies the asynchronous access mode.
This parameter can be a value of @ref FSMC_Access_Mode */
} FSMC_NORSRAM_TimingTypeDef;
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
/**
* @brief FSMC NAND Configuration Structure definition
*/
typedef struct
{
uint32_t NandBank; /*!< Specifies the NAND memory device that will be used.
This parameter can be a value of @ref FSMC_NAND_Bank */
uint32_t Waitfeature; /*!< Enables or disables the Wait feature for the NAND Memory device.
This parameter can be any value of @ref FSMC_Wait_feature */
uint32_t MemoryDataWidth; /*!< Specifies the external memory device width.
This parameter can be any value of @ref FSMC_NAND_Data_Width */
uint32_t EccComputation; /*!< Enables or disables the ECC computation.
This parameter can be any value of @ref FSMC_ECC */
uint32_t ECCPageSize; /*!< Defines the page size for the extended ECC.
This parameter can be any value of @ref FSMC_ECC_Page_Size */
uint32_t TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the
delay between CLE low and RE low.
This parameter can be a value between Min_Data = 0 and Max_Data = 255 */
uint32_t TARSetupTime; /*!< Defines the number of HCLK cycles to configure the
delay between ALE low and RE low.
This parameter can be a number between Min_Data = 0 and Max_Data = 255 */
} FSMC_NAND_InitTypeDef;
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK3) || defined(FSMC_BANK4)
/**
* @brief FSMC NAND Timing parameters structure definition
*/
typedef struct
{
uint32_t SetupTime; /*!< Defines the number of HCLK cycles to setup address before
the command assertion for NAND-Flash read or write access
to common/Attribute or I/O memory space (depending on
the memory space timing to be configured).
This parameter can be a value between Min_Data = 0 and Max_Data = 254 */
uint32_t WaitSetupTime; /*!< Defines the minimum number of HCLK cycles to assert the
command for NAND-Flash read or write access to
common/Attribute or I/O memory space (depending on the
memory space timing to be configured).
This parameter can be a number between Min_Data = 0 and Max_Data = 254 */
uint32_t HoldSetupTime; /*!< Defines the number of HCLK clock cycles to hold address
(and data for write access) after the command de-assertion
for NAND-Flash read or write access to common/Attribute
or I/O memory space (depending on the memory space timing
to be configured).
This parameter can be a number between Min_Data = 0 and Max_Data = 254 */
uint32_t HiZSetupTime; /*!< Defines the number of HCLK clock cycles during which the
data bus is kept in HiZ after the start of a NAND-Flash
write access to common/Attribute or I/O memory space (depending
on the memory space timing to be configured).
This parameter can be a number between Min_Data = 0 and Max_Data = 254 */
} FSMC_NAND_PCC_TimingTypeDef;
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
/**
* @brief FSMC PCCARD Configuration Structure definition
*/
typedef struct
{
uint32_t Waitfeature; /*!< Enables or disables the Wait feature for the PCCARD Memory device.
This parameter can be any value of @ref FSMC_Wait_feature */
uint32_t TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the
delay between CLE low and RE low.
This parameter can be a value between Min_Data = 0 and Max_Data = 255 */
uint32_t TARSetupTime; /*!< Defines the number of HCLK cycles to configure the
delay between ALE low and RE low.
This parameter can be a number between Min_Data = 0 and Max_Data = 255 */
}FSMC_PCCARD_InitTypeDef;
#endif /* FSMC_BANK4 */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @addtogroup FSMC_LL_Exported_Constants FSMC Low Layer Exported Constants
* @{
*/
#if defined(FSMC_BANK1)
/** @defgroup FSMC_LL_NOR_SRAM_Controller FSMC NOR/SRAM Controller
* @{
*/
/** @defgroup FSMC_NORSRAM_Bank FSMC NOR/SRAM Bank
* @{
*/
#define FSMC_NORSRAM_BANK1 (0x00000000U)
#define FSMC_NORSRAM_BANK2 (0x00000002U)
#define FSMC_NORSRAM_BANK3 (0x00000004U)
#define FSMC_NORSRAM_BANK4 (0x00000006U)
/**
* @}
*/
/** @defgroup FSMC_Data_Address_Bus_Multiplexing FSMC Data Address Bus Multiplexing
* @{
*/
#define FSMC_DATA_ADDRESS_MUX_DISABLE (0x00000000U)
#define FSMC_DATA_ADDRESS_MUX_ENABLE (0x00000002U)
/**
* @}
*/
/** @defgroup FSMC_Memory_Type FSMC Memory Type
* @{
*/
#define FSMC_MEMORY_TYPE_SRAM (0x00000000U)
#define FSMC_MEMORY_TYPE_PSRAM (0x00000004U)
#define FSMC_MEMORY_TYPE_NOR (0x00000008U)
/**
* @}
*/
/** @defgroup FSMC_NORSRAM_Data_Width FSMC NORSRAM Data Width
* @{
*/
#define FSMC_NORSRAM_MEM_BUS_WIDTH_8 (0x00000000U)
#define FSMC_NORSRAM_MEM_BUS_WIDTH_16 (0x00000010U)
#define FSMC_NORSRAM_MEM_BUS_WIDTH_32 (0x00000020U)
/**
* @}
*/
/** @defgroup FSMC_NORSRAM_Flash_Access FSMC NOR/SRAM Flash Access
* @{
*/
#define FSMC_NORSRAM_FLASH_ACCESS_ENABLE (0x00000040U)
#define FSMC_NORSRAM_FLASH_ACCESS_DISABLE (0x00000000U)
/**
* @}
*/
/** @defgroup FSMC_Burst_Access_Mode FSMC Burst Access Mode
* @{
*/
#define FSMC_BURST_ACCESS_MODE_DISABLE (0x00000000U)
#define FSMC_BURST_ACCESS_MODE_ENABLE (0x00000100U)
/**
* @}
*/
/** @defgroup FSMC_Wait_Signal_Polarity FSMC Wait Signal Polarity
* @{
*/
#define FSMC_WAIT_SIGNAL_POLARITY_LOW (0x00000000U)
#define FSMC_WAIT_SIGNAL_POLARITY_HIGH (0x00000200U)
/**
* @}
*/
/** @defgroup FSMC_Wrap_Mode FSMC Wrap Mode
* @{
*/
#define FSMC_WRAP_MODE_DISABLE (0x00000000U)
#define FSMC_WRAP_MODE_ENABLE (0x00000400U)
/**
* @}
*/
/** @defgroup FSMC_Wait_Timing FSMC Wait Timing
* @{
*/
#define FSMC_WAIT_TIMING_BEFORE_WS (0x00000000U)
#define FSMC_WAIT_TIMING_DURING_WS (0x00000800U)
/**
* @}
*/
/** @defgroup FSMC_Write_Operation FSMC Write Operation
* @{
*/
#define FSMC_WRITE_OPERATION_DISABLE (0x00000000U)
#define FSMC_WRITE_OPERATION_ENABLE (0x00001000U)
/**
* @}
*/
/** @defgroup FSMC_Wait_Signal FSMC Wait Signal
* @{
*/
#define FSMC_WAIT_SIGNAL_DISABLE (0x00000000U)
#define FSMC_WAIT_SIGNAL_ENABLE (0x00002000U)
/**
* @}
*/
/** @defgroup FSMC_Extended_Mode FSMC Extended Mode
* @{
*/
#define FSMC_EXTENDED_MODE_DISABLE (0x00000000U)
#define FSMC_EXTENDED_MODE_ENABLE (0x00004000U)
/**
* @}
*/
/** @defgroup FSMC_AsynchronousWait FSMC Asynchronous Wait
* @{
*/
#define FSMC_ASYNCHRONOUS_WAIT_DISABLE (0x00000000U)
#define FSMC_ASYNCHRONOUS_WAIT_ENABLE (0x00008000U)
/**
* @}
*/
/** @defgroup FSMC_Page_Size FSMC Page Size
* @{
*/
#define FSMC_PAGE_SIZE_NONE (0x00000000U)
#define FSMC_PAGE_SIZE_128 (0x00010000U)
#define FSMC_PAGE_SIZE_256 (0x00020000U)
#define FSMC_PAGE_SIZE_512 (0x00030000U)
#define FSMC_PAGE_SIZE_1024 (0x00040000U)
/**
* @}
*/
/** @defgroup FSMC_Write_Burst FSMC Write Burst
* @{
*/
#define FSMC_WRITE_BURST_DISABLE (0x00000000U)
#define FSMC_WRITE_BURST_ENABLE (0x00080000U)
/**
* @}
*/
/** @defgroup FSMC_Continous_Clock FSMC Continuous Clock
* @{
*/
#define FSMC_CONTINUOUS_CLOCK_SYNC_ONLY (0x00000000U)
#define FSMC_CONTINUOUS_CLOCK_SYNC_ASYNC (0x00100000U)
/**
* @}
*/
/** @defgroup FSMC_Access_Mode FSMC Access Mode
* @{
*/
#define FSMC_ACCESS_MODE_A (0x00000000U)
#define FSMC_ACCESS_MODE_B (0x10000000U)
#define FSMC_ACCESS_MODE_C (0x20000000U)
#define FSMC_ACCESS_MODE_D (0x30000000U)
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3) || defined(FSMC_BANK4)
/** @defgroup FSMC_LL_NAND_Controller FSMC NAND Controller
* @{
*/
/** @defgroup FSMC_NAND_Bank FSMC NAND Bank
* @{
*/
#define FSMC_NAND_BANK2 (0x00000010U)
#define FSMC_NAND_BANK3 (0x00000100U)
/**
* @}
*/
/** @defgroup FSMC_Wait_feature FSMC Wait feature
* @{
*/
#define FSMC_NAND_PCC_WAIT_FEATURE_DISABLE (0x00000000U)
#define FSMC_NAND_PCC_WAIT_FEATURE_ENABLE (0x00000002U)
/**
* @}
*/
/** @defgroup FSMC_PCR_Memory_Type FSMC PCR Memory Type
* @{
*/
#if defined(FSMC_BANK4)
#define FSMC_PCR_MEMORY_TYPE_PCCARD (0x00000000U)
#endif /* FSMC_BANK4 */
#define FSMC_PCR_MEMORY_TYPE_NAND (0x00000008U)
/**
* @}
*/
/** @defgroup FSMC_NAND_Data_Width FSMC NAND Data Width
* @{
*/
#define FSMC_NAND_PCC_MEM_BUS_WIDTH_8 (0x00000000U)
#define FSMC_NAND_PCC_MEM_BUS_WIDTH_16 (0x00000010U)
/**
* @}
*/
/** @defgroup FSMC_ECC FSMC ECC
* @{
*/
#define FSMC_NAND_ECC_DISABLE (0x00000000U)
#define FSMC_NAND_ECC_ENABLE (0x00000040U)
/**
* @}
*/
/** @defgroup FSMC_ECC_Page_Size FSMC ECC Page Size
* @{
*/
#define FSMC_NAND_ECC_PAGE_SIZE_256BYTE (0x00000000U)
#define FSMC_NAND_ECC_PAGE_SIZE_512BYTE (0x00020000U)
#define FSMC_NAND_ECC_PAGE_SIZE_1024BYTE (0x00040000U)
#define FSMC_NAND_ECC_PAGE_SIZE_2048BYTE (0x00060000U)
#define FSMC_NAND_ECC_PAGE_SIZE_4096BYTE (0x00080000U)
#define FSMC_NAND_ECC_PAGE_SIZE_8192BYTE (0x000A0000U)
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK3 || FSMC_Bank4 */
/** @defgroup FSMC_LL_Interrupt_definition FSMC Low Layer Interrupt definition
* @{
*/
#if defined(FSMC_BANK3) || defined(FSMC_BANK4)
#define FSMC_IT_RISING_EDGE (0x00000008U)
#define FSMC_IT_LEVEL (0x00000010U)
#define FSMC_IT_FALLING_EDGE (0x00000020U)
#endif /* FSMC_BANK3 || FSMC_Bank4 */
/**
* @}
*/
/** @defgroup FSMC_LL_Flag_definition FSMC Low Layer Flag definition
* @{
*/
#if defined(FSMC_BANK3) || defined(FSMC_BANK4)
#define FSMC_FLAG_RISING_EDGE (0x00000001U)
#define FSMC_FLAG_LEVEL (0x00000002U)
#define FSMC_FLAG_FALLING_EDGE (0x00000004U)
#define FSMC_FLAG_FEMPT (0x00000040U)
#endif /* FSMC_BANK3 || FSMC_Bank4 */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup FSMC_LL_Private_Macros FSMC_LL Private Macros
* @{
*/
#if defined(FSMC_BANK1)
/** @defgroup FSMC_LL_NOR_Macros FSMC NOR/SRAM Macros
* @brief macros to handle NOR device enable/disable and read/write operations
* @{
*/
/**
* @brief Enable the NORSRAM device access.
* @param __INSTANCE__ FSMC_NORSRAM Instance
* @param __BANK__ FSMC_NORSRAM Bank
* @retval None
*/
#define __FSMC_NORSRAM_ENABLE(__INSTANCE__, __BANK__) ((__INSTANCE__)->BTCR[(__BANK__)]\
|= FSMC_BCRx_MBKEN)
/**
* @brief Disable the NORSRAM device access.
* @param __INSTANCE__ FSMC_NORSRAM Instance
* @param __BANK__ FSMC_NORSRAM Bank
* @retval None
*/
#define __FSMC_NORSRAM_DISABLE(__INSTANCE__, __BANK__) ((__INSTANCE__)->BTCR[(__BANK__)]\
&= ~FSMC_BCRx_MBKEN)
/**
* @}
*/
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
/** @defgroup FSMC_LL_NAND_Macros FSMC NAND Macros
* @brief macros to handle NAND device enable/disable
* @{
*/
/**
* @brief Enable the NAND device access.
* @param __INSTANCE__ FSMC_NAND Instance
* @param __BANK__ FSMC_NAND Bank
* @retval None
*/
#define __FSMC_NAND_ENABLE(__INSTANCE__, __BANK__) (((__BANK__) == FSMC_NAND_BANK2)? ((__INSTANCE__)->PCR2 |= FSMC_PCRx_PBKEN): \
((__INSTANCE__)->PCR3 |= FSMC_PCRx_PBKEN))
/**
* @brief Disable the NAND device access.
* @param __INSTANCE__ FSMC_NAND Instance
* @param __BANK__ FSMC_NAND Bank
* @retval None
*/
#define __FSMC_NAND_DISABLE(__INSTANCE__, __BANK__) (((__BANK__) == FSMC_NAND_BANK2)? CLEAR_BIT((__INSTANCE__)->PCR2, FSMC_PCRx_PBKEN): \
CLEAR_BIT((__INSTANCE__)->PCR3, FSMC_PCRx_PBKEN))
/**
* @}
*/
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
/** @defgroup FSMC_LL_PCCARD_Macros FMC PCCARD Macros
* @brief macros to handle PCCARD read/write operations
* @{
*/
/**
* @brief Enable the PCCARD device access.
* @param __INSTANCE__ FSMC_PCCARD Instance
* @retval None
*/
#define __FSMC_PCCARD_ENABLE(__INSTANCE__) ((__INSTANCE__)->PCR4 |= FSMC_PCRx_PBKEN)
/**
* @brief Disable the PCCARD device access.
* @param __INSTANCE__ FSMC_PCCARD Instance
* @retval None
*/
#define __FSMC_PCCARD_DISABLE(__INSTANCE__) ((__INSTANCE__)->PCR4 &= ~FSMC_PCRx_PBKEN)
/**
* @}
*/
#endif
#if defined(FSMC_BANK3)
/** @defgroup FSMC_LL_NAND_Interrupt FSMC NAND Interrupt
* @brief macros to handle NAND interrupts
* @{
*/
/**
* @brief Enable the NAND device interrupt.
* @param __INSTANCE__ FSMC_NAND instance
* @param __BANK__ FSMC_NAND Bank
* @param __INTERRUPT__ FSMC_NAND interrupt
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RISING_EDGE: Interrupt rising edge.
* @arg FSMC_IT_LEVEL: Interrupt level.
* @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge.
* @retval None
*/
#define __FSMC_NAND_ENABLE_IT(__INSTANCE__, __BANK__, __INTERRUPT__) (((__BANK__) == FSMC_NAND_BANK2)? ((__INSTANCE__)->SR2 |= (__INTERRUPT__)): \
((__INSTANCE__)->SR3 |= (__INTERRUPT__)))
/**
* @brief Disable the NAND device interrupt.
* @param __INSTANCE__ FSMC_NAND Instance
* @param __BANK__ FSMC_NAND Bank
* @param __INTERRUPT__ FSMC_NAND interrupt
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RISING_EDGE: Interrupt rising edge.
* @arg FSMC_IT_LEVEL: Interrupt level.
* @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge.
* @retval None
*/
#define __FSMC_NAND_DISABLE_IT(__INSTANCE__, __BANK__, __INTERRUPT__) (((__BANK__) == FSMC_NAND_BANK2)? ((__INSTANCE__)->SR2 &= ~(__INTERRUPT__)): \
((__INSTANCE__)->SR3 &= ~(__INTERRUPT__)))
/**
* @brief Get flag status of the NAND device.
* @param __INSTANCE__ FSMC_NAND Instance
* @param __BANK__ FSMC_NAND Bank
* @param __FLAG__ FSMC_NAND flag
* This parameter can be any combination of the following values:
* @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag.
* @arg FSMC_FLAG_LEVEL: Interrupt level edge flag.
* @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag.
* @arg FSMC_FLAG_FEMPT: FIFO empty flag.
* @retval The state of FLAG (SET or RESET).
*/
#define __FSMC_NAND_GET_FLAG(__INSTANCE__, __BANK__, __FLAG__) (((__BANK__) == FSMC_NAND_BANK2)? (((__INSTANCE__)->SR2 &(__FLAG__)) == (__FLAG__)): \
(((__INSTANCE__)->SR3 &(__FLAG__)) == (__FLAG__)))
/**
* @brief Clear flag status of the NAND device.
* @param __INSTANCE__ FSMC_NAND Instance
* @param __BANK__ FSMC_NAND Bank
* @param __FLAG__ FSMC_NAND flag
* This parameter can be any combination of the following values:
* @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag.
* @arg FSMC_FLAG_LEVEL: Interrupt level edge flag.
* @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag.
* @arg FSMC_FLAG_FEMPT: FIFO empty flag.
* @retval None
*/
#define __FSMC_NAND_CLEAR_FLAG(__INSTANCE__, __BANK__, __FLAG__) (((__BANK__) == FSMC_NAND_BANK2)? ((__INSTANCE__)->SR2 &= ~(__FLAG__)): \
((__INSTANCE__)->SR3 &= ~(__FLAG__)))
/**
* @}
*/
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
/** @defgroup FSMC_LL_PCCARD_Interrupt FSMC PCCARD Interrupt
* @brief macros to handle PCCARD interrupts
* @{
*/
/**
* @brief Enable the PCCARD device interrupt.
* @param __INSTANCE__ FSMC_PCCARD instance
* @param __INTERRUPT__ FSMC_PCCARD interrupt
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RISING_EDGE: Interrupt rising edge.
* @arg FSMC_IT_LEVEL: Interrupt level.
* @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge.
* @retval None
*/
#define __FSMC_PCCARD_ENABLE_IT(__INSTANCE__, __INTERRUPT__) ((__INSTANCE__)->SR4 |= (__INTERRUPT__))
/**
* @brief Disable the PCCARD device interrupt.
* @param __INSTANCE__ FSMC_PCCARD instance
* @param __INTERRUPT__ FSMC_PCCARD interrupt
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RISING_EDGE: Interrupt rising edge.
* @arg FSMC_IT_LEVEL: Interrupt level.
* @arg FSMC_IT_FALLING_EDGE: Interrupt falling edge.
* @retval None
*/
#define __FSMC_PCCARD_DISABLE_IT(__INSTANCE__, __INTERRUPT__) ((__INSTANCE__)->SR4 &= ~(__INTERRUPT__))
/**
* @brief Get flag status of the PCCARD device.
* @param __INSTANCE__ FSMC_PCCARD instance
* @param __FLAG__ FSMC_PCCARD flag
* This parameter can be any combination of the following values:
* @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag.
* @arg FSMC_FLAG_LEVEL: Interrupt level edge flag.
* @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag.
* @arg FSMC_FLAG_FEMPT: FIFO empty flag.
* @retval The state of FLAG (SET or RESET).
*/
#define __FSMC_PCCARD_GET_FLAG(__INSTANCE__, __FLAG__) (((__INSTANCE__)->SR4 &(__FLAG__)) == (__FLAG__))
/**
* @brief Clear flag status of the PCCARD device.
* @param __INSTANCE__ FSMC_PCCARD instance
* @param __FLAG__ FSMC_PCCARD flag
* This parameter can be any combination of the following values:
* @arg FSMC_FLAG_RISING_EDGE: Interrupt rising edge flag.
* @arg FSMC_FLAG_LEVEL: Interrupt level edge flag.
* @arg FSMC_FLAG_FALLING_EDGE: Interrupt falling edge flag.
* @arg FSMC_FLAG_FEMPT: FIFO empty flag.
* @retval None
*/
#define __FSMC_PCCARD_CLEAR_FLAG(__INSTANCE__, __FLAG__) ((__INSTANCE__)->SR4 &= ~(__FLAG__))
/**
* @}
*/
#endif
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup FSMC_LL_Private_Functions FSMC LL Private Functions
* @{
*/
#if defined(FSMC_BANK1)
/** @defgroup FSMC_LL_NORSRAM NOR SRAM
* @{
*/
/** @defgroup FSMC_LL_NORSRAM_Private_Functions_Group1 NOR SRAM Initialization/de-initialization functions
* @{
*/
HAL_StatusTypeDef FSMC_NORSRAM_Init(FSMC_NORSRAM_TypeDef *Device,
FSMC_NORSRAM_InitTypeDef *Init);
HAL_StatusTypeDef FSMC_NORSRAM_Timing_Init(FSMC_NORSRAM_TypeDef *Device,
FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank);
HAL_StatusTypeDef FSMC_NORSRAM_Extended_Timing_Init(FSMC_NORSRAM_EXTENDED_TypeDef *Device,
FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank,
uint32_t ExtendedMode);
HAL_StatusTypeDef FSMC_NORSRAM_DeInit(FSMC_NORSRAM_TypeDef *Device,
FSMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank);
/**
* @}
*/
/** @defgroup FSMC_LL_NORSRAM_Private_Functions_Group2 NOR SRAM Control functions
* @{
*/
HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Enable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank);
HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Disable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank);
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK1 */
#if defined(FSMC_BANK3)
/** @defgroup FSMC_LL_NAND NAND
* @{
*/
/** @defgroup FSMC_LL_NAND_Private_Functions_Group1 NAND Initialization/de-initialization functions
* @{
*/
HAL_StatusTypeDef FSMC_NAND_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_InitTypeDef *Init);
HAL_StatusTypeDef FSMC_NAND_CommonSpace_Timing_Init(FSMC_NAND_TypeDef *Device,
FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank);
HAL_StatusTypeDef FSMC_NAND_AttributeSpace_Timing_Init(FSMC_NAND_TypeDef *Device,
FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank);
HAL_StatusTypeDef FSMC_NAND_DeInit(FSMC_NAND_TypeDef *Device, uint32_t Bank);
/**
* @}
*/
/** @defgroup FSMC_LL_NAND_Private_Functions_Group2 NAND Control functions
* @{
*/
HAL_StatusTypeDef FSMC_NAND_ECC_Enable(FSMC_NAND_TypeDef *Device, uint32_t Bank);
HAL_StatusTypeDef FSMC_NAND_ECC_Disable(FSMC_NAND_TypeDef *Device, uint32_t Bank);
HAL_StatusTypeDef FSMC_NAND_GetECC(FSMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank,
uint32_t Timeout);
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK3 */
#if defined(FSMC_BANK4)
/** @defgroup FSMC_LL_PCCARD PCCARD
* @{
*/
/** @defgroup FSMC_LL_PCCARD_Private_Functions_Group1 PCCARD Initialization/de-initialization functions
* @{
*/
HAL_StatusTypeDef FSMC_PCCARD_Init(FSMC_PCCARD_TypeDef *Device, FSMC_PCCARD_InitTypeDef *Init);
HAL_StatusTypeDef FSMC_PCCARD_CommonSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device,
FSMC_NAND_PCC_TimingTypeDef *Timing);
HAL_StatusTypeDef FSMC_PCCARD_AttributeSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device,
FSMC_NAND_PCC_TimingTypeDef *Timing);
HAL_StatusTypeDef FSMC_PCCARD_IOSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device,
FSMC_NAND_PCC_TimingTypeDef *Timing);
HAL_StatusTypeDef FSMC_PCCARD_DeInit(FSMC_PCCARD_TypeDef *Device);
/**
* @}
*/
/**
* @}
*/
#endif /* FSMC_BANK4 */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_LL_FSMC_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,302 @@
/**
******************************************************************************
* @file stm32f1xx_ll_iwdg.h
* @author MCD Application Team
* @brief Header file of IWDG LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_IWDG_H
#define STM32F1xx_LL_IWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined(IWDG)
/** @defgroup IWDG_LL IWDG
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup IWDG_LL_Private_Constants IWDG Private Constants
* @{
*/
#define LL_IWDG_KEY_RELOAD 0x0000AAAAU /*!< IWDG Reload Counter Enable */
#define LL_IWDG_KEY_ENABLE 0x0000CCCCU /*!< IWDG Peripheral Enable */
#define LL_IWDG_KEY_WR_ACCESS_ENABLE 0x00005555U /*!< IWDG KR Write Access Enable */
#define LL_IWDG_KEY_WR_ACCESS_DISABLE 0x00000000U /*!< IWDG KR Write Access Disable */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup IWDG_LL_Exported_Constants IWDG Exported Constants
* @{
*/
/** @defgroup IWDG_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_IWDG_ReadReg function
* @{
*/
#define LL_IWDG_SR_PVU IWDG_SR_PVU /*!< Watchdog prescaler value update */
#define LL_IWDG_SR_RVU IWDG_SR_RVU /*!< Watchdog counter reload value update */
/**
* @}
*/
/** @defgroup IWDG_LL_EC_PRESCALER Prescaler Divider
* @{
*/
#define LL_IWDG_PRESCALER_4 0x00000000U /*!< Divider by 4 */
#define LL_IWDG_PRESCALER_8 (IWDG_PR_PR_0) /*!< Divider by 8 */
#define LL_IWDG_PRESCALER_16 (IWDG_PR_PR_1) /*!< Divider by 16 */
#define LL_IWDG_PRESCALER_32 (IWDG_PR_PR_1 | IWDG_PR_PR_0) /*!< Divider by 32 */
#define LL_IWDG_PRESCALER_64 (IWDG_PR_PR_2) /*!< Divider by 64 */
#define LL_IWDG_PRESCALER_128 (IWDG_PR_PR_2 | IWDG_PR_PR_0) /*!< Divider by 128 */
#define LL_IWDG_PRESCALER_256 (IWDG_PR_PR_2 | IWDG_PR_PR_1) /*!< Divider by 256 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup IWDG_LL_Exported_Macros IWDG Exported Macros
* @{
*/
/** @defgroup IWDG_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in IWDG register
* @param __INSTANCE__ IWDG Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_IWDG_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in IWDG register
* @param __INSTANCE__ IWDG Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_IWDG_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup IWDG_LL_Exported_Functions IWDG Exported Functions
* @{
*/
/** @defgroup IWDG_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Start the Independent Watchdog
* @note Except if the hardware watchdog option is selected
* @rmtoll KR KEY LL_IWDG_Enable
* @param IWDGx IWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_IWDG_Enable(IWDG_TypeDef *IWDGx)
{
WRITE_REG(IWDGx->KR, LL_IWDG_KEY_ENABLE);
}
/**
* @brief Reloads IWDG counter with value defined in the reload register
* @rmtoll KR KEY LL_IWDG_ReloadCounter
* @param IWDGx IWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_IWDG_ReloadCounter(IWDG_TypeDef *IWDGx)
{
WRITE_REG(IWDGx->KR, LL_IWDG_KEY_RELOAD);
}
/**
* @brief Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers
* @rmtoll KR KEY LL_IWDG_EnableWriteAccess
* @param IWDGx IWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_IWDG_EnableWriteAccess(IWDG_TypeDef *IWDGx)
{
WRITE_REG(IWDGx->KR, LL_IWDG_KEY_WR_ACCESS_ENABLE);
}
/**
* @brief Disable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers
* @rmtoll KR KEY LL_IWDG_DisableWriteAccess
* @param IWDGx IWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_IWDG_DisableWriteAccess(IWDG_TypeDef *IWDGx)
{
WRITE_REG(IWDGx->KR, LL_IWDG_KEY_WR_ACCESS_DISABLE);
}
/**
* @brief Select the prescaler of the IWDG
* @rmtoll PR PR LL_IWDG_SetPrescaler
* @param IWDGx IWDG Instance
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_IWDG_PRESCALER_4
* @arg @ref LL_IWDG_PRESCALER_8
* @arg @ref LL_IWDG_PRESCALER_16
* @arg @ref LL_IWDG_PRESCALER_32
* @arg @ref LL_IWDG_PRESCALER_64
* @arg @ref LL_IWDG_PRESCALER_128
* @arg @ref LL_IWDG_PRESCALER_256
* @retval None
*/
__STATIC_INLINE void LL_IWDG_SetPrescaler(IWDG_TypeDef *IWDGx, uint32_t Prescaler)
{
WRITE_REG(IWDGx->PR, IWDG_PR_PR & Prescaler);
}
/**
* @brief Get the selected prescaler of the IWDG
* @rmtoll PR PR LL_IWDG_GetPrescaler
* @param IWDGx IWDG Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_IWDG_PRESCALER_4
* @arg @ref LL_IWDG_PRESCALER_8
* @arg @ref LL_IWDG_PRESCALER_16
* @arg @ref LL_IWDG_PRESCALER_32
* @arg @ref LL_IWDG_PRESCALER_64
* @arg @ref LL_IWDG_PRESCALER_128
* @arg @ref LL_IWDG_PRESCALER_256
*/
__STATIC_INLINE uint32_t LL_IWDG_GetPrescaler(IWDG_TypeDef *IWDGx)
{
return (READ_REG(IWDGx->PR));
}
/**
* @brief Specify the IWDG down-counter reload value
* @rmtoll RLR RL LL_IWDG_SetReloadCounter
* @param IWDGx IWDG Instance
* @param Counter Value between Min_Data=0 and Max_Data=0x0FFF
* @retval None
*/
__STATIC_INLINE void LL_IWDG_SetReloadCounter(IWDG_TypeDef *IWDGx, uint32_t Counter)
{
WRITE_REG(IWDGx->RLR, IWDG_RLR_RL & Counter);
}
/**
* @brief Get the specified IWDG down-counter reload value
* @rmtoll RLR RL LL_IWDG_GetReloadCounter
* @param IWDGx IWDG Instance
* @retval Value between Min_Data=0 and Max_Data=0x0FFF
*/
__STATIC_INLINE uint32_t LL_IWDG_GetReloadCounter(IWDG_TypeDef *IWDGx)
{
return (READ_REG(IWDGx->RLR));
}
/**
* @}
*/
/** @defgroup IWDG_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if flag Prescaler Value Update is set or not
* @rmtoll SR PVU LL_IWDG_IsActiveFlag_PVU
* @param IWDGx IWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_PVU(IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_PVU) == (IWDG_SR_PVU)) ? 1UL : 0UL);
}
/**
* @brief Check if flag Reload Value Update is set or not
* @rmtoll SR RVU LL_IWDG_IsActiveFlag_RVU
* @param IWDGx IWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_RVU(IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_RVU) == (IWDG_SR_RVU)) ? 1UL : 0UL);
}
/**
* @brief Check if flags Prescaler & Reload Value Update are reset or not
* @rmtoll SR PVU LL_IWDG_IsReady\n
* SR RVU LL_IWDG_IsReady
* @param IWDGx IWDG Instance
* @retval State of bits (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsReady(IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_PVU | IWDG_SR_RVU) == 0U) ? 1UL : 0UL);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* IWDG */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_LL_IWDG_H */

View file

@ -0,0 +1,437 @@
/**
******************************************************************************
* @file stm32f1xx_ll_pwr.h
* @author MCD Application Team
* @brief Header file of PWR LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_PWR_H
#define __STM32F1xx_LL_PWR_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined(PWR)
/** @defgroup PWR_LL PWR
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup PWR_LL_Exported_Constants PWR Exported Constants
* @{
*/
/** @defgroup PWR_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_PWR_WriteReg function
* @{
*/
#define LL_PWR_CR_CSBF PWR_CR_CSBF /*!< Clear standby flag */
#define LL_PWR_CR_CWUF PWR_CR_CWUF /*!< Clear wakeup flag */
/**
* @}
*/
/** @defgroup PWR_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_PWR_ReadReg function
* @{
*/
#define LL_PWR_CSR_WUF PWR_CSR_WUF /*!< Wakeup flag */
#define LL_PWR_CSR_SBF PWR_CSR_SBF /*!< Standby flag */
#define LL_PWR_CSR_PVDO PWR_CSR_PVDO /*!< Power voltage detector output flag */
#define LL_PWR_CSR_EWUP1 PWR_CSR_EWUP /*!< Enable WKUP pin 1 */
/**
* @}
*/
/** @defgroup PWR_LL_EC_MODE_PWR Mode Power
* @{
*/
#define LL_PWR_MODE_STOP_MAINREGU 0x00000000U /*!< Enter Stop mode when the CPU enters deepsleep */
#define LL_PWR_MODE_STOP_LPREGU (PWR_CR_LPDS) /*!< Enter Stop mode (with low power Regulator ON) when the CPU enters deepsleep */
#define LL_PWR_MODE_STANDBY (PWR_CR_PDDS) /*!< Enter Standby mode when the CPU enters deepsleep */
/**
* @}
*/
/** @defgroup PWR_LL_EC_REGU_MODE_DS_MODE Regulator Mode In Deep Sleep Mode
* @{
*/
#define LL_PWR_REGU_DSMODE_MAIN 0x00000000U /*!< Voltage Regulator in main mode during deepsleep mode */
#define LL_PWR_REGU_DSMODE_LOW_POWER (PWR_CR_LPDS) /*!< Voltage Regulator in low-power mode during deepsleep mode */
/**
* @}
*/
/** @defgroup PWR_LL_EC_PVDLEVEL Power Voltage Detector Level
* @{
*/
#define LL_PWR_PVDLEVEL_0 (PWR_CR_PLS_LEV0) /*!< Voltage threshold detected by PVD 2.2 V */
#define LL_PWR_PVDLEVEL_1 (PWR_CR_PLS_LEV1) /*!< Voltage threshold detected by PVD 2.3 V */
#define LL_PWR_PVDLEVEL_2 (PWR_CR_PLS_LEV2) /*!< Voltage threshold detected by PVD 2.4 V */
#define LL_PWR_PVDLEVEL_3 (PWR_CR_PLS_LEV3) /*!< Voltage threshold detected by PVD 2.5 V */
#define LL_PWR_PVDLEVEL_4 (PWR_CR_PLS_LEV4) /*!< Voltage threshold detected by PVD 2.6 V */
#define LL_PWR_PVDLEVEL_5 (PWR_CR_PLS_LEV5) /*!< Voltage threshold detected by PVD 2.7 V */
#define LL_PWR_PVDLEVEL_6 (PWR_CR_PLS_LEV6) /*!< Voltage threshold detected by PVD 2.8 V */
#define LL_PWR_PVDLEVEL_7 (PWR_CR_PLS_LEV7) /*!< Voltage threshold detected by PVD 2.9 V */
/**
* @}
*/
/** @defgroup PWR_LL_EC_WAKEUP_PIN Wakeup Pins
* @{
*/
#define LL_PWR_WAKEUP_PIN1 (PWR_CSR_EWUP) /*!< WKUP pin 1 : PA0 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup PWR_LL_Exported_Macros PWR Exported Macros
* @{
*/
/** @defgroup PWR_LL_EM_WRITE_READ Common write and read registers Macros
* @{
*/
/**
* @brief Write a value in PWR register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_PWR_WriteReg(__REG__, __VALUE__) WRITE_REG(PWR->__REG__, (__VALUE__))
/**
* @brief Read a value in PWR register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_PWR_ReadReg(__REG__) READ_REG(PWR->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PWR_LL_Exported_Functions PWR Exported Functions
* @{
*/
/** @defgroup PWR_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable access to the backup domain
* @rmtoll CR DBP LL_PWR_EnableBkUpAccess
* @retval None
*/
__STATIC_INLINE void LL_PWR_EnableBkUpAccess(void)
{
SET_BIT(PWR->CR, PWR_CR_DBP);
}
/**
* @brief Disable access to the backup domain
* @rmtoll CR DBP LL_PWR_DisableBkUpAccess
* @retval None
*/
__STATIC_INLINE void LL_PWR_DisableBkUpAccess(void)
{
CLEAR_BIT(PWR->CR, PWR_CR_DBP);
}
/**
* @brief Check if the backup domain is enabled
* @rmtoll CR DBP LL_PWR_IsEnabledBkUpAccess
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsEnabledBkUpAccess(void)
{
return (READ_BIT(PWR->CR, PWR_CR_DBP) == (PWR_CR_DBP));
}
/**
* @brief Set voltage Regulator mode during deep sleep mode
* @rmtoll CR LPDS LL_PWR_SetRegulModeDS
* @param RegulMode This parameter can be one of the following values:
* @arg @ref LL_PWR_REGU_DSMODE_MAIN
* @arg @ref LL_PWR_REGU_DSMODE_LOW_POWER
* @retval None
*/
__STATIC_INLINE void LL_PWR_SetRegulModeDS(uint32_t RegulMode)
{
MODIFY_REG(PWR->CR, PWR_CR_LPDS, RegulMode);
}
/**
* @brief Get voltage Regulator mode during deep sleep mode
* @rmtoll CR LPDS LL_PWR_GetRegulModeDS
* @retval Returned value can be one of the following values:
* @arg @ref LL_PWR_REGU_DSMODE_MAIN
* @arg @ref LL_PWR_REGU_DSMODE_LOW_POWER
*/
__STATIC_INLINE uint32_t LL_PWR_GetRegulModeDS(void)
{
return (uint32_t)(READ_BIT(PWR->CR, PWR_CR_LPDS));
}
/**
* @brief Set Power Down mode when CPU enters deepsleep
* @rmtoll CR PDDS LL_PWR_SetPowerMode\n
* @rmtoll CR LPDS LL_PWR_SetPowerMode
* @param PDMode This parameter can be one of the following values:
* @arg @ref LL_PWR_MODE_STOP_MAINREGU
* @arg @ref LL_PWR_MODE_STOP_LPREGU
* @arg @ref LL_PWR_MODE_STANDBY
* @retval None
*/
__STATIC_INLINE void LL_PWR_SetPowerMode(uint32_t PDMode)
{
MODIFY_REG(PWR->CR, (PWR_CR_PDDS| PWR_CR_LPDS), PDMode);
}
/**
* @brief Get Power Down mode when CPU enters deepsleep
* @rmtoll CR PDDS LL_PWR_GetPowerMode\n
* @rmtoll CR LPDS LL_PWR_GetPowerMode
* @retval Returned value can be one of the following values:
* @arg @ref LL_PWR_MODE_STOP_MAINREGU
* @arg @ref LL_PWR_MODE_STOP_LPREGU
* @arg @ref LL_PWR_MODE_STANDBY
*/
__STATIC_INLINE uint32_t LL_PWR_GetPowerMode(void)
{
return (uint32_t)(READ_BIT(PWR->CR, (PWR_CR_PDDS| PWR_CR_LPDS)));
}
/**
* @brief Configure the voltage threshold detected by the Power Voltage Detector
* @rmtoll CR PLS LL_PWR_SetPVDLevel
* @param PVDLevel This parameter can be one of the following values:
* @arg @ref LL_PWR_PVDLEVEL_0
* @arg @ref LL_PWR_PVDLEVEL_1
* @arg @ref LL_PWR_PVDLEVEL_2
* @arg @ref LL_PWR_PVDLEVEL_3
* @arg @ref LL_PWR_PVDLEVEL_4
* @arg @ref LL_PWR_PVDLEVEL_5
* @arg @ref LL_PWR_PVDLEVEL_6
* @arg @ref LL_PWR_PVDLEVEL_7
* @retval None
*/
__STATIC_INLINE void LL_PWR_SetPVDLevel(uint32_t PVDLevel)
{
MODIFY_REG(PWR->CR, PWR_CR_PLS, PVDLevel);
}
/**
* @brief Get the voltage threshold detection
* @rmtoll CR PLS LL_PWR_GetPVDLevel
* @retval Returned value can be one of the following values:
* @arg @ref LL_PWR_PVDLEVEL_0
* @arg @ref LL_PWR_PVDLEVEL_1
* @arg @ref LL_PWR_PVDLEVEL_2
* @arg @ref LL_PWR_PVDLEVEL_3
* @arg @ref LL_PWR_PVDLEVEL_4
* @arg @ref LL_PWR_PVDLEVEL_5
* @arg @ref LL_PWR_PVDLEVEL_6
* @arg @ref LL_PWR_PVDLEVEL_7
*/
__STATIC_INLINE uint32_t LL_PWR_GetPVDLevel(void)
{
return (uint32_t)(READ_BIT(PWR->CR, PWR_CR_PLS));
}
/**
* @brief Enable Power Voltage Detector
* @rmtoll CR PVDE LL_PWR_EnablePVD
* @retval None
*/
__STATIC_INLINE void LL_PWR_EnablePVD(void)
{
SET_BIT(PWR->CR, PWR_CR_PVDE);
}
/**
* @brief Disable Power Voltage Detector
* @rmtoll CR PVDE LL_PWR_DisablePVD
* @retval None
*/
__STATIC_INLINE void LL_PWR_DisablePVD(void)
{
CLEAR_BIT(PWR->CR, PWR_CR_PVDE);
}
/**
* @brief Check if Power Voltage Detector is enabled
* @rmtoll CR PVDE LL_PWR_IsEnabledPVD
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsEnabledPVD(void)
{
return (READ_BIT(PWR->CR, PWR_CR_PVDE) == (PWR_CR_PVDE));
}
/**
* @brief Enable the WakeUp PINx functionality
* @rmtoll CSR EWUP LL_PWR_EnableWakeUpPin
* @param WakeUpPin This parameter can be one of the following values:
* @arg @ref LL_PWR_WAKEUP_PIN1
* @retval None
*/
__STATIC_INLINE void LL_PWR_EnableWakeUpPin(uint32_t WakeUpPin)
{
SET_BIT(PWR->CSR, WakeUpPin);
}
/**
* @brief Disable the WakeUp PINx functionality
* @rmtoll CSR EWUP LL_PWR_DisableWakeUpPin
* @param WakeUpPin This parameter can be one of the following values:
* @arg @ref LL_PWR_WAKEUP_PIN1
* @retval None
*/
__STATIC_INLINE void LL_PWR_DisableWakeUpPin(uint32_t WakeUpPin)
{
CLEAR_BIT(PWR->CSR, WakeUpPin);
}
/**
* @brief Check if the WakeUp PINx functionality is enabled
* @rmtoll CSR EWUP LL_PWR_IsEnabledWakeUpPin
* @param WakeUpPin This parameter can be one of the following values:
* @arg @ref LL_PWR_WAKEUP_PIN1
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsEnabledWakeUpPin(uint32_t WakeUpPin)
{
return (READ_BIT(PWR->CSR, WakeUpPin) == (WakeUpPin));
}
/**
* @}
*/
/** @defgroup PWR_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Get Wake-up Flag
* @rmtoll CSR WUF LL_PWR_IsActiveFlag_WU
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsActiveFlag_WU(void)
{
return (READ_BIT(PWR->CSR, PWR_CSR_WUF) == (PWR_CSR_WUF));
}
/**
* @brief Get Standby Flag
* @rmtoll CSR SBF LL_PWR_IsActiveFlag_SB
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsActiveFlag_SB(void)
{
return (READ_BIT(PWR->CSR, PWR_CSR_SBF) == (PWR_CSR_SBF));
}
/**
* @brief Indicate whether VDD voltage is below the selected PVD threshold
* @rmtoll CSR PVDO LL_PWR_IsActiveFlag_PVDO
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_PWR_IsActiveFlag_PVDO(void)
{
return (READ_BIT(PWR->CSR, PWR_CSR_PVDO) == (PWR_CSR_PVDO));
}
/**
* @brief Clear Standby Flag
* @rmtoll CR CSBF LL_PWR_ClearFlag_SB
* @retval None
*/
__STATIC_INLINE void LL_PWR_ClearFlag_SB(void)
{
SET_BIT(PWR->CR, PWR_CR_CSBF);
}
/**
* @brief Clear Wake-up Flags
* @rmtoll CR CWUF LL_PWR_ClearFlag_WU
* @retval None
*/
__STATIC_INLINE void LL_PWR_ClearFlag_WU(void)
{
SET_BIT(PWR->CR, PWR_CR_CWUF);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup PWR_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_PWR_DeInit(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(PWR) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_PWR_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,575 @@
/**
******************************************************************************
* @file stm32f1xx_ll_system.h
* @author MCD Application Team
* @brief Header file of SYSTEM LL module.
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL SYSTEM driver contains a set of generic APIs that can be
used by user:
(+) Some of the FLASH features need to be handled in the SYSTEM file.
(+) Access to DBGCMU registers
(+) Access to SYSCFG registers
@endverbatim
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_SYSTEM_H
#define __STM32F1xx_LL_SYSTEM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined (FLASH) || defined (DBGMCU)
/** @defgroup SYSTEM_LL SYSTEM
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SYSTEM_LL_Private_Constants SYSTEM Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SYSTEM_LL_Exported_Constants SYSTEM Exported Constants
* @{
*/
/** @defgroup SYSTEM_LL_EC_TRACE DBGMCU TRACE Pin Assignment
* @{
*/
#define LL_DBGMCU_TRACE_NONE 0x00000000U /*!< TRACE pins not assigned (default state) */
#define LL_DBGMCU_TRACE_ASYNCH DBGMCU_CR_TRACE_IOEN /*!< TRACE pin assignment for Asynchronous Mode */
#define LL_DBGMCU_TRACE_SYNCH_SIZE1 (DBGMCU_CR_TRACE_IOEN | DBGMCU_CR_TRACE_MODE_0) /*!< TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 1 */
#define LL_DBGMCU_TRACE_SYNCH_SIZE2 (DBGMCU_CR_TRACE_IOEN | DBGMCU_CR_TRACE_MODE_1) /*!< TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 2 */
#define LL_DBGMCU_TRACE_SYNCH_SIZE4 (DBGMCU_CR_TRACE_IOEN | DBGMCU_CR_TRACE_MODE) /*!< TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 4 */
/**
* @}
*/
/** @defgroup SYSTEM_LL_EC_APB1_GRP1_STOP_IP DBGMCU APB1 GRP1 STOP IP
* @{
*/
#define LL_DBGMCU_APB1_GRP1_TIM2_STOP DBGMCU_CR_DBG_TIM2_STOP /*!< TIM2 counter stopped when core is halted */
#define LL_DBGMCU_APB1_GRP1_TIM3_STOP DBGMCU_CR_DBG_TIM3_STOP /*!< TIM3 counter stopped when core is halted */
#define LL_DBGMCU_APB1_GRP1_TIM4_STOP DBGMCU_CR_DBG_TIM4_STOP /*!< TIM4 counter stopped when core is halted */
#if defined(DBGMCU_CR_DBG_TIM5_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM5_STOP DBGMCU_CR_DBG_TIM5_STOP /*!< TIM5 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM5_STOP */
#if defined(DBGMCU_CR_DBG_TIM6_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM6_STOP DBGMCU_CR_DBG_TIM6_STOP /*!< TIM6 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM6_STOP */
#if defined(DBGMCU_CR_DBG_TIM7_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM7_STOP DBGMCU_CR_DBG_TIM7_STOP /*!< TIM7 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM7_STOP */
#if defined(DBGMCU_CR_DBG_TIM12_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM12_STOP DBGMCU_CR_DBG_TIM12_STOP /*!< TIM12 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM12_STOP */
#if defined(DBGMCU_CR_DBG_TIM13_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM13_STOP DBGMCU_CR_DBG_TIM13_STOP /*!< TIM13 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM13_STOP */
#if defined(DBGMCU_CR_DBG_TIM14_STOP)
#define LL_DBGMCU_APB1_GRP1_TIM14_STOP DBGMCU_CR_DBG_TIM14_STOP /*!< TIM14 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM14_STOP */
#define LL_DBGMCU_APB1_GRP1_WWDG_STOP DBGMCU_CR_DBG_WWDG_STOP /*!< Debug Window Watchdog stopped when Core is halted */
#define LL_DBGMCU_APB1_GRP1_IWDG_STOP DBGMCU_CR_DBG_IWDG_STOP /*!< Debug Independent Watchdog stopped when Core is halted */
#define LL_DBGMCU_APB1_GRP1_I2C1_STOP DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT /*!< I2C1 SMBUS timeout mode stopped when Core is halted */
#if defined(DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
#define LL_DBGMCU_APB1_GRP1_I2C2_STOP DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT /*!< I2C2 SMBUS timeout mode stopped when Core is halted */
#endif /* DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT */
#if defined(DBGMCU_CR_DBG_CAN1_STOP)
#define LL_DBGMCU_APB1_GRP1_CAN1_STOP DBGMCU_CR_DBG_CAN1_STOP /*!< CAN1 debug stopped when Core is halted */
#endif /* DBGMCU_CR_DBG_CAN1_STOP */
#if defined(DBGMCU_CR_DBG_CAN2_STOP)
#define LL_DBGMCU_APB1_GRP1_CAN2_STOP DBGMCU_CR_DBG_CAN2_STOP /*!< CAN2 debug stopped when Core is halted */
#endif /* DBGMCU_CR_DBG_CAN2_STOP */
/**
* @}
*/
/** @defgroup SYSTEM_LL_EC_APB2_GRP1_STOP_IP DBGMCU APB2 GRP1 STOP IP
* @{
*/
#define LL_DBGMCU_APB2_GRP1_TIM1_STOP DBGMCU_CR_DBG_TIM1_STOP /*!< TIM1 counter stopped when core is halted */
#if defined(DBGMCU_CR_DBG_TIM8_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM8_STOP DBGMCU_CR_DBG_TIM8_STOP /*!< TIM8 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_CAN1_STOP */
#if defined(DBGMCU_CR_DBG_TIM9_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM9_STOP DBGMCU_CR_DBG_TIM9_STOP /*!< TIM9 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM9_STOP */
#if defined(DBGMCU_CR_DBG_TIM10_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM10_STOP DBGMCU_CR_DBG_TIM10_STOP /*!< TIM10 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM10_STOP */
#if defined(DBGMCU_CR_DBG_TIM11_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM11_STOP DBGMCU_CR_DBG_TIM11_STOP /*!< TIM11 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM11_STOP */
#if defined(DBGMCU_CR_DBG_TIM15_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM15_STOP DBGMCU_CR_DBG_TIM15_STOP /*!< TIM15 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM15_STOP */
#if defined(DBGMCU_CR_DBG_TIM16_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM16_STOP DBGMCU_CR_DBG_TIM16_STOP /*!< TIM16 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM16_STOP */
#if defined(DBGMCU_CR_DBG_TIM17_STOP)
#define LL_DBGMCU_APB2_GRP1_TIM17_STOP DBGMCU_CR_DBG_TIM17_STOP /*!< TIM17 counter stopped when core is halted */
#endif /* DBGMCU_CR_DBG_TIM17_STOP */
/**
* @}
*/
/** @defgroup SYSTEM_LL_EC_LATENCY FLASH LATENCY
* @{
*/
#if defined(FLASH_ACR_LATENCY)
#define LL_FLASH_LATENCY_0 0x00000000U /*!< FLASH Zero Latency cycle */
#define LL_FLASH_LATENCY_1 FLASH_ACR_LATENCY_0 /*!< FLASH One Latency cycle */
#define LL_FLASH_LATENCY_2 FLASH_ACR_LATENCY_1 /*!< FLASH Two wait states */
#else
#endif /* FLASH_ACR_LATENCY */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SYSTEM_LL_Exported_Functions SYSTEM Exported Functions
* @{
*/
/** @defgroup SYSTEM_LL_EF_DBGMCU DBGMCU
* @{
*/
/**
* @brief Return the device identifier
* @note For Low Density devices, the device ID is 0x412
* @note For Medium Density devices, the device ID is 0x410
* @note For High Density devices, the device ID is 0x414
* @note For XL Density devices, the device ID is 0x430
* @note For Connectivity Line devices, the device ID is 0x418
* @rmtoll DBGMCU_IDCODE DEV_ID LL_DBGMCU_GetDeviceID
* @retval Values between Min_Data=0x00 and Max_Data=0xFFF
*/
__STATIC_INLINE uint32_t LL_DBGMCU_GetDeviceID(void)
{
return (uint32_t)(READ_BIT(DBGMCU->IDCODE, DBGMCU_IDCODE_DEV_ID));
}
/**
* @brief Return the device revision identifier
* @note This field indicates the revision of the device.
For example, it is read as revA -> 0x1000,for Low Density devices
For example, it is read as revA -> 0x0000, revB -> 0x2000, revZ -> 0x2001, rev1,2,3,X or Y -> 0x2003,for Medium Density devices
For example, it is read as revA or 1 -> 0x1000, revZ -> 0x1001,rev1,2,3,X or Y -> 0x1003,for Medium Density devices
For example, it is read as revA or 1 -> 0x1003,for XL Density devices
For example, it is read as revA -> 0x1000, revZ -> 0x1001 for Connectivity line devices
* @rmtoll DBGMCU_IDCODE REV_ID LL_DBGMCU_GetRevisionID
* @retval Values between Min_Data=0x00 and Max_Data=0xFFFF
*/
__STATIC_INLINE uint32_t LL_DBGMCU_GetRevisionID(void)
{
return (uint32_t)(READ_BIT(DBGMCU->IDCODE, DBGMCU_IDCODE_REV_ID) >> DBGMCU_IDCODE_REV_ID_Pos);
}
/**
* @brief Enable the Debug Module during SLEEP mode
* @rmtoll DBGMCU_CR DBG_SLEEP LL_DBGMCU_EnableDBGSleepMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_EnableDBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Disable the Debug Module during SLEEP mode
* @rmtoll DBGMCU_CR DBG_SLEEP LL_DBGMCU_DisableDBGSleepMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_DisableDBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Enable the Debug Module during STOP mode
* @rmtoll DBGMCU_CR DBG_STOP LL_DBGMCU_EnableDBGStopMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during STOP mode
* @rmtoll DBGMCU_CR DBG_STOP LL_DBGMCU_DisableDBGStopMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during STANDBY mode
* @rmtoll DBGMCU_CR DBG_STANDBY LL_DBGMCU_EnableDBGStandbyMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during STANDBY mode
* @rmtoll DBGMCU_CR DBG_STANDBY LL_DBGMCU_DisableDBGStandbyMode
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Set Trace pin assignment control
* @rmtoll DBGMCU_CR TRACE_IOEN LL_DBGMCU_SetTracePinAssignment\n
* DBGMCU_CR TRACE_MODE LL_DBGMCU_SetTracePinAssignment
* @param PinAssignment This parameter can be one of the following values:
* @arg @ref LL_DBGMCU_TRACE_NONE
* @arg @ref LL_DBGMCU_TRACE_ASYNCH
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE1
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE2
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE4
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_SetTracePinAssignment(uint32_t PinAssignment)
{
MODIFY_REG(DBGMCU->CR, DBGMCU_CR_TRACE_IOEN | DBGMCU_CR_TRACE_MODE, PinAssignment);
}
/**
* @brief Get Trace pin assignment control
* @rmtoll DBGMCU_CR TRACE_IOEN LL_DBGMCU_GetTracePinAssignment\n
* DBGMCU_CR TRACE_MODE LL_DBGMCU_GetTracePinAssignment
* @retval Returned value can be one of the following values:
* @arg @ref LL_DBGMCU_TRACE_NONE
* @arg @ref LL_DBGMCU_TRACE_ASYNCH
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE1
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE2
* @arg @ref LL_DBGMCU_TRACE_SYNCH_SIZE4
*/
__STATIC_INLINE uint32_t LL_DBGMCU_GetTracePinAssignment(void)
{
return (uint32_t)(READ_BIT(DBGMCU->CR, DBGMCU_CR_TRACE_IOEN | DBGMCU_CR_TRACE_MODE));
}
/**
* @brief Freeze APB1 peripherals (group1 peripherals)
* @rmtoll DBGMCU_CR_APB1 DBG_TIM2_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM3_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM4_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM5_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM6_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM7_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM12_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM13_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM14_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_RTC_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_WWDG_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_IWDG_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_I2C1_SMBUS_TIMEOUT LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_I2C2_SMBUS_TIMEOUT LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_CAN1_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph\n
* DBGMCU_CR_APB1 DBG_CAN2_STOP LL_DBGMCU_APB1_GRP1_FreezePeriph
* @param Periphs This parameter can be a combination of the following values:
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM2_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM3_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM4_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM5_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM6_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM7_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM12_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM13_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM14_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_WWDG_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_IWDG_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_I2C1_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_I2C2_STOP (*)
* @arg @ref LL_DBGMCU_APB1_GRP1_CAN1_STOP (*)
* @arg @ref LL_DBGMCU_APB1_GRP1_CAN2_STOP (*)
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_APB1_GRP1_FreezePeriph(uint32_t Periphs)
{
SET_BIT(DBGMCU->CR, Periphs);
}
/**
* @brief Unfreeze APB1 peripherals (group1 peripherals)
* @rmtoll DBGMCU_CR_APB1 DBG_TIM2_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM3_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM4_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM5_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM6_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM7_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM12_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM13_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_TIM14_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_RTC_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_WWDG_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_IWDG_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_I2C1_SMBUS_TIMEOUT LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_I2C2_SMBUS_TIMEOUT LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_CAN1_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph\n
* DBGMCU_CR_APB1 DBG_CAN2_STOP LL_DBGMCU_APB1_GRP1_UnFreezePeriph
* @param Periphs This parameter can be a combination of the following values:
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM2_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM3_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM4_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM5_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM6_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM7_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM12_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM13_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_TIM14_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_RTC_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_WWDG_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_IWDG_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_I2C1_STOP
* @arg @ref LL_DBGMCU_APB1_GRP1_I2C2_STOP (*)
* @arg @ref LL_DBGMCU_APB1_GRP1_CAN1_STOP (*)
* @arg @ref LL_DBGMCU_APB1_GRP1_CAN2_STOP (*)
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_APB1_GRP1_UnFreezePeriph(uint32_t Periphs)
{
CLEAR_BIT(DBGMCU->CR, Periphs);
}
/**
* @brief Freeze APB2 peripherals
* @rmtoll DBGMCU_CR_APB2 DBG_TIM1_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM8_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM9_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM10_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM11_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM15_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM16_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM17_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph
* @param Periphs This parameter can be a combination of the following values:
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM1_STOP
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM8_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM9_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM10_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM11_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM15_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM16_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM17_STOP (*)
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_APB2_GRP1_FreezePeriph(uint32_t Periphs)
{
SET_BIT(DBGMCU->CR, Periphs);
}
/**
* @brief Unfreeze APB2 peripherals
* @rmtoll DBGMCU_CR_APB2 DBG_TIM1_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM8_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM9_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM10_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM11_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM15_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM16_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph\n
* DBGMCU_CR_APB2 DBG_TIM17_STOP LL_DBGMCU_APB2_GRP1_FreezePeriph
* @param Periphs This parameter can be a combination of the following values:
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM1_STOP
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM8_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM9_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM10_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM11_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM15_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM16_STOP (*)
* @arg @ref LL_DBGMCU_APB2_GRP1_TIM17_STOP (*)
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_DBGMCU_APB2_GRP1_UnFreezePeriph(uint32_t Periphs)
{
CLEAR_BIT(DBGMCU->CR, Periphs);
}
/**
* @}
*/
#if defined(FLASH_ACR_LATENCY)
/** @defgroup SYSTEM_LL_EF_FLASH FLASH
* @{
*/
/**
* @brief Set FLASH Latency
* @rmtoll FLASH_ACR LATENCY LL_FLASH_SetLatency
* @param Latency This parameter can be one of the following values:
* @arg @ref LL_FLASH_LATENCY_0
* @arg @ref LL_FLASH_LATENCY_1
* @arg @ref LL_FLASH_LATENCY_2
* @retval None
*/
__STATIC_INLINE void LL_FLASH_SetLatency(uint32_t Latency)
{
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, Latency);
}
/**
* @brief Get FLASH Latency
* @rmtoll FLASH_ACR LATENCY LL_FLASH_GetLatency
* @retval Returned value can be one of the following values:
* @arg @ref LL_FLASH_LATENCY_0
* @arg @ref LL_FLASH_LATENCY_1
* @arg @ref LL_FLASH_LATENCY_2
*/
__STATIC_INLINE uint32_t LL_FLASH_GetLatency(void)
{
return (uint32_t)(READ_BIT(FLASH->ACR, FLASH_ACR_LATENCY));
}
/**
* @brief Enable Prefetch
* @rmtoll FLASH_ACR PRFTBE LL_FLASH_EnablePrefetch
* @retval None
*/
__STATIC_INLINE void LL_FLASH_EnablePrefetch(void)
{
SET_BIT(FLASH->ACR, FLASH_ACR_PRFTBE);
}
/**
* @brief Disable Prefetch
* @rmtoll FLASH_ACR PRFTBE LL_FLASH_DisablePrefetch
* @retval None
*/
__STATIC_INLINE void LL_FLASH_DisablePrefetch(void)
{
CLEAR_BIT(FLASH->ACR, FLASH_ACR_PRFTBE);
}
/**
* @brief Check if Prefetch buffer is enabled
* @rmtoll FLASH_ACR PRFTBS LL_FLASH_IsPrefetchEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FLASH_IsPrefetchEnabled(void)
{
return (READ_BIT(FLASH->ACR, FLASH_ACR_PRFTBS) == (FLASH_ACR_PRFTBS));
}
#endif /* FLASH_ACR_LATENCY */
/**
* @brief Enable Flash Half Cycle Access
* @rmtoll FLASH_ACR HLFCYA LL_FLASH_EnableHalfCycleAccess
* @retval None
*/
__STATIC_INLINE void LL_FLASH_EnableHalfCycleAccess(void)
{
SET_BIT(FLASH->ACR, FLASH_ACR_HLFCYA);
}
/**
* @brief Disable Flash Half Cycle Access
* @rmtoll FLASH_ACR HLFCYA LL_FLASH_DisableHalfCycleAccess
* @retval None
*/
__STATIC_INLINE void LL_FLASH_DisableHalfCycleAccess(void)
{
CLEAR_BIT(FLASH->ACR, FLASH_ACR_HLFCYA);
}
/**
* @brief Check if Flash Half Cycle Access is enabled or not
* @rmtoll FLASH_ACR HLFCYA LL_FLASH_IsHalfCycleAccessEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_FLASH_IsHalfCycleAccessEnabled(void)
{
return (READ_BIT(FLASH->ACR, FLASH_ACR_HLFCYA) == (FLASH_ACR_HLFCYA));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (FLASH) || defined (DBGMCU) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_SYSTEM_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,634 @@
/**
******************************************************************************
* @file stm32f1xx_ll_usb.h
* @author MCD Application Team
* @brief Header file of USB Low Layer HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_USB_H
#define STM32F1xx_LL_USB_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
#if defined (USB) || defined (USB_OTG_FS)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup USB_LL
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief USB Mode definition
*/
typedef enum
{
USB_DEVICE_MODE = 0,
USB_HOST_MODE = 1,
USB_DRD_MODE = 2
} USB_ModeTypeDef;
/**
* @brief URB States definition
*/
typedef enum
{
URB_IDLE = 0,
URB_DONE,
URB_NOTREADY,
URB_NYET,
URB_ERROR,
URB_STALL
} USB_URBStateTypeDef;
/**
* @brief Host channel States definition
*/
typedef enum
{
HC_IDLE = 0,
HC_XFRC,
HC_HALTED,
HC_ACK,
HC_NAK,
HC_NYET,
HC_STALL,
HC_XACTERR,
HC_BBLERR,
HC_DATATGLERR
} USB_HCStateTypeDef;
/**
* @brief USB Instance Initialization Structure definition
*/
typedef struct
{
uint32_t dev_endpoints; /*!< Device Endpoints number.
This parameter depends on the used USB core.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
#if defined (USB_OTG_FS)
uint32_t Host_channels; /*!< Host Channels number.
This parameter Depends on the used USB core.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint32_t dma_enable; /*!< USB DMA state.
If DMA is not supported this parameter shall be set by default to zero */
#endif /* defined (USB_OTG_FS) */
uint32_t speed; /*!< USB Core speed.
This parameter can be any value of @ref PCD_Speed/HCD_Speed
(HCD_SPEED_xxx, HCD_SPEED_xxx) */
uint32_t ep0_mps; /*!< Set the Endpoint 0 Max Packet size. */
uint32_t phy_itface; /*!< Select the used PHY interface.
This parameter can be any value of @ref PCD_PHY_Module/HCD_PHY_Module */
uint32_t Sof_enable; /*!< Enable or disable the output of the SOF signal. */
uint32_t low_power_enable; /*!< Enable or disable the low Power Mode. */
uint32_t lpm_enable; /*!< Enable or disable Link Power Management. */
uint32_t battery_charging_enable; /*!< Enable or disable Battery charging. */
#if defined (USB_OTG_FS)
uint32_t vbus_sensing_enable; /*!< Enable or disable the VBUS Sensing feature. */
uint32_t use_dedicated_ep1; /*!< Enable or disable the use of the dedicated EP1 interrupt. */
uint32_t use_external_vbus; /*!< Enable or disable the use of the external VBUS. */
#endif /* defined (USB_OTG_FS) */
} USB_CfgTypeDef;
typedef struct
{
uint8_t num; /*!< Endpoint number
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint8_t is_in; /*!< Endpoint direction
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t is_stall; /*!< Endpoint stall condition
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
#if defined (USB_OTG_FS)
uint8_t is_iso_incomplete; /*!< Endpoint isoc condition
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
#endif /* defined (USB_OTG_FS) */
uint8_t type; /*!< Endpoint type
This parameter can be any value of @ref USB_LL_EP_Type */
uint8_t data_pid_start; /*!< Initial data PID
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
#if defined (USB)
uint16_t pmaadress; /*!< PMA Address
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint16_t pmaaddr0; /*!< PMA Address0
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint16_t pmaaddr1; /*!< PMA Address1
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint8_t doublebuffer; /*!< Double buffer enable
This parameter can be 0 or 1 */
#endif /* defined (USB) */
uint32_t maxpacket; /*!< Endpoint Max packet size
This parameter must be a number between Min_Data = 0 and Max_Data = 64KB */
uint8_t *xfer_buff; /*!< Pointer to transfer buffer */
uint32_t xfer_len; /*!< Current transfer length */
uint32_t xfer_count; /*!< Partial transfer length in case of multi packet transfer */
#if defined (USB_OTG_FS)
uint8_t even_odd_frame; /*!< IFrame parity
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint16_t tx_fifo_num; /*!< Transmission FIFO number
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint32_t dma_addr; /*!< 32 bits aligned transfer buffer address */
uint32_t xfer_size; /*!< requested transfer size */
#endif /* defined (USB_OTG_FS) */
#if defined (USB)
uint32_t xfer_len_db; /*!< double buffer transfer length used with bulk double buffer in */
uint8_t xfer_fill_db; /*!< double buffer Need to Fill new buffer used with bulk_in */
#endif /* defined (USB) */
} USB_EPTypeDef;
typedef struct
{
uint8_t dev_addr; /*!< USB device address.
This parameter must be a number between Min_Data = 1 and Max_Data = 255 */
uint8_t ch_num; /*!< Host channel number.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint8_t ep_num; /*!< Endpoint number.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint8_t ep_is_in; /*!< Endpoint direction
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t speed; /*!< USB Host Channel speed.
This parameter can be any value of @ref HCD_Device_Speed:
(HCD_DEVICE_SPEED_xxx) */
uint8_t do_ping; /*!< Enable or disable the use of the PING protocol for HS mode. */
uint8_t hub_port_nbr; /*!< USB HUB port number */
uint8_t hub_addr; /*!< USB HUB address */
uint8_t ep_type; /*!< Endpoint Type.
This parameter can be any value of @ref USB_LL_EP_Type */
uint16_t max_packet; /*!< Endpoint Max packet size.
This parameter must be a number between Min_Data = 0 and Max_Data = 64KB */
uint8_t data_pid; /*!< Initial data PID.
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t *xfer_buff; /*!< Pointer to transfer buffer. */
uint32_t XferSize; /*!< OTG Channel transfer size. */
uint32_t xfer_len; /*!< Current transfer length. */
uint32_t xfer_count; /*!< Partial transfer length in case of multi packet transfer. */
uint8_t toggle_in; /*!< IN transfer current toggle flag.
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t toggle_out; /*!< OUT transfer current toggle flag
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint32_t dma_addr; /*!< 32 bits aligned transfer buffer address. */
uint32_t ErrCnt; /*!< Host channel error count. */
USB_URBStateTypeDef urb_state; /*!< URB state.
This parameter can be any value of @ref USB_URBStateTypeDef */
USB_HCStateTypeDef state; /*!< Host Channel state.
This parameter can be any value of @ref USB_HCStateTypeDef */
} USB_HCTypeDef;
#if defined (USB_OTG_FS)
typedef USB_ModeTypeDef USB_OTG_ModeTypeDef;
typedef USB_CfgTypeDef USB_OTG_CfgTypeDef;
typedef USB_EPTypeDef USB_OTG_EPTypeDef;
typedef USB_URBStateTypeDef USB_OTG_URBStateTypeDef;
typedef USB_HCStateTypeDef USB_OTG_HCStateTypeDef;
typedef USB_HCTypeDef USB_OTG_HCTypeDef;
#endif /* defined (USB_OTG_FS) */
/* Exported constants --------------------------------------------------------*/
/** @defgroup PCD_Exported_Constants PCD Exported Constants
* @{
*/
#if defined (USB_OTG_FS)
/** @defgroup USB_OTG_CORE VERSION ID
* @{
*/
#define USB_OTG_CORE_ID_300A 0x4F54300AU
#define USB_OTG_CORE_ID_310A 0x4F54310AU
/**
* @}
*/
/** @defgroup USB_Core_Mode_ USB Core Mode
* @{
*/
#define USB_OTG_MODE_DEVICE 0U
#define USB_OTG_MODE_HOST 1U
#define USB_OTG_MODE_DRD 2U
/**
* @}
*/
/** @defgroup USB_LL_Core_Speed USB Low Layer Core Speed
* @{
*/
#define USB_OTG_SPEED_FULL 3U
/**
* @}
*/
/** @defgroup USB_LL_Core_PHY USB Low Layer Core PHY
* @{
*/
#define USB_OTG_EMBEDDED_PHY 2U
/**
* @}
*/
/** @defgroup USB_LL_Turnaround_Timeout Turnaround Timeout Value
* @{
*/
#ifndef USBD_FS_TRDT_VALUE
#define USBD_FS_TRDT_VALUE 5U
#define USBD_DEFAULT_TRDT_VALUE 9U
#endif /* USBD_HS_TRDT_VALUE */
/**
* @}
*/
/** @defgroup USB_LL_Core_MPS USB Low Layer Core MPS
* @{
*/
#define USB_OTG_FS_MAX_PACKET_SIZE 64U
#define USB_OTG_MAX_EP0_SIZE 64U
/**
* @}
*/
/** @defgroup USB_LL_Core_PHY_Frequency USB Low Layer Core PHY Frequency
* @{
*/
#define DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ (0U << 1)
#define DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ (1U << 1)
#define DSTS_ENUMSPD_FS_PHY_48MHZ (3U << 1)
/**
* @}
*/
/** @defgroup USB_LL_CORE_Frame_Interval USB Low Layer Core Frame Interval
* @{
*/
#define DCFG_FRAME_INTERVAL_80 0U
#define DCFG_FRAME_INTERVAL_85 1U
#define DCFG_FRAME_INTERVAL_90 2U
#define DCFG_FRAME_INTERVAL_95 3U
/**
* @}
*/
#endif /* defined (USB_OTG_FS) */
/** @defgroup USB_LL_EP0_MPS USB Low Layer EP0 MPS
* @{
*/
#define EP_MPS_64 0U
#define EP_MPS_32 1U
#define EP_MPS_16 2U
#define EP_MPS_8 3U
/**
* @}
*/
/** @defgroup USB_LL_EP_Type USB Low Layer EP Type
* @{
*/
#define EP_TYPE_CTRL 0U
#define EP_TYPE_ISOC 1U
#define EP_TYPE_BULK 2U
#define EP_TYPE_INTR 3U
#define EP_TYPE_MSK 3U
/**
* @}
*/
/** @defgroup USB_LL_EP_Speed USB Low Layer EP Speed
* @{
*/
#define EP_SPEED_LOW 0U
#define EP_SPEED_FULL 1U
#define EP_SPEED_HIGH 2U
/**
* @}
*/
/** @defgroup USB_LL_CH_PID_Type USB Low Layer Channel PID Type
* @{
*/
#define HC_PID_DATA0 0U
#define HC_PID_DATA2 1U
#define HC_PID_DATA1 2U
#define HC_PID_SETUP 3U
/**
* @}
*/
/** @defgroup USB_LL Device Speed
* @{
*/
#define USBD_FS_SPEED 2U
#define USBH_FSLS_SPEED 1U
/**
* @}
*/
#if defined (USB_OTG_FS)
/** @defgroup USB_LL_STS_Defines USB Low Layer STS Defines
* @{
*/
#define STS_GOUT_NAK 1U
#define STS_DATA_UPDT 2U
#define STS_XFER_COMP 3U
#define STS_SETUP_COMP 4U
#define STS_SETUP_UPDT 6U
/**
* @}
*/
/** @defgroup USB_LL_HCFG_SPEED_Defines USB Low Layer HCFG Speed Defines
* @{
*/
#define HCFG_30_60_MHZ 0U
#define HCFG_48_MHZ 1U
#define HCFG_6_MHZ 2U
/**
* @}
*/
/** @defgroup USB_LL_HFIR_Defines USB Low Layer frame interval Defines
* @{
*/
#define HFIR_6_MHZ 6000U
#define HFIR_60_MHZ 60000U
#define HFIR_48_MHZ 48000U
/**
* @}
*/
/** @defgroup USB_LL_HPRT0_PRTSPD_SPEED_Defines USB Low Layer HPRT0 PRTSPD Speed Defines
* @{
*/
#define HPRT0_PRTSPD_HIGH_SPEED 0U
#define HPRT0_PRTSPD_FULL_SPEED 1U
#define HPRT0_PRTSPD_LOW_SPEED 2U
/**
* @}
*/
#define HCCHAR_CTRL 0U
#define HCCHAR_ISOC 1U
#define HCCHAR_BULK 2U
#define HCCHAR_INTR 3U
#define GRXSTS_PKTSTS_IN 2U
#define GRXSTS_PKTSTS_IN_XFER_COMP 3U
#define GRXSTS_PKTSTS_DATA_TOGGLE_ERR 5U
#define GRXSTS_PKTSTS_CH_HALTED 7U
#define CLEAR_INTERRUPT_MASK 0xFFFFFFFFU
#define HC_MAX_PKT_CNT 256U
#define USBx_PCGCCTL *(__IO uint32_t *)((uint32_t)USBx_BASE + USB_OTG_PCGCCTL_BASE)
#define USBx_HPRT0 *(__IO uint32_t *)((uint32_t)USBx_BASE + USB_OTG_HOST_PORT_BASE)
#define USBx_DEVICE ((USB_OTG_DeviceTypeDef *)(USBx_BASE + USB_OTG_DEVICE_BASE))
#define USBx_INEP(i) ((USB_OTG_INEndpointTypeDef *)(USBx_BASE\
+ USB_OTG_IN_ENDPOINT_BASE + ((i) * USB_OTG_EP_REG_SIZE)))
#define USBx_OUTEP(i) ((USB_OTG_OUTEndpointTypeDef *)(USBx_BASE\
+ USB_OTG_OUT_ENDPOINT_BASE + ((i) * USB_OTG_EP_REG_SIZE)))
#define USBx_DFIFO(i) *(__IO uint32_t *)(USBx_BASE + USB_OTG_FIFO_BASE + ((i) * USB_OTG_FIFO_SIZE))
#define USBx_HOST ((USB_OTG_HostTypeDef *)(USBx_BASE + USB_OTG_HOST_BASE))
#define USBx_HC(i) ((USB_OTG_HostChannelTypeDef *)(USBx_BASE\
+ USB_OTG_HOST_CHANNEL_BASE\
+ ((i) * USB_OTG_HOST_CHANNEL_SIZE)))
#define EP_ADDR_MSK 0xFU
#endif /* defined (USB_OTG_FS) */
#if defined (USB)
#define BTABLE_ADDRESS 0x000U
#define PMA_ACCESS 2U
#ifndef USB_EP_RX_STRX
#define USB_EP_RX_STRX (0x3U << 12)
#endif /* USB_EP_RX_STRX */
#define EP_ADDR_MSK 0x7U
#ifndef USE_USB_DOUBLE_BUFFER
#define USE_USB_DOUBLE_BUFFER 1U
#endif /* USE_USB_DOUBLE_BUFFER */
#endif /* defined (USB) */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup USB_LL_Exported_Macros USB Low Layer Exported Macros
* @{
*/
#if defined (USB_OTG_FS)
#define USB_MASK_INTERRUPT(__INSTANCE__, __INTERRUPT__) ((__INSTANCE__)->GINTMSK &= ~(__INTERRUPT__))
#define USB_UNMASK_INTERRUPT(__INSTANCE__, __INTERRUPT__) ((__INSTANCE__)->GINTMSK |= (__INTERRUPT__))
#define CLEAR_IN_EP_INTR(__EPNUM__, __INTERRUPT__) (USBx_INEP(__EPNUM__)->DIEPINT = (__INTERRUPT__))
#define CLEAR_OUT_EP_INTR(__EPNUM__, __INTERRUPT__) (USBx_OUTEP(__EPNUM__)->DOEPINT = (__INTERRUPT__))
#endif /* defined (USB_OTG_FS) */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup USB_LL_Exported_Functions USB Low Layer Exported Functions
* @{
*/
#if defined (USB_OTG_FS)
HAL_StatusTypeDef USB_CoreInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg);
HAL_StatusTypeDef USB_DevInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg);
HAL_StatusTypeDef USB_EnableGlobalInt(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_DisableGlobalInt(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_SetTurnaroundTime(USB_OTG_GlobalTypeDef *USBx, uint32_t hclk, uint8_t speed);
HAL_StatusTypeDef USB_SetCurrentMode(USB_OTG_GlobalTypeDef *USBx, USB_ModeTypeDef mode);
HAL_StatusTypeDef USB_SetDevSpeed(USB_OTG_GlobalTypeDef *USBx, uint8_t speed);
HAL_StatusTypeDef USB_FlushRxFifo(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_FlushTxFifo(USB_OTG_GlobalTypeDef *USBx, uint32_t num);
HAL_StatusTypeDef USB_ActivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_DeactivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_ActivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_DeactivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src,
uint8_t ch_ep_num, uint16_t len);
void *USB_ReadPacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *dest, uint16_t len);
HAL_StatusTypeDef USB_EPSetStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPClearStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStopXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep);
HAL_StatusTypeDef USB_SetDevAddress(USB_OTG_GlobalTypeDef *USBx, uint8_t address);
HAL_StatusTypeDef USB_DevConnect(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_DevDisconnect(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_StopDevice(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_ActivateSetup(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_EP0_OutStart(USB_OTG_GlobalTypeDef *USBx, uint8_t *psetup);
uint8_t USB_GetDevSpeed(USB_OTG_GlobalTypeDef *USBx);
uint32_t USB_GetMode(USB_OTG_GlobalTypeDef *USBx);
uint32_t USB_ReadInterrupts(USB_OTG_GlobalTypeDef const *USBx);
uint32_t USB_ReadChInterrupts(USB_OTG_GlobalTypeDef *USBx, uint8_t chnum);
uint32_t USB_ReadDevAllOutEpInterrupt(USB_OTG_GlobalTypeDef *USBx);
uint32_t USB_ReadDevOutEPInterrupt(USB_OTG_GlobalTypeDef *USBx, uint8_t epnum);
uint32_t USB_ReadDevAllInEpInterrupt(USB_OTG_GlobalTypeDef *USBx);
uint32_t USB_ReadDevInEPInterrupt(USB_OTG_GlobalTypeDef *USBx, uint8_t epnum);
void USB_ClearInterrupts(USB_OTG_GlobalTypeDef *USBx, uint32_t interrupt);
HAL_StatusTypeDef USB_HostInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg);
HAL_StatusTypeDef USB_InitFSLSPClkSel(USB_OTG_GlobalTypeDef *USBx, uint8_t freq);
HAL_StatusTypeDef USB_ResetPort(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_DriveVbus(USB_OTG_GlobalTypeDef *USBx, uint8_t state);
uint32_t USB_GetHostSpeed(USB_OTG_GlobalTypeDef const *USBx);
uint32_t USB_GetCurrentFrame(USB_OTG_GlobalTypeDef const *USBx);
HAL_StatusTypeDef USB_HC_Init(USB_OTG_GlobalTypeDef *USBx, uint8_t ch_num,
uint8_t epnum, uint8_t dev_address, uint8_t speed,
uint8_t ep_type, uint16_t mps);
HAL_StatusTypeDef USB_HC_StartXfer(USB_OTG_GlobalTypeDef *USBx,
USB_OTG_HCTypeDef *hc);
uint32_t USB_HC_ReadInterrupt(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_HC_Halt(USB_OTG_GlobalTypeDef *USBx, uint8_t hc_num);
HAL_StatusTypeDef USB_DoPing(USB_OTG_GlobalTypeDef *USBx, uint8_t ch_num);
HAL_StatusTypeDef USB_StopHost(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx);
HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx);
#endif /* defined (USB_OTG_FS) */
#if defined (USB)
HAL_StatusTypeDef USB_CoreInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg);
HAL_StatusTypeDef USB_DevInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg);
HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx, USB_ModeTypeDef mode);
HAL_StatusTypeDef USB_SetDevSpeed(USB_TypeDef *USBx, uint8_t speed);
HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef const *USBx);
HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef const *USBx, uint32_t num);
#if defined (HAL_PCD_MODULE_ENABLED)
HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStartXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPSetStall(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPClearStall(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStopXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep);
#endif /* defined (HAL_PCD_MODULE_ENABLED) */
HAL_StatusTypeDef USB_SetDevAddress(USB_TypeDef *USBx, uint8_t address);
HAL_StatusTypeDef USB_DevConnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_EP0_OutStart(USB_TypeDef *USBx, uint8_t *psetup);
HAL_StatusTypeDef USB_WritePacket(USB_TypeDef *USBx, uint8_t *src,
uint8_t ch_ep_num, uint16_t len);
void *USB_ReadPacket(USB_TypeDef *USBx, uint8_t *dest, uint16_t len);
uint32_t USB_ReadInterrupts(USB_TypeDef const *USBx);
uint32_t USB_ReadDevAllOutEpInterrupt(USB_TypeDef *USBx);
uint32_t USB_ReadDevOutEPInterrupt(USB_TypeDef *USBx, uint8_t epnum);
uint32_t USB_ReadDevAllInEpInterrupt(USB_TypeDef *USBx);
uint32_t USB_ReadDevInEPInterrupt(USB_TypeDef *USBx, uint8_t epnum);
void USB_ClearInterrupts(USB_TypeDef *USBx, uint32_t interrupt);
HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx);
void USB_WritePMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
void USB_ReadPMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
#endif /* defined (USB) */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) || defined (USB_OTG_FS) */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* STM32F1xx_LL_USB_H */

View file

@ -0,0 +1,270 @@
/**
******************************************************************************
* @file stm32f1xx_ll_utils.h
* @author MCD Application Team
* @brief Header file of UTILS LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL UTILS driver contains a set of generic APIs that can be
used by user:
(+) Device electronic signature
(+) Timing functions
(+) PLL configuration functions
@endverbatim
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_UTILS_H
#define __STM32F1xx_LL_UTILS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
/** @defgroup UTILS_LL UTILS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Constants UTILS Private Constants
* @{
*/
/* Max delay can be used in LL_mDelay */
#define LL_MAX_DELAY 0xFFFFFFFFU
/**
* @brief Unique device ID register base address
*/
#define UID_BASE_ADDRESS UID_BASE
/**
* @brief Flash size data register base address
*/
#define FLASHSIZE_BASE_ADDRESS FLASHSIZE_BASE
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Macros UTILS Private Macros
* @{
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup UTILS_LL_ES_INIT UTILS Exported structures
* @{
*/
/**
* @brief UTILS PLL structure definition
*/
typedef struct
{
uint32_t PLLMul; /*!< Multiplication factor for PLL VCO input clock.
This parameter can be a value of @ref RCC_LL_EC_PLL_MUL
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
uint32_t Prediv; /*!< Division factor for HSE used as PLL clock source.
This parameter can be a value of @ref RCC_LL_EC_PREDIV_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
} LL_UTILS_PLLInitTypeDef;
/**
* @brief UTILS System, AHB and APB buses clock configuration structure definition
*/
typedef struct
{
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_LL_EC_SYSCLK_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAHBPrescaler(). */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_LL_EC_APB1_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB1Prescaler(). */
uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_LL_EC_APB2_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB2Prescaler(). */
} LL_UTILS_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Constants UTILS Exported Constants
* @{
*/
/** @defgroup UTILS_EC_HSE_BYPASS HSE Bypass activation
* @{
*/
#define LL_UTILS_HSEBYPASS_OFF 0x00000000U /*!< HSE Bypass is not enabled */
#define LL_UTILS_HSEBYPASS_ON 0x00000001U /*!< HSE Bypass is enabled */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Functions UTILS Exported Functions
* @{
*/
/** @defgroup UTILS_EF_DEVICE_ELECTRONIC_SIGNATURE DEVICE ELECTRONIC SIGNATURE
* @{
*/
/**
* @brief Get Word0 of the unique device identifier (UID based on 96 bits)
* @retval UID[31:0]
*/
__STATIC_INLINE uint32_t LL_GetUID_Word0(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)UID_BASE_ADDRESS)));
}
/**
* @brief Get Word1 of the unique device identifier (UID based on 96 bits)
* @retval UID[63:32]
*/
__STATIC_INLINE uint32_t LL_GetUID_Word1(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 4U))));
}
/**
* @brief Get Word2 of the unique device identifier (UID based on 96 bits)
* @retval UID[95:64]
*/
__STATIC_INLINE uint32_t LL_GetUID_Word2(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 8U))));
}
/**
* @brief Get Flash memory size
* @note This bitfield indicates the size of the device Flash memory expressed in
* Kbytes. As an example, 0x040 corresponds to 64 Kbytes.
* @retval FLASH_SIZE[15:0]: Flash memory size
*/
__STATIC_INLINE uint32_t LL_GetFlashSize(void)
{
return (uint16_t)(READ_REG(*((uint32_t *)FLASHSIZE_BASE_ADDRESS)));
}
/**
* @}
*/
/** @defgroup UTILS_LL_EF_DELAY DELAY
* @{
*/
/**
* @brief This function configures the Cortex-M SysTick source of the time base.
* @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro)
* @note When a RTOS is used, it is recommended to avoid changing the SysTick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param Ticks Number of ticks
* @retval None
*/
__STATIC_INLINE void LL_InitTick(uint32_t HCLKFrequency, uint32_t Ticks)
{
/* Configure the SysTick to have interrupt in 1ms time base */
SysTick->LOAD = (uint32_t)((HCLKFrequency / Ticks) - 1UL); /* set reload register */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable the Systick Timer */
}
void LL_Init1msTick(uint32_t HCLKFrequency);
void LL_mDelay(uint32_t Delay);
/**
* @}
*/
/** @defgroup UTILS_EF_SYSTEM SYSTEM
* @{
*/
void LL_SetSystemCoreClock(uint32_t HCLKFrequency);
#if defined(FLASH_ACR_LATENCY)
ErrorStatus LL_SetFlashLatency(uint32_t Frequency);
#endif /* FLASH_ACR_LATENCY */
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
#if defined(RCC_PLL2_SUPPORT)
ErrorStatus LL_PLL_ConfigSystemClock_PLL2(uint32_t HSEFrequency, uint32_t HSEBypass, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_PLLInitTypeDef *UTILS_PLL2InitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
#endif /* RCC_PLL2_SUPPORT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_UTILS_H */

View file

@ -0,0 +1,316 @@
/**
******************************************************************************
* @file stm32f1xx_ll_wwdg.h
* @author MCD Application Team
* @brief Header file of WWDG LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32F1xx_LL_WWDG_H
#define STM32F1xx_LL_WWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined (WWDG)
/** @defgroup WWDG_LL WWDG
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup WWDG_LL_Exported_Constants WWDG Exported Constants
* @{
*/
/** @defgroup WWDG_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_WWDG_ReadReg and LL_WWDG_WriteReg functions
* @{
*/
#define LL_WWDG_CFR_EWI WWDG_CFR_EWI
/**
* @}
*/
/** @defgroup WWDG_LL_EC_PRESCALER PRESCALER
* @{
*/
#define LL_WWDG_PRESCALER_1 0x00000000u /*!< WWDG counter clock = (PCLK1/4096)/1 */
#define LL_WWDG_PRESCALER_2 WWDG_CFR_WDGTB_0 /*!< WWDG counter clock = (PCLK1/4096)/2 */
#define LL_WWDG_PRESCALER_4 WWDG_CFR_WDGTB_1 /*!< WWDG counter clock = (PCLK1/4096)/4 */
#define LL_WWDG_PRESCALER_8 (WWDG_CFR_WDGTB_0 | WWDG_CFR_WDGTB_1) /*!< WWDG counter clock = (PCLK1/4096)/8 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup WWDG_LL_Exported_Macros WWDG Exported Macros
* @{
*/
/** @defgroup WWDG_LL_EM_WRITE_READ Common Write and read registers macros
* @{
*/
/**
* @brief Write a value in WWDG register
* @param __INSTANCE__ WWDG Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_WWDG_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in WWDG register
* @param __INSTANCE__ WWDG Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_WWDG_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup WWDG_LL_Exported_Functions WWDG Exported Functions
* @{
*/
/** @defgroup WWDG_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable Window Watchdog. The watchdog is always disabled after a reset.
* @note It is enabled by setting the WDGA bit in the WWDG_CR register,
* then it cannot be disabled again except by a reset.
* This bit is set by software and only cleared by hardware after a reset.
* When WDGA = 1, the watchdog can generate a reset.
* @rmtoll CR WDGA LL_WWDG_Enable
* @param WWDGx WWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_WWDG_Enable(WWDG_TypeDef *WWDGx)
{
SET_BIT(WWDGx->CR, WWDG_CR_WDGA);
}
/**
* @brief Checks if Window Watchdog is enabled
* @rmtoll CR WDGA LL_WWDG_IsEnabled
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsEnabled(WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->CR, WWDG_CR_WDGA) == (WWDG_CR_WDGA)) ? 1UL : 0UL);
}
/**
* @brief Set the Watchdog counter value to provided value (7-bits T[6:0])
* @note When writing to the WWDG_CR register, always write 1 in the MSB b6 to avoid generating an immediate reset
* This counter is decremented every (4096 x 2expWDGTB) PCLK cycles
* A reset is produced when it rolls over from 0x40 to 0x3F (bit T6 becomes cleared)
* Setting the counter lower then 0x40 causes an immediate reset (if WWDG enabled)
* @rmtoll CR T LL_WWDG_SetCounter
* @param WWDGx WWDG Instance
* @param Counter 0..0x7F (7 bit counter value)
* @retval None
*/
__STATIC_INLINE void LL_WWDG_SetCounter(WWDG_TypeDef *WWDGx, uint32_t Counter)
{
MODIFY_REG(WWDGx->CR, WWDG_CR_T, Counter);
}
/**
* @brief Return current Watchdog Counter Value (7 bits counter value)
* @rmtoll CR T LL_WWDG_GetCounter
* @param WWDGx WWDG Instance
* @retval 7 bit Watchdog Counter value
*/
__STATIC_INLINE uint32_t LL_WWDG_GetCounter(WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CR, WWDG_CR_T));
}
/**
* @brief Set the time base of the prescaler (WDGTB).
* @note Prescaler is used to apply ratio on PCLK clock, so that Watchdog counter
* is decremented every (4096 x 2expWDGTB) PCLK cycles
* @rmtoll CFR WDGTB LL_WWDG_SetPrescaler
* @param WWDGx WWDG Instance
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_WWDG_PRESCALER_1
* @arg @ref LL_WWDG_PRESCALER_2
* @arg @ref LL_WWDG_PRESCALER_4
* @arg @ref LL_WWDG_PRESCALER_8
* @retval None
*/
__STATIC_INLINE void LL_WWDG_SetPrescaler(WWDG_TypeDef *WWDGx, uint32_t Prescaler)
{
MODIFY_REG(WWDGx->CFR, WWDG_CFR_WDGTB, Prescaler);
}
/**
* @brief Return current Watchdog Prescaler Value
* @rmtoll CFR WDGTB LL_WWDG_GetPrescaler
* @param WWDGx WWDG Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_WWDG_PRESCALER_1
* @arg @ref LL_WWDG_PRESCALER_2
* @arg @ref LL_WWDG_PRESCALER_4
* @arg @ref LL_WWDG_PRESCALER_8
*/
__STATIC_INLINE uint32_t LL_WWDG_GetPrescaler(WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CFR, WWDG_CFR_WDGTB));
}
/**
* @brief Set the Watchdog Window value to be compared to the downcounter (7-bits W[6:0]).
* @note This window value defines when write in the WWDG_CR register
* to program Watchdog counter is allowed.
* Watchdog counter value update must occur only when the counter value
* is lower than the Watchdog window register value.
* Otherwise, a MCU reset is generated if the 7-bit Watchdog counter value
* (in the control register) is refreshed before the downcounter has reached
* the watchdog window register value.
* Physically is possible to set the Window lower then 0x40 but it is not recommended.
* To generate an immediate reset, it is possible to set the Counter lower than 0x40.
* @rmtoll CFR W LL_WWDG_SetWindow
* @param WWDGx WWDG Instance
* @param Window 0x00..0x7F (7 bit Window value)
* @retval None
*/
__STATIC_INLINE void LL_WWDG_SetWindow(WWDG_TypeDef *WWDGx, uint32_t Window)
{
MODIFY_REG(WWDGx->CFR, WWDG_CFR_W, Window);
}
/**
* @brief Return current Watchdog Window Value (7 bits value)
* @rmtoll CFR W LL_WWDG_GetWindow
* @param WWDGx WWDG Instance
* @retval 7 bit Watchdog Window value
*/
__STATIC_INLINE uint32_t LL_WWDG_GetWindow(WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CFR, WWDG_CFR_W));
}
/**
* @}
*/
/** @defgroup WWDG_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Indicates if the WWDG Early Wakeup Interrupt Flag is set or not.
* @note This bit is set by hardware when the counter has reached the value 0x40.
* It must be cleared by software by writing 0.
* A write of 1 has no effect. This bit is also set if the interrupt is not enabled.
* @rmtoll SR EWIF LL_WWDG_IsActiveFlag_EWKUP
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsActiveFlag_EWKUP(WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->SR, WWDG_SR_EWIF) == (WWDG_SR_EWIF)) ? 1UL : 0UL);
}
/**
* @brief Clear WWDG Early Wakeup Interrupt Flag (EWIF)
* @rmtoll SR EWIF LL_WWDG_ClearFlag_EWKUP
* @param WWDGx WWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_WWDG_ClearFlag_EWKUP(WWDG_TypeDef *WWDGx)
{
WRITE_REG(WWDGx->SR, ~WWDG_SR_EWIF);
}
/**
* @}
*/
/** @defgroup WWDG_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable the Early Wakeup Interrupt.
* @note When set, an interrupt occurs whenever the counter reaches value 0x40.
* This interrupt is only cleared by hardware after a reset
* @rmtoll CFR EWI LL_WWDG_EnableIT_EWKUP
* @param WWDGx WWDG Instance
* @retval None
*/
__STATIC_INLINE void LL_WWDG_EnableIT_EWKUP(WWDG_TypeDef *WWDGx)
{
SET_BIT(WWDGx->CFR, WWDG_CFR_EWI);
}
/**
* @brief Check if Early Wakeup Interrupt is enabled
* @rmtoll CFR EWI LL_WWDG_IsEnabledIT_EWKUP
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsEnabledIT_EWKUP(WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->CFR, WWDG_CFR_EWI) == (WWDG_CFR_EWI)) ? 1UL : 0UL);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* WWDG */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32F1xx_LL_WWDG_H */

View file

@ -0,0 +1,6 @@
This software component is provided to you as part of a software package and
applicable license terms are in the Package_license file. If you received this
software component outside of a package or without applicable license terms,
the terms of the BSD-3-Clause license shall apply.
You may obtain a copy of the BSD-3-Clause at:
https://opensource.org/licenses/BSD-3-Clause

View file

@ -0,0 +1,607 @@
/**
******************************************************************************
* @file stm32f1xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs' categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @brief HAL module driver.
* @{
*/
#ifdef HAL_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
/**
* @brief STM32F1xx HAL Driver version number
*/
#define __STM32F1xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32F1xx_HAL_VERSION_SUB1 (0x01U) /*!< [23:16] sub1 version */
#define __STM32F1xx_HAL_VERSION_SUB2 (0x09U) /*!< [15:8] sub2 version */
#define __STM32F1xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32F1xx_HAL_VERSION ((__STM32F1xx_HAL_VERSION_MAIN << 24)\
|(__STM32F1xx_HAL_VERSION_SUB1 << 16)\
|(__STM32F1xx_HAL_VERSION_SUB2 << 8 )\
|(__STM32F1xx_HAL_VERSION_RC))
#define IDCODE_DEVID_MASK 0x00000FFFU
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup HAL_Private_Variables HAL Private Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup HAL_Exported_Functions HAL Exported Functions
* @{
*/
/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initializes the Flash interface, the NVIC allocation and initial clock
configuration. It initializes the systick also when timeout is needed
and the backup domain when enabled.
(+) de-Initializes common part of the HAL.
(+) Configure The time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function is used to initialize the HAL Library; it must be the first
* instruction to be executed in the main program (before to call any other
* HAL function), it performs the following:
* Configure the Flash prefetch.
* Configures the SysTick to generate an interrupt each 1 millisecond,
* which is clocked by the HSI (at this stage, the clock is not yet
* configured and thus the system is running from the internal HSI at 16 MHz).
* Set NVIC Group Priority to 4.
* Calls the HAL_MspInit() callback function defined in user file
* "stm32f1xx_hal_msp.c" to do the global low level hardware initialization
*
* @note SysTick is used as time base for the HAL_Delay() function, the application
* need to ensure that the SysTick time base is always set to 1 millisecond
* to have correct HAL operation.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
/* Configure Flash prefetch */
#if (PREFETCH_ENABLE != 0)
#if defined(STM32F101x6) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || \
defined(STM32F102x6) || defined(STM32F102xB) || \
defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || \
defined(STM32F105xC) || defined(STM32F107xC)
/* Prefetch buffer is not available on value line devices */
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif
#endif /* PREFETCH_ENABLE */
/* Set Interrupt Group Priority */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
HAL_InitTick(TICK_INT_PRIORITY);
/* Init the low level hardware */
HAL_MspInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the systick.
* of time base.
* @note This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_APB1_FORCE_RESET();
__HAL_RCC_APB1_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
#if defined(STM32F105xC) || defined(STM32F107xC)
__HAL_RCC_AHB_FORCE_RESET();
__HAL_RCC_AHB_RELEASE_RESET();
#endif
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
(+) Enable/Disable Debug module during SLEEP mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in SysTick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief Return tick frequency.
* @retval Tick frequency.
* Value of @ref HAL_TickFreqTypeDef.
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides minimum delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Returns the HAL revision
* @retval version 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32F1xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return ((DBGMCU->IDCODE) >> DBGMCU_IDCODE_REV_ID_Pos);
}
/**
* @brief Returns the device identifier.
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return ((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}
/**
* @brief Returns first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return(READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Returns second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Returns third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @brief Enable the Debug Module during SLEEP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Disable the Debug Module during SLEEP mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval None
*/
void HAL_DBGMCU_DisableDBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Enable the Debug Module during STOP mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* Note: On all STM32F1 devices:
* If the system tick timer interrupt is enabled during the Stop mode
* debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
* the system from Stop mode.
* Workaround: To debug the Stop mode, disable the system tick timer
* interrupt.
* Refer to errata sheet of these devices for more details.
* Note: On all STM32F1 devices:
* If the system tick timer interrupt is enabled during the Stop mode
* debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
* the system from Stop mode.
* Workaround: To debug the Stop mode, disable the system tick timer
* interrupt.
* Refer to errata sheet of these devices for more details.
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during STOP mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during STANDBY mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during STANDBY mode
* Note: On devices STM32F10xx8 and STM32F10xxB,
* STM32F101xC/D/E and STM32F103xC/D/E,
* STM32F101xF/G and STM32F103xF/G
* STM32F10xx4 and STM32F10xx6
* Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
* debug mode (not accessible by the user software in normal mode).
* Refer to errata sheet of these devices for more details.
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,503 @@
/**
******************************************************************************
* @file stm32f1xx_hal_cortex.c
* @author MCD Application Team
* @brief CORTEX HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the CORTEX:
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** How to configure Interrupts using CORTEX HAL driver ***
===========================================================
[..]
This section provides functions allowing to configure the NVIC interrupts (IRQ).
The Cortex-M3 exceptions are managed by CMSIS functions.
(#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping()
function according to the following table.
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority().
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ().
(#) please refer to programming manual for details in how to configure priority.
-@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ preemption is no more possible.
The pending IRQ priority will be managed only by the sub priority.
-@- IRQ priority order (sorted by highest to lowest priority):
(+@) Lowest preemption priority
(+@) Lowest sub priority
(+@) Lowest hardware priority (IRQ number)
[..]
*** How to configure Systick using CORTEX HAL driver ***
========================================================
[..]
Setup SysTick Timer for time base.
(+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
is a CMSIS function that:
(++) Configures the SysTick Reload register with value passed as function parameter.
(++) Configures the SysTick IRQ priority to the lowest value 0x0F.
(++) Resets the SysTick Counter register.
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
(++) Enables the SysTick Interrupt.
(++) Starts the SysTick Counter.
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
__HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
inside the stm32f1xx_hal_cortex.h file.
(+) You can change the SysTick IRQ priority by calling the
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
(+) To adjust the SysTick time base, use the following formula:
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
(++) Reload Value should not exceed 0xFFFFFF
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup CORTEX CORTEX
* @brief CORTEX HAL module driver
* @{
*/
#ifdef HAL_CORTEX_MODULE_ENABLED
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
Systick functionalities
@endverbatim
* @{
*/
/**
* @brief Sets the priority grouping field (preemption priority and subpriority)
* using the required unlock sequence.
* @param PriorityGroup: The priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
* 1 bits for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
* 0 bits for subpriority
* @note When the NVIC_PriorityGroup_0 is selected, IRQ preemption is no more possible.
* The pending IRQ priority will be managed only by the subpriority.
* @retval None
*/
void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */
NVIC_SetPriorityGrouping(PriorityGroup);
}
/**
* @brief Sets the priority of an interrupt.
* @param IRQn: External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xx.h))
* @param PreemptPriority: The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority
* @param SubPriority: the subpriority level for the IRQ channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority.
* @retval None
*/
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t prioritygroup = 0x00U;
/* Check the parameters */
assert_param(IS_NVIC_SUB_PRIORITY(SubPriority));
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
prioritygroup = NVIC_GetPriorityGrouping();
NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority));
}
/**
* @brief Enables a device specific interrupt in the NVIC interrupt controller.
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
* function should be called before.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval None
*/
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disables a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval None
*/
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiates a system reset request to reset the MCU.
* @retval None
*/
void HAL_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb: Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
{
return SysTick_Config(TicksNumb);
}
/**
* @}
*/
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
* @brief Cortex control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the CORTEX
(NVIC, SYSTICK, MPU) functionalities.
@endverbatim
* @{
*/
#if (__MPU_PRESENT == 1U)
/**
* @brief Disables the MPU
* @retval None
*/
void HAL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable fault exceptions */
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
/* Disable the MPU and clear the control register*/
MPU->CTRL = 0U;
}
/**
* @brief Enable the MPU.
* @param MPU_Control: Specifies the control mode of the MPU during hard fault,
* NMI, FAULTMASK and privileged access to the default memory
* This parameter can be one of the following values:
* @arg MPU_HFNMI_PRIVDEF_NONE
* @arg MPU_HARDFAULT_NMI
* @arg MPU_PRIVILEGED_DEFAULT
* @arg MPU_HFNMI_PRIVDEF
* @retval None
*/
void HAL_MPU_Enable(uint32_t MPU_Control)
{
/* Enable the MPU */
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
/* Enable fault exceptions */
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
/* Ensure MPU setting take effects */
__DSB();
__ISB();
}
/**
* @brief Initializes and configures the Region and the memory to be protected.
* @param MPU_Init: Pointer to a MPU_Region_InitTypeDef structure that contains
* the initialization and configuration information.
* @retval None
*/
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
if ((MPU_Init->Enable) != RESET)
{
/* Check the parameters */
assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
MPU->RBAR = MPU_Init->BaseAddress;
MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) |
((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) |
((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) |
((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) |
((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) |
((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
}
else
{
MPU->RBAR = 0x00U;
MPU->RASR = 0x00U;
}
}
#endif /* __MPU_PRESENT */
/**
* @brief Gets the priority grouping field from the NVIC Interrupt Controller.
* @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field)
*/
uint32_t HAL_NVIC_GetPriorityGrouping(void)
{
/* Get the PRIGROUP[10:8] field value */
return NVIC_GetPriorityGrouping();
}
/**
* @brief Gets the priority of an interrupt.
* @param IRQn: External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @param PriorityGroup: the priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
* 1 bits for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
* 0 bits for subpriority
* @param pPreemptPriority: Pointer on the Preemptive priority value (starting from 0).
* @param pSubPriority: Pointer on the Subpriority value (starting from 0).
* @retval None
*/
void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Get priority for Cortex-M system or device specific interrupts */
NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority);
}
/**
* @brief Sets Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval None
*/
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Gets Pending Interrupt (reads the pending register in the NVIC
* and returns the pending bit for the specified interrupt).
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if pending else 0 */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Clears the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval None
*/
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Clear pending interrupt */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit).
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if active else 0 */
return NVIC_GetActive(IRQn);
}
/**
* @brief Configures the SysTick clock source.
* @param CLKSource: specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
{
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}
else
{
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
}
}
/**
* @brief This function handles SYSTICK interrupt request.
* @retval None
*/
void HAL_SYSTICK_IRQHandler(void)
{
HAL_SYSTICK_Callback();
}
/**
* @brief SYSTICK callback.
* @retval None
*/
__weak void HAL_SYSTICK_Callback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SYSTICK_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CORTEX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View file

@ -0,0 +1,328 @@
/**
******************************************************************************
* @file stm32f1xx_hal_crc.c
* @author MCD Application Team
* @brief CRC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Cyclic Redundancy Check (CRC) peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
(+) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE();
(+) Initialize CRC calculator
(++) specify generating polynomial (peripheral default or non-default one)
(++) specify initialization value (peripheral default or non-default one)
(++) specify input data format
(++) specify input or output data inversion mode if any
(+) Use HAL_CRC_Accumulate() function to compute the CRC value of the
input data buffer starting with the previously computed CRC as
initialization value
(+) Use HAL_CRC_Calculate() function to compute the CRC value of the
input data buffer starting with the defined initialization value
(default or non-default) to initiate CRC calculation
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup CRC CRC
* @brief CRC HAL module driver.
* @{
*/
#ifdef HAL_CRC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRC_Exported_Functions CRC Exported Functions
* @{
*/
/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions.
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the CRC according to the specified parameters
in the CRC_InitTypeDef and create the associated handle
(+) DeInitialize the CRC peripheral
(+) Initialize the CRC MSP (MCU Specific Package)
(+) DeInitialize the CRC MSP
@endverbatim
* @{
*/
/**
* @brief Initialize the CRC according to the specified
* parameters in the CRC_InitTypeDef and create the associated handle.
* @param hcrc CRC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc)
{
/* Check the CRC handle allocation */
if (hcrc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
if (hcrc->State == HAL_CRC_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcrc->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CRC_MspInit(hcrc);
}
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief DeInitialize the CRC peripheral.
* @param hcrc CRC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc)
{
/* Check the CRC handle allocation */
if (hcrc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
/* Check the CRC peripheral state */
if (hcrc->State == HAL_CRC_STATE_BUSY)
{
return HAL_BUSY;
}
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_BUSY;
/* Reset CRC calculation unit */
__HAL_CRC_DR_RESET(hcrc);
/* Reset IDR register content */
__HAL_CRC_SET_IDR(hcrc, 0);
/* DeInit the low level hardware */
HAL_CRC_MspDeInit(hcrc);
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_RESET;
/* Process unlocked */
__HAL_UNLOCK(hcrc);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRC MSP.
* @param hcrc CRC handle
* @retval None
*/
__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcrc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_CRC_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize the CRC MSP.
* @param hcrc CRC handle
* @retval None
*/
__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcrc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_CRC_MspDeInit can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions
* @brief management functions.
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) compute the 32-bit CRC value of a 32-bit data buffer
using combination of the previous CRC value and the new one.
[..] or
(+) compute the 32-bit CRC value of a 32-bit data buffer
independently of the previous CRC value.
@endverbatim
* @{
*/
/**
* @brief Compute the 32-bit CRC value of a 32-bit data buffer
* starting with the previously computed CRC as initialization value.
* @param hcrc CRC handle
* @param pBuffer pointer to the input data buffer.
* @param BufferLength input data buffer length (number of uint32_t words).
* @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
*/
uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
{
uint32_t index; /* CRC input data buffer index */
uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_BUSY;
/* Enter Data to the CRC calculator */
for (index = 0U; index < BufferLength; index++)
{
hcrc->Instance->DR = pBuffer[index];
}
temp = hcrc->Instance->DR;
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_READY;
/* Return the CRC computed value */
return temp;
}
/**
* @brief Compute the 32-bit CRC value of a 32-bit data buffer
* starting with hcrc->Instance->INIT as initialization value.
* @param hcrc CRC handle
* @param pBuffer pointer to the input data buffer.
* @param BufferLength input data buffer length (number of uint32_t words).
* @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
*/
uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
{
uint32_t index; /* CRC input data buffer index */
uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_BUSY;
/* Reset CRC Calculation Unit (hcrc->Instance->INIT is
* written in hcrc->Instance->DR) */
__HAL_CRC_DR_RESET(hcrc);
/* Enter 32-bit input data to the CRC calculator */
for (index = 0U; index < BufferLength; index++)
{
hcrc->Instance->DR = pBuffer[index];
}
temp = hcrc->Instance->DR;
/* Change CRC peripheral state */
hcrc->State = HAL_CRC_STATE_READY;
/* Return the CRC computed value */
return temp;
}
/**
* @}
*/
/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions
* @brief Peripheral State functions.
*
@verbatim
===============================================================================
##### Peripheral State functions #####
===============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the CRC handle state.
* @param hcrc CRC handle
* @retval HAL state
*/
HAL_CRC_StateTypeDef HAL_CRC_GetState(const CRC_HandleTypeDef *hcrc)
{
/* Return CRC handle state */
return hcrc->State;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CRC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,516 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dac_ex.c
* @author MCD Application Team
* @brief Extended DAC HAL module driver.
* This file provides firmware functions to manage the extended
* functionalities of the DAC peripheral.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** Signal generation operation ***
===================================
[..]
(+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal.
(+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_DAC_MODULE_ENABLED
#if defined(DAC)
/** @defgroup DACEx DACEx
* @brief DAC Extended HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup DACEx_Exported_Functions DACEx Exported Functions
* @{
*/
/** @defgroup DACEx_Exported_Functions_Group2 IO operation functions
* @brief Extended IO operation functions
*
@verbatim
==============================================================================
##### Extended features functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Start conversion.
(+) Stop conversion.
(+) Start conversion and enable DMA transfer.
(+) Stop conversion and disable DMA transfer.
(+) Get result of conversion.
(+) Get result of dual mode conversion.
@endverbatim
* @{
*/
/**
* @brief Enables DAC and starts conversion of both channels.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStart(DAC_HandleTypeDef *hdac)
{
uint32_t tmp_swtrig = 0UL;
/* Check the DAC peripheral handle */
if (hdac == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the Peripheral */
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2);
/* Check if software trigger enabled */
if ((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == DAC_TRIGGER_SOFTWARE)
{
tmp_swtrig |= DAC_SWTRIGR_SWTRIG1;
}
if ((hdac->Instance->CR & (DAC_CR_TEN2 | DAC_CR_TSEL2)) == (DAC_TRIGGER_SOFTWARE << (DAC_CHANNEL_2 & 0x10UL)))
{
tmp_swtrig |= DAC_SWTRIGR_SWTRIG2;
}
/* Enable the selected DAC software conversion*/
SET_BIT(hdac->Instance->SWTRIGR, tmp_swtrig);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Disables DAC and stop conversion of both channels.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStop(DAC_HandleTypeDef *hdac)
{
/* Check the DAC peripheral handle */
if (hdac == NULL)
{
return HAL_ERROR;
}
/* Disable the Peripheral */
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Enable or disable the selected DAC channel wave generation.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected
* @param Amplitude Select max triangle amplitude.
* This parameter can be one of the following values:
* @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1
* @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3
* @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7
* @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15
* @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31
* @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63
* @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127
* @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255
* @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511
* @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023
* @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047
* @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
/* Check the DAC peripheral handle */
if (hdac == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the triangle wave generation for the selected DAC channel */
MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL),
(DAC_CR_WAVE1_1 | Amplitude) << (Channel & 0x10UL));
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Enable or disable the selected DAC channel wave generation.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected
* @param Amplitude Unmask DAC channel LFSR for noise wave generation.
* This parameter can be one of the following values:
* @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation
* @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
/* Check the DAC peripheral handle */
if (hdac == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the noise wave generation for the selected DAC channel */
MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL),
(DAC_CR_WAVE1_0 | Amplitude) << (Channel & 0x10UL));
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Set the specified data holding register value for dual DAC channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Alignment Specifies the data alignment for dual channel DAC.
* This parameter can be one of the following values:
* DAC_ALIGN_8B_R: 8bit right data alignment selected
* DAC_ALIGN_12B_L: 12bit left data alignment selected
* DAC_ALIGN_12B_R: 12bit right data alignment selected
* @param Data1 Data for DAC Channel1 to be loaded in the selected data holding register.
* @param Data2 Data for DAC Channel2 to be loaded in the selected data holding register.
* @note In dual mode, a unique register access is required to write in both
* DAC channels at the same time.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef *hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2)
{
uint32_t data;
uint32_t tmp;
/* Check the DAC peripheral handle */
if (hdac == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DAC_ALIGN(Alignment));
assert_param(IS_DAC_DATA(Data1));
assert_param(IS_DAC_DATA(Data2));
/* Calculate and set dual DAC data holding register value */
if (Alignment == DAC_ALIGN_8B_R)
{
data = ((uint32_t)Data2 << 8U) | Data1;
}
else
{
data = ((uint32_t)Data2 << 16U) | Data1;
}
tmp = (uint32_t)hdac->Instance;
tmp += DAC_DHR12RD_ALIGNMENT(Alignment);
/* Set the dual DAC selected data holding register */
*(__IO uint32_t *)tmp = data;
/* Return function status */
return HAL_OK;
}
/**
* @brief Conversion complete callback in non-blocking mode for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ConvCpltCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief Conversion half DMA transfer callback in non-blocking mode for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief Error DAC callback for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief DMA underrun DAC callback for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup DACEx_Exported_Functions_Group3 Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Set the specified data holding register value for DAC channel.
@endverbatim
* @{
*/
/**
* @brief Return the last data output value of the selected DAC channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval The selected DAC channel data output value.
*/
uint32_t HAL_DACEx_DualGetValue(const DAC_HandleTypeDef *hdac)
{
uint32_t tmp = 0UL;
tmp |= hdac->Instance->DOR1;
tmp |= hdac->Instance->DOR2 << 16UL;
/* Returns the DAC channel data output register value */
return tmp;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DACEx_Private_Functions DACEx private functions
* @brief Extended private functions
* @{
*/
/**
* @brief DMA conversion complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ConvCpltCallbackCh2(hdac);
#else
HAL_DACEx_ConvCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
hdac->State = HAL_DAC_STATE_READY;
}
/**
* @brief DMA half transfer complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Conversion complete callback */
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ConvHalfCpltCallbackCh2(hdac);
#else
HAL_DACEx_ConvHalfCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
}
/**
* @brief DMA error callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Set DAC error code to DMA error */
hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ErrorCallbackCh2(hdac);
#else
HAL_DACEx_ErrorCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
hdac->State = HAL_DAC_STATE_READY;
}
/**
* @}
*/
/**
* @}
*/
#endif /* DAC */
#endif /* HAL_DAC_MODULE_ENABLED */
/**
* @}
*/

View file

@ -0,0 +1,897 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dma.c
* @author MCD Application Team
* @brief DMA HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Direct Memory Access (DMA) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and errors functions
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable and configure the peripheral to be connected to the DMA Channel
(except for internal SRAM / FLASH memories: no initialization is
necessary). Please refer to the Reference manual for connection between peripherals
and DMA requests.
(#) For a given Channel, program the required configuration through the following parameters:
Channel request, Transfer Direction, Source and Destination data formats,
Circular or Normal mode, Channel Priority level, Source and Destination Increment mode
using HAL_DMA_Init() function.
(#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
detection.
(#) Use HAL_DMA_Abort() function to abort the current transfer
-@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
*** Polling mode IO operation ***
=================================
[..]
(+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
address and destination address and the Length of data to be transferred
(+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
case a fixed Timeout can be configured by User depending from his application.
*** Interrupt mode IO operation ***
===================================
[..]
(+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
(+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
(+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
Source address and destination address and the Length of data to be transferred.
In this case the DMA interrupt is configured
(+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
(+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
add his own function by customization of function pointer XferCpltCallback and
XferErrorCallback (i.e. a member of DMA handle structure).
*** DMA HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in DMA HAL driver.
(+) __HAL_DMA_ENABLE: Enable the specified DMA Channel.
(+) __HAL_DMA_DISABLE: Disable the specified DMA Channel.
(+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags.
(+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags.
(+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts.
(+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts.
(+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt has occurred or not.
[..]
(@) You can refer to the DMA HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup DMA DMA
* @brief DMA HAL module driver
* @{
*/
#ifdef HAL_DMA_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup DMA_Private_Functions DMA Private Functions
* @{
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup DMA_Exported_Functions DMA Exported Functions
* @{
*/
/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to initialize the DMA Channel source
and destination addresses, incrementation and data sizes, transfer direction,
circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
[..]
The HAL_DMA_Init() function follows the DMA configuration procedures as described in
reference manual.
@endverbatim
* @{
*/
/**
* @brief Initialize the DMA according to the specified
* parameters in the DMA_InitTypeDef and initialize the associated handle.
* @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
{
uint32_t tmp = 0U;
/* Check the DMA handle allocation */
if(hdma == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
assert_param(IS_DMA_MODE(hdma->Init.Mode));
assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
#if defined (DMA2)
/* calculation of the channel index */
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
{
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
}
else
{
/* DMA2 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
hdma->DmaBaseAddress = DMA2;
}
#else
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
#endif /* DMA2 */
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
/* Get the CR register value */
tmp = hdma->Instance->CCR;
/* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \
DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \
DMA_CCR_DIR));
/* Prepare the DMA Channel configuration */
tmp |= hdma->Init.Direction |
hdma->Init.PeriphInc | hdma->Init.MemInc |
hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
hdma->Init.Mode | hdma->Init.Priority;
/* Write to DMA Channel CR register */
hdma->Instance->CCR = tmp;
/* Initialise the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Initialize the DMA state*/
hdma->State = HAL_DMA_STATE_READY;
/* Allocate lock resource and initialize it */
hdma->Lock = HAL_UNLOCKED;
return HAL_OK;
}
/**
* @brief DeInitialize the DMA peripheral.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
{
/* Check the DMA handle allocation */
if(hdma == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* Disable the selected DMA Channelx */
__HAL_DMA_DISABLE(hdma);
/* Reset DMA Channel control register */
hdma->Instance->CCR = 0U;
/* Reset DMA Channel Number of Data to Transfer register */
hdma->Instance->CNDTR = 0U;
/* Reset DMA Channel peripheral address register */
hdma->Instance->CPAR = 0U;
/* Reset DMA Channel memory address register */
hdma->Instance->CMAR = 0U;
#if defined (DMA2)
/* calculation of the channel index */
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
{
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
}
else
{
/* DMA2 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
hdma->DmaBaseAddress = DMA2;
}
#else
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
#endif /* DMA2 */
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex));
/* Clean all callbacks */
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;
/* Reset the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Reset the DMA state */
hdma->State = HAL_DMA_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
* @brief Input and Output operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the source, destination address and data length and Start DMA transfer
(+) Configure the source, destination address and data length and
Start DMA transfer with interrupt
(+) Abort DMA transfer
(+) Poll for transfer complete
(+) Handle DMA interrupt request
@endverbatim
* @{
*/
/**
* @brief Start the DMA Transfer.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
__HAL_DMA_DISABLE(hdma);
/* Configure the source, destination address and the data length & clear flags*/
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the Peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);
status = HAL_BUSY;
}
return status;
}
/**
* @brief Start the DMA Transfer with interrupt enabled.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
__HAL_DMA_DISABLE(hdma);
/* Configure the source, destination address and the data length & clear flags*/
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the transfer complete interrupt */
/* Enable the transfer Error interrupt */
if(NULL != hdma->XferHalfCpltCallback)
{
/* Enable the Half transfer complete interrupt as well */
__HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
}
else
{
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
__HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_TE));
}
/* Enable the Peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);
/* Remain BUSY */
status = HAL_BUSY;
}
return status;
}
/**
* @brief Abort the DMA Transfer.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
{
HAL_StatusTypeDef status = HAL_OK;
if(hdma->State != HAL_DMA_STATE_BUSY)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
else
{
/* Disable DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
/* Disable the channel */
__HAL_DMA_DISABLE(hdma);
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
}
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @brief Aborts the DMA Transfer in Interrupt mode.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
{
HAL_StatusTypeDef status = HAL_OK;
if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
status = HAL_ERROR;
}
else
{
/* Disable DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
/* Disable the channel */
__HAL_DMA_DISABLE(hdma);
/* Clear all flags */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_GI_FLAG_INDEX(hdma));
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
/* Call User Abort callback */
if(hdma->XferAbortCallback != NULL)
{
hdma->XferAbortCallback(hdma);
}
}
return status;
}
/**
* @brief Polling for transfer complete.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CompleteLevel: Specifies the DMA level complete.
* @param Timeout: Timeout duration.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
{
uint32_t temp;
uint32_t tickstart = 0U;
if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
/* Polling mode not supported in circular mode */
if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC))
{
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Get the level transfer complete flag */
if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
{
/* Transfer Complete flag */
temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma);
}
else
{
/* Half Transfer Complete flag */
temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma);
}
/* Get tick */
tickstart = HAL_GetTick();
while(__HAL_DMA_GET_FLAG(hdma, temp) == RESET)
{
if((__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
/* Update error code */
SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
/* Change the DMA state */
hdma->State= HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
/* Update error code */
SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
}
}
if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
{
/* Clear the transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
/* The selected Channelx EN bit is cleared (DMA is disabled and
all transfers are complete) */
hdma->State = HAL_DMA_STATE_READY;
}
else
{
/* Clear the half transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
}
/* Process unlocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
/**
* @brief Handles DMA interrupt request.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval None
*/
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
{
uint32_t flag_it = hdma->DmaBaseAddress->ISR;
uint32_t source_it = hdma->Instance->CCR;
/* Half Transfer Complete Interrupt management ******************************/
if (((flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_HT) != RESET))
{
/* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the half transfer interrupt */
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
}
/* Clear the half transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
/* DMA peripheral state is not updated in Half Transfer */
/* but in Transfer Complete case */
if(hdma->XferHalfCpltCallback != NULL)
{
/* Half transfer callback */
hdma->XferHalfCpltCallback(hdma);
}
}
/* Transfer Complete Interrupt management ***********************************/
else if (((flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_TC) != RESET))
{
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the transfer complete and error interrupt */
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC);
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
}
/* Clear the transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
/* Process Unlocked */
__HAL_UNLOCK(hdma);
if(hdma->XferCpltCallback != NULL)
{
/* Transfer complete callback */
hdma->XferCpltCallback(hdma);
}
}
/* Transfer Error Interrupt management **************************************/
else if (( RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE)))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Disable ALL DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
/* Update error code */
hdma->ErrorCode = HAL_DMA_ERROR_TE;
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
return;
}
/**
* @brief Register callbacks
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CallbackID: User Callback identifier
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @param pCallback: pointer to private callback function which has pointer to
* a DMA_HandleTypeDef structure as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma))
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = pCallback;
break;
case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = pCallback;
break;
case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = pCallback;
break;
case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = pCallback;
break;
default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @brief UnRegister callbacks
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CallbackID: User Callback identifier
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = NULL;
break;
case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = NULL;
break;
case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = NULL;
break;
case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = NULL;
break;
case HAL_DMA_XFER_ALL_CB_ID:
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;
break;
default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @}
*/
/** @defgroup DMA_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral State and Errors functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Check the DMA state
(+) Get error code
@endverbatim
* @{
*/
/**
* @brief Return the DMA handle state.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL state
*/
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
{
/* Return DMA handle state */
return hdma->State;
}
/**
* @brief Return the DMA error code.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval DMA Error Code
*/
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
{
return hdma->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup DMA_Private_Functions
* @{
*/
/**
* @brief Sets the DMA Transfer parameter.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
/* Configure DMA Channel data length */
hdma->Instance->CNDTR = DataLength;
/* Memory to Peripheral */
if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
{
/* Configure DMA Channel destination address */
hdma->Instance->CPAR = DstAddress;
/* Configure DMA Channel source address */
hdma->Instance->CMAR = SrcAddress;
}
/* Peripheral to Memory */
else
{
/* Configure DMA Channel source address */
hdma->Instance->CPAR = SrcAddress;
/* Configure DMA Channel destination address */
hdma->Instance->CMAR = DstAddress;
}
}
/**
* @}
*/
#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,553 @@
/**
******************************************************************************
* @file stm32f1xx_hal_exti.c
* @author MCD Application Team
* @brief EXTI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Extended Interrupts and events controller (EXTI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### EXTI Peripheral features #####
==============================================================================
[..]
(+) Each Exti line can be configured within this driver.
(+) Exti line can be configured in 3 different modes
(++) Interrupt
(++) Event
(++) Both of them
(+) Configurable Exti lines can be configured with 3 different triggers
(++) Rising
(++) Falling
(++) Both of them
(+) When set in interrupt mode, configurable Exti lines have two different
interrupts pending registers which allow to distinguish which transition
occurs:
(++) Rising edge pending interrupt
(++) Falling
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
be selected through multiplexer.
##### How to use this driver #####
==============================================================================
[..]
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
(++) Choose the interrupt line number by setting "Line" member from
EXTI_ConfigTypeDef structure.
(++) Configure the interrupt and/or event mode using "Mode" member from
EXTI_ConfigTypeDef structure.
(++) For configurable lines, configure rising and/or falling trigger
"Trigger" member from EXTI_ConfigTypeDef structure.
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
member from GPIO_InitTypeDef structure.
(#) Get current Exti configuration of a dedicated line using
HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_ClearConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
(++) Provide exiting handle as first parameter.
(++) Provide which callback will be registered using one value from
EXTI_CallbackIDTypeDef.
(++) Provide callback function pointer.
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_ClearPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rule:
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
* of bounds [0,3] in following API :
* HAL_EXTI_SetConfigLine
* HAL_EXTI_GetConfigLine
* HAL_EXTI_ClearConfigLine
*/
#ifdef HAL_EXTI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_Exported_Functions
* @{
*/
/** @addtogroup EXTI_Exported_Functions_Group1
* @brief Configuration functions
*
@verbatim
===============================================================================
##### Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Set configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on EXTI configuration to be set.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
/* Assign line number to handle */
hexti->Line = pExtiConfig->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Configure triggers for configurable lines */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
/* Configure rising trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
{
EXTI->RTSR |= maskline;
}
else
{
EXTI->RTSR &= ~maskline;
}
/* Configure falling trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
{
EXTI->FTSR |= maskline;
}
else
{
EXTI->FTSR &= ~maskline;
}
/* Configure gpio port selection in case of gpio exti line */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = AFIO->EXTICR[linepos >> 2u];
regval &= ~(AFIO_EXTICR1_EXTI0 << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
regval |= (pExtiConfig->GPIOSel << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
AFIO->EXTICR[linepos >> 2u] = regval;
}
}
/* Configure interrupt mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
{
EXTI->IMR |= maskline;
}
else
{
EXTI->IMR &= ~maskline;
}
/* Configure event mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
{
EXTI->EMR |= maskline;
}
else
{
EXTI->EMR &= ~maskline;
}
return HAL_OK;
}
/**
* @brief Get configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on structure to store Exti configuration.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* Store handle line number to configuration structure */
pExtiConfig->Line = hexti->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Get core mode : interrupt */
/* Check if selected line is enable */
if ((EXTI->IMR & maskline) != 0x00u)
{
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
}
else
{
pExtiConfig->Mode = EXTI_MODE_NONE;
}
/* Get event mode */
/* Check if selected line is enable */
if ((EXTI->EMR & maskline) != 0x00u)
{
pExtiConfig->Mode |= EXTI_MODE_EVENT;
}
/* Get default Trigger and GPIOSel configuration */
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
pExtiConfig->GPIOSel = 0x00u;
/* 2] Get trigger for configurable lines : rising */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
/* Check if configuration of selected line is enable */
if ((EXTI->RTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
}
/* Get falling configuration */
/* Check if configuration of selected line is enable */
if ((EXTI->FTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
}
/* Get Gpio port selection for gpio lines */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = AFIO->EXTICR[linepos >> 2u];
pExtiConfig->GPIOSel = (regval >> (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u))) & AFIO_EXTICR1_EXTI0;
}
}
return HAL_OK;
}
/**
* @brief Clear whole configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Clear interrupt mode */
EXTI->IMR = (EXTI->IMR & ~maskline);
/* 2] Clear event mode */
EXTI->EMR = (EXTI->EMR & ~maskline);
/* 3] Clear triggers in case of configurable lines */
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
{
EXTI->RTSR = (EXTI->RTSR & ~maskline);
EXTI->FTSR = (EXTI->FTSR & ~maskline);
/* Get Gpio port selection for gpio lines */
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = AFIO->EXTICR[linepos >> 2u];
regval &= ~(AFIO_EXTICR1_EXTI0 << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
AFIO->EXTICR[linepos >> 2u] = regval;
}
}
return HAL_OK;
}
/**
* @brief Register callback for a dedicated Exti line.
* @param hexti Exti handle.
* @param CallbackID User callback identifier.
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
* @param pPendingCbfn function pointer to be stored as callback.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void))
{
HAL_StatusTypeDef status = HAL_OK;
switch (CallbackID)
{
case HAL_EXTI_COMMON_CB_ID:
hexti->PendingCallback = pPendingCbfn;
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Store line number as handle private field.
* @param hexti Exti handle.
* @param ExtiLine Exti line number.
* This parameter can be from 0 to @ref EXTI_LINE_NB.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(ExtiLine));
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
else
{
/* Store line number as handle private field */
hexti->Line = ExtiLine;
return HAL_OK;
}
}
/**
* @}
*/
/** @addtogroup EXTI_Exported_Functions_Group2
* @brief EXTI IO functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Handle EXTI interrupt request.
* @param hexti Exti handle.
* @retval none.
*/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t maskline;
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get pending bit */
regval = (EXTI->PR & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
EXTI->PR = maskline;
/* Call callback */
if (hexti->PendingCallback != NULL)
{
hexti->PendingCallback();
}
}
}
/**
* @brief Get interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be checked.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval 1 if interrupt is pending else 0.
*/
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t regval;
uint32_t maskline;
uint32_t linepos;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Prevent unused argument compilation warning */
UNUSED(Edge);
/* Compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* return 1 if bit is set else 0 */
regval = ((EXTI->PR & maskline) >> linepos);
return regval;
}
/**
* @brief Clear interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be clear.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval None.
*/
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Prevent unused argument compilation warning */
UNUSED(Edge);
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Clear Pending bit */
EXTI->PR = maskline;
}
/**
* @brief Generate a software interrupt for a dedicated line.
* @param hexti Exti handle.
* @retval None.
*/
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Generate Software interrupt */
EXTI->SWIER = maskline;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_EXTI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View file

@ -0,0 +1,964 @@
/**
******************************************************************************
* @file stm32f1xx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral State functions
*
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Read / write protections
(+) Prefetch on I-Code
(+) Option Bytes programming
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32F1xx devices.
(#) FLASH Memory I/O Programming functions: this group includes all needed
functions to erase and program the main memory:
(++) Lock and Unlock the FLASH interface
(++) Erase function: Erase page, erase all pages
(++) Program functions: half word, word and doubleword
(#) FLASH Option Bytes Programming functions: this group includes all needed
functions to manage the Option Bytes:
(++) Lock and Unlock the Option Bytes
(++) Set/Reset the write protection
(++) Set the Read protection Level
(++) Program the user Option Bytes
(++) Launch the Option Bytes loader
(++) Erase Option Bytes
(++) Program the data Option Bytes
(++) Get the Write protection.
(++) Get the user option bytes.
(#) Interrupts and flags management functions : this group
includes all needed functions to:
(++) Handle FLASH interrupts
(++) Wait for last FLASH operation according to its status
(++) Get error flag status
[..] In addition to these function, this driver includes a set of macros allowing
to handle the following operations:
(+) Set/Get the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the half cycle access
(+) Enable/Disable the FLASH interrupts
(+) Monitor the FLASH flags status
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FLASH_Private_Constants FLASH Private Constants
* @{
*/
/**
* @}
*/
/* Private macro ---------------------------- ---------------------------------*/
/** @defgroup FLASH_Private_Macros FLASH Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Variables FLASH Private Variables
* @{
*/
/* Variables used for Erase pages under interruption*/
FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASH_Private_Functions FLASH Private Functions
* @{
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
static void FLASH_SetErrorCode(void);
extern void FLASH_PageErase(uint32_t PageAddress);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
@endverbatim
* @{
*/
/**
* @brief Program halfword, word or double word at a specified address
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @note FLASH should be previously erased before new programmation (only exception to this
* is when 0x0000 is programmed)
*
* @param TypeProgram: Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address: Specifies the address to be programmed.
* @param Data: Specifies the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint8_t index = 0;
uint8_t nbiterations = 0;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
#if defined(FLASH_BANK2_END)
}
else
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
}
#endif /* FLASH_BANK2_END */
if(status == HAL_OK)
{
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
/* Program halfword (16-bit) at a specified address. */
nbiterations = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
/* Program word (32-bit = 2*16-bit) at a specified address. */
nbiterations = 2U;
}
else
{
/* Program double word (64-bit = 4*16-bit) at a specified address. */
nbiterations = 4U;
}
for (index = 0U; index < nbiterations; index++)
{
FLASH_Program_HalfWord((Address + (2U*index)), (uint16_t)(Data >> (16U*index)));
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
#if defined(FLASH_BANK2_END)
}
else
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
}
#endif /* FLASH_BANK2_END */
/* In case of error, stop programation procedure */
if (status != HAL_OK)
{
break;
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Program halfword, word or double word at a specified address with interrupt enabled.
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param TypeProgram: Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address: Specifies the address to be programmed.
* @param Data: Specifies the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
#if defined(FLASH_BANK2_END)
/* If procedure already ongoing, reject the next one */
if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
return HAL_ERROR;
}
if(Address <= FLASH_BANK1_END)
{
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1);
}else
{
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
}
#else
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
#endif /* FLASH_BANK2_END */
pFlash.Address = Address;
pFlash.Data = Data;
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
/* Program halfword (16-bit) at a specified address. */
pFlash.DataRemaining = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
/* Program word (32-bit : 2*16-bit) at a specified address. */
pFlash.DataRemaining = 2U;
}
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
/* Program double word (64-bit : 4*16-bit) at a specified address. */
pFlash.DataRemaining = 4U;
}
/* Program halfword (16-bit) at a specified address. */
FLASH_Program_HalfWord(Address, (uint16_t)Data);
return status;
}
/**
* @brief This function handles FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t addresstmp = 0U;
/* Check FLASH operation error flags */
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK1) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK1) || \
(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2)))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
#endif /* FLASH_BANK2_END */
{
/* Return the faulty address */
addresstmp = pFlash.Address;
/* Reset address */
pFlash.Address = 0xFFFFFFFFU;
/* Save the Error code */
FLASH_SetErrorCode();
/* FLASH error interrupt user callback */
HAL_FLASH_OperationErrorCallback(addresstmp);
/* Stop the procedure ongoing */
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
/* Check FLASH End of Operation flag */
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK1))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK1);
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
#endif /* FLASH_BANK2_END */
/* Process can continue only if no error detected */
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
{
/* Nb of pages to erased can be decreased */
pFlash.DataRemaining--;
/* Check if there are still pages to erase */
if(pFlash.DataRemaining != 0U)
{
addresstmp = pFlash.Address;
/*Indicate user which sector has been erased */
HAL_FLASH_EndOfOperationCallback(addresstmp);
/*Increment sector number*/
addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
pFlash.Address = addresstmp;
/* If the erase operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
FLASH_PageErase(addresstmp);
}
else
{
/* No more pages to Erase, user callback can be called. */
/* Reset Sector and stop Erase pages procedure */
pFlash.Address = addresstmp = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(addresstmp);
}
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* Operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
#if defined(FLASH_BANK2_END)
/* Stop Mass Erase procedure if no pending mass erase on other bank */
if (HAL_IS_BIT_CLR(FLASH->CR2, FLASH_CR2_MER))
{
#endif /* FLASH_BANK2_END */
/* MassErase ended. Return the selected bank */
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(0U);
/* Stop Mass Erase procedure*/
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
#if defined(FLASH_BANK2_END)
}
#endif /* FLASH_BANK2_END */
else
{
/* Nb of 16-bit data to program can be decreased */
pFlash.DataRemaining--;
/* Check if there are still 16-bit data to program */
if(pFlash.DataRemaining != 0U)
{
/* Increment address to 16-bit */
pFlash.Address += 2U;
addresstmp = pFlash.Address;
/* Shift to have next 16-bit data */
pFlash.Data = (pFlash.Data >> 16U);
/* Operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
}
else
{
/* Program ended. Return the selected address */
/* FLASH EOP interrupt user callback */
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
}
else
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
}
/* Reset Address and stop Program procedure */
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
}
}
#if defined(FLASH_BANK2_END)
/* Check FLASH End of Operation flag */
if(__HAL_FLASH_GET_FLAG( FLASH_FLAG_EOP_BANK2))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
/* Process can continue only if no error detected */
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
{
/* Nb of pages to erased can be decreased */
pFlash.DataRemaining--;
/* Check if there are still pages to erase*/
if(pFlash.DataRemaining != 0U)
{
/* Indicate user which page address has been erased*/
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
/* Increment page address to next page */
pFlash.Address += FLASH_PAGE_SIZE;
addresstmp = pFlash.Address;
/* Operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
FLASH_PageErase(addresstmp);
}
else
{
/*No more pages to Erase*/
/*Reset Address and stop Erase pages procedure*/
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* Operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_MER))
{
/* MassErase ended. Return the selected bank*/
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(0U);
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
else
{
/* Nb of 16-bit data to program can be decreased */
pFlash.DataRemaining--;
/* Check if there are still 16-bit data to program */
if(pFlash.DataRemaining != 0U)
{
/* Increment address to 16-bit */
pFlash.Address += 2U;
addresstmp = pFlash.Address;
/* Shift to have next 16-bit data */
pFlash.Data = (pFlash.Data >> 16U);
/* Operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
}
else
{
/*Program ended. Return the selected address*/
/* FLASH EOP interrupt user callback */
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address-2U);
}
else
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address-6U);
}
/* Reset Address and stop Program procedure*/
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
}
}
#endif
if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
{
#if defined(FLASH_BANK2_END)
/* Operation is completed, disable the PG, PER and MER Bits for both bank */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
CLEAR_BIT(FLASH->CR2, (FLASH_CR2_PG | FLASH_CR2_PER | FLASH_CR2_MER));
/* Disable End of FLASH Operation and Error source interrupts for both banks */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1 | FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
#else
/* Operation is completed, disable the PG, PER and MER Bits */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
/* Disable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
#endif /* FLASH_BANK2_END */
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback
* @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which has been erased
* (if 0xFFFFFFFF, it means that all the selected pages have been erased)
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback
* @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which returned an error
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* Verify Flash is unlocked */
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
#if defined(FLASH_BANK2_END)
if(READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET)
{
/* Authorize the FLASH BANK2 Registers access */
WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
/* Verify Flash BANK2 is unlocked */
if(READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
#endif /* FLASH_BANK2_END */
return status;
}
/**
* @brief Locks the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
/* Set the LOCK Bit to lock the FLASH Registers access */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
#if defined(FLASH_BANK2_END)
/* Set the LOCK Bit to lock the FLASH BANK2 Registers access */
SET_BIT(FLASH->CR2, FLASH_CR2_LOCK);
#endif /* FLASH_BANK2_END */
return HAL_OK;
}
/**
* @brief Unlock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE))
{
/* Authorizes the Option Byte register programming */
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Lock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
/* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
return HAL_OK;
}
/**
* @brief Launch the option byte loading.
* @note This function will reset automatically the MCU.
* @retval None
*/
void HAL_FLASH_OB_Launch(void)
{
/* Initiates a system reset request to launch the option byte loading */
HAL_NVIC_SystemReset();
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions
* @brief Peripheral errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permit to get in run-time errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode The returned value can be:
* @ref FLASH_Error_Codes
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Program a half-word (16-bit) at a specified address.
* @param Address specify the address to be programmed.
* @param Data specify the data to be programmed.
* @retval None
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Proceed to program the new data */
SET_BIT(FLASH->CR, FLASH_CR_PG);
#if defined(FLASH_BANK2_END)
}
else
{
/* Proceed to program the new data */
SET_BIT(FLASH->CR2, FLASH_CR2_PG);
}
#endif /* FLASH_BANK2_END */
/* Write data in the address */
*(__IO uint16_t*)Address = Data;
}
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
{
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR) ||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* There is no error flag set */
return HAL_OK;
}
#if defined(FLASH_BANK2_END)
/**
* @brief Wait for a FLASH BANK2 operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout)
{
/* Wait for the FLASH BANK2 operation to complete by polling on BUSY flag to be reset.
Even if the FLASH BANK2 operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY_BANK2))
{
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK2))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* If there is an error flag set */
return HAL_OK;
}
#endif /* FLASH_BANK2_END */
/**
* @brief Set the specific FLASH error flag.
* @retval None
*/
static void FLASH_SetErrorCode(void)
{
uint32_t flags = 0U;
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
#endif /* FLASH_BANK2_END */
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
#if defined(FLASH_BANK2_END)
flags |= FLASH_FLAG_WRPERR | FLASH_FLAG_WRPERR_BANK2;
#else
flags |= FLASH_FLAG_WRPERR;
#endif /* FLASH_BANK2_END */
}
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
#endif /* FLASH_BANK2_END */
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
#if defined(FLASH_BANK2_END)
flags |= FLASH_FLAG_PGERR | FLASH_FLAG_PGERR_BANK2;
#else
flags |= FLASH_FLAG_PGERR;
#endif /* FLASH_BANK2_END */
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR))
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_OPTV;
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);
}
/* Clear FLASH error pending bits */
__HAL_FLASH_CLEAR_FLAG(flags);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,586 @@
/**
******************************************************************************
* @file stm32f1xx_hal_gpio.c
* @author MCD Application Team
* @brief GPIO HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### GPIO Peripheral features #####
==============================================================================
[..]
Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
in several modes:
(+) Input mode
(+) Analog mode
(+) Output mode
(+) Alternate function mode
(+) External interrupt/event lines
[..]
During and just after reset, the alternate functions and external interrupt
lines are not active and the I/O ports are configured in input floating mode.
[..]
All GPIO pins have weak internal pull-up and pull-down resistors, which can be
activated or not.
[..]
In Output or Alternate mode, each IO can be configured on open-drain or push-pull
type and the IO speed can be selected depending on the VDD value.
[..]
All ports have external interrupt/event capability. To use external interrupt
lines, the port must be configured in input mode. All available GPIO pins are
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
[..]
The external interrupt/event controller consists of up to 20 edge detectors in connectivity
line devices, or 19 edge detectors in other devices for generating event/interrupt requests.
Each input line can be independently configured to select the type (event or interrupt) and
the corresponding trigger event (rising or falling or both). Each line can also masked
independently. A pending register maintains the status line of the interrupt requests
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the GPIO APB2 clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE().
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.
(++) In case of Output or alternate function mode selection: the speed is
configured through "Speed" member from GPIO_InitTypeDef structure
(++) Analog mode is required when a pin is to be used as ADC channel
or DAC output.
(++) In case of external interrupt/event selection the "Mode" member from
GPIO_InitTypeDef structure select the type (interrupt or event) and
the corresponding trigger event (rising or falling or both).
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
HAL_NVIC_EnableIRQ().
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
(#) To set/reset the level of a pin configured in output mode use
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode (except JTAG
pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general purpose PD0 and PD1, respectively, when the HSE oscillator is off.
The HSE has priority over the GPIO function.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup GPIO GPIO
* @brief GPIO HAL module driver
* @{
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
#define GPIO_MODE 0x00000003u
#define EXTI_MODE 0x10000000u
#define GPIO_MODE_IT 0x00010000u
#define GPIO_MODE_EVT 0x00020000u
#define RISING_EDGE 0x00100000u
#define FALLING_EDGE 0x00200000u
#define GPIO_OUTPUT_TYPE 0x00000010u
#define GPIO_NUMBER 16u
/* Definitions for bit manipulation of CRL and CRH register */
#define GPIO_CR_MODE_INPUT 0x00000000u /*!< 00: Input mode (reset state) */
#define GPIO_CR_CNF_ANALOG 0x00000000u /*!< 00: Analog mode */
#define GPIO_CR_CNF_INPUT_FLOATING 0x00000004u /*!< 01: Floating input (reset state) */
#define GPIO_CR_CNF_INPUT_PU_PD 0x00000008u /*!< 10: Input with pull-up / pull-down */
#define GPIO_CR_CNF_GP_OUTPUT_PP 0x00000000u /*!< 00: General purpose output push-pull */
#define GPIO_CR_CNF_GP_OUTPUT_OD 0x00000004u /*!< 01: General purpose output Open-drain */
#define GPIO_CR_CNF_AF_OUTPUT_PP 0x00000008u /*!< 10: Alternate function output Push-pull */
#define GPIO_CR_CNF_AF_OUTPUT_OD 0x0000000Cu /*!< 11: Alternate function output Open-drain */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
* @{
*/
/** @defgroup GPIO_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to initialize and de-initialize the GPIOs
to be ready for use.
@endverbatim
* @{
*/
/**
* @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init.
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains
* the configuration information for the specified GPIO peripheral.
* @retval None
*/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
{
uint32_t position = 0x00u;
uint32_t ioposition;
uint32_t iocurrent;
uint32_t temp;
uint32_t config = 0x00u;
__IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
uint32_t registeroffset; /* offset used during computation of CNF and MODE bits placement inside CRL or CRH register */
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
/* Configure the port pins */
while (((GPIO_Init->Pin) >> position) != 0x00u)
{
/* Get the IO position */
ioposition = (0x01uL << position);
/* Get the current IO position */
iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;
if (iocurrent == ioposition)
{
/* Check the Alternate function parameters */
assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
/* Based on the required mode, filling config variable with MODEy[1:0] and CNFy[3:2] corresponding bits */
switch (GPIO_Init->Mode)
{
/* If we are configuring the pin in OUTPUT push-pull mode */
case GPIO_MODE_OUTPUT_PP:
/* Check the GPIO speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_PP;
break;
/* If we are configuring the pin in OUTPUT open-drain mode */
case GPIO_MODE_OUTPUT_OD:
/* Check the GPIO speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_OD;
break;
/* If we are configuring the pin in ALTERNATE FUNCTION push-pull mode */
case GPIO_MODE_AF_PP:
/* Check the GPIO speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_PP;
break;
/* If we are configuring the pin in ALTERNATE FUNCTION open-drain mode */
case GPIO_MODE_AF_OD:
/* Check the GPIO speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_OD;
break;
/* If we are configuring the pin in INPUT (also applicable to EVENT and IT mode) */
case GPIO_MODE_INPUT:
case GPIO_MODE_IT_RISING:
case GPIO_MODE_IT_FALLING:
case GPIO_MODE_IT_RISING_FALLING:
case GPIO_MODE_EVT_RISING:
case GPIO_MODE_EVT_FALLING:
case GPIO_MODE_EVT_RISING_FALLING:
/* Check the GPIO pull parameter */
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
if (GPIO_Init->Pull == GPIO_NOPULL)
{
config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_FLOATING;
}
else if (GPIO_Init->Pull == GPIO_PULLUP)
{
config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
/* Set the corresponding ODR bit */
GPIOx->BSRR = ioposition;
}
else /* GPIO_PULLDOWN */
{
config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
/* Reset the corresponding ODR bit */
GPIOx->BRR = ioposition;
}
break;
/* If we are configuring the pin in INPUT analog mode */
case GPIO_MODE_ANALOG:
config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_ANALOG;
break;
/* Parameters are checked with assert_param */
default:
break;
}
/* Check if the current bit belongs to first half or last half of the pin count number
in order to address CRH or CRL register*/
configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2u) : ((position - 8u) << 2u);
/* Apply the new configuration of the pin to the register */
MODIFY_REG((*configregister), ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset), (config << registeroffset));
/*--------------------- EXTI Mode Configuration ------------------------*/
/* Configure the External Interrupt or event for the current IO */
if ((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE)
{
/* Enable AFIO Clock */
__HAL_RCC_AFIO_CLK_ENABLE();
temp = AFIO->EXTICR[position >> 2u];
CLEAR_BIT(temp, (0x0Fu) << (4u * (position & 0x03u)));
SET_BIT(temp, (GPIO_GET_INDEX(GPIOx)) << (4u * (position & 0x03u)));
AFIO->EXTICR[position >> 2u] = temp;
/* Enable or disable the rising trigger */
if ((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE)
{
SET_BIT(EXTI->RTSR, iocurrent);
}
else
{
CLEAR_BIT(EXTI->RTSR, iocurrent);
}
/* Enable or disable the falling trigger */
if ((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE)
{
SET_BIT(EXTI->FTSR, iocurrent);
}
else
{
CLEAR_BIT(EXTI->FTSR, iocurrent);
}
/* Configure the event mask */
if ((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT)
{
SET_BIT(EXTI->EMR, iocurrent);
}
else
{
CLEAR_BIT(EXTI->EMR, iocurrent);
}
/* Configure the interrupt mask */
if ((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT)
{
SET_BIT(EXTI->IMR, iocurrent);
}
else
{
CLEAR_BIT(EXTI->IMR, iocurrent);
}
}
}
position++;
}
}
/**
* @brief De-initializes the GPIOx peripheral registers to their default reset values.
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Pin: specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t tmp;
__IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
uint32_t registeroffset;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Configure the port pins */
while ((GPIO_Pin >> position) != 0u)
{
/* Get current io position */
iocurrent = (GPIO_Pin) & (1uL << position);
if (iocurrent)
{
/*------------------------- EXTI Mode Configuration --------------------*/
/* Clear the External Interrupt or Event for the current IO */
tmp = AFIO->EXTICR[position >> 2u];
tmp &= 0x0FuL << (4u * (position & 0x03u));
if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))))
{
/* Clear EXTI line configuration */
CLEAR_BIT(EXTI->IMR, (uint32_t)iocurrent);
CLEAR_BIT(EXTI->EMR, (uint32_t)iocurrent);
/* Clear Rising Falling edge configuration */
CLEAR_BIT(EXTI->FTSR, (uint32_t)iocurrent);
CLEAR_BIT(EXTI->RTSR, (uint32_t)iocurrent);
tmp = 0x0FuL << (4u * (position & 0x03u));
CLEAR_BIT(AFIO->EXTICR[position >> 2u], tmp);
}
/*------------------------- GPIO Mode Configuration --------------------*/
/* Check if the current bit belongs to first half or last half of the pin count number
in order to address CRH or CRL register */
configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2u) : ((position - 8u) << 2u);
/* CRL/CRH default value is floating input(0x04) shifted to correct position */
MODIFY_REG(*configregister, ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset), GPIO_CRL_CNF0_0 << registeroffset);
/* ODR default value is 0 */
CLEAR_BIT(GPIOx->ODR, iocurrent);
}
position++;
}
}
/**
* @}
*/
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
* @brief GPIO Read and Write
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the GPIOs.
@endverbatim
* @{
*/
/**
* @brief Reads the specified input port pin.
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Pin: specifies the port bit to read.
* This parameter can be GPIO_PIN_x where x can be (0..15).
* @retval The input port pin value.
*/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
GPIO_PinState bitstatus;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
{
bitstatus = GPIO_PIN_SET;
}
else
{
bitstatus = GPIO_PIN_RESET;
}
return bitstatus;
}
/**
* @brief Sets or clears the selected data port bit.
*
* @note This function uses GPIOx_BSRR register to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
*
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Pin: specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @param PinState: specifies the value to be written to the selected bit.
* This parameter can be one of the GPIO_PinState enum values:
* @arg GPIO_PIN_RESET: to clear the port pin
* @arg GPIO_PIN_SET: to set the port pin
* @retval None
*/
void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if (PinState != GPIO_PIN_RESET)
{
GPIOx->BSRR = GPIO_Pin;
}
else
{
GPIOx->BSRR = (uint32_t)GPIO_Pin << 16u;
}
}
/**
* @brief Toggles the specified GPIO pin
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Pin: Specifies the pins to be toggled.
* @retval None
*/
void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
uint32_t odr;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* get current Output Data Register value */
odr = GPIOx->ODR;
/* Set selected pins that were at low level, and reset ones that were high */
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
}
/**
* @brief Locks GPIO Pins configuration registers.
* @note The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence
* has been applied on a port bit, it is no longer possible to modify the value of the port bit until
* the next reset.
* @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
* @param GPIO_Pin: specifies the port bit to be locked.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = GPIO_LCKR_LCKK;
/* Check the parameters */
assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Apply lock key write sequence */
SET_BIT(tmp, GPIO_Pin);
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Read LCKK register. This read is mandatory to complete key lock sequence */
tmp = GPIOx->LCKR;
/* read again in order to confirm lock is active */
if ((uint32_t)(GPIOx->LCKR & GPIO_LCKR_LCKK))
{
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief This function handles EXTI interrupt request.
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
{
/* EXTI line interrupt detected */
if (__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u)
{
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
HAL_GPIO_EXTI_Callback(GPIO_Pin);
}
}
/**
* @brief EXTI line detection callbacks.
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View file

@ -0,0 +1,126 @@
/**
******************************************************************************
* @file stm32f1xx_hal_gpio_ex.c
* @author MCD Application Team
* @brief GPIO Extension HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) extension peripheral.
* + Extended features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### GPIO Peripheral extension features #####
==============================================================================
[..] GPIO module on STM32F1 family, manage also the AFIO register:
(+) Possibility to use the EVENTOUT Cortex feature
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to use EVENTOUT Cortex feature
(#) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
(#) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
(#) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup GPIOEx GPIOEx
* @brief GPIO HAL module driver
* @{
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/** @defgroup GPIOEx_Exported_Functions GPIOEx Exported Functions
* @{
*/
/** @defgroup GPIOEx_Exported_Functions_Group1 Extended features functions
* @brief Extended features functions
*
@verbatim
==============================================================================
##### Extended features functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
(+) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
(+) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
@endverbatim
* @{
*/
/**
* @brief Configures the port and pin on which the EVENTOUT Cortex signal will be connected.
* @param GPIO_PortSource Select the port used to output the Cortex EVENTOUT signal.
* This parameter can be a value of @ref GPIOEx_EVENTOUT_PORT.
* @param GPIO_PinSource Select the pin used to output the Cortex EVENTOUT signal.
* This parameter can be a value of @ref GPIOEx_EVENTOUT_PIN.
* @retval None
*/
void HAL_GPIOEx_ConfigEventout(uint32_t GPIO_PortSource, uint32_t GPIO_PinSource)
{
/* Verify the parameters */
assert_param(IS_AFIO_EVENTOUT_PORT(GPIO_PortSource));
assert_param(IS_AFIO_EVENTOUT_PIN(GPIO_PinSource));
/* Apply the new configuration */
MODIFY_REG(AFIO->EVCR, (AFIO_EVCR_PORT) | (AFIO_EVCR_PIN), (GPIO_PortSource) | (GPIO_PinSource));
}
/**
* @brief Enables the Event Output.
* @retval None
*/
void HAL_GPIOEx_EnableEventout(void)
{
SET_BIT(AFIO->EVCR, AFIO_EVCR_EVOE);
}
/**
* @brief Disables the Event Output.
* @retval None
*/
void HAL_GPIOEx_DisableEventout(void)
{
CLEAR_BIT(AFIO->EVCR, AFIO_EVCR_EVOE);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,262 @@
/**
******************************************************************************
* @file stm32f1xx_hal_iwdg.c
* @author MCD Application Team
* @brief IWDG HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Independent Watchdog (IWDG) peripheral:
* + Initialization and Start functions
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### IWDG Generic features #####
==============================================================================
[..]
(+) The IWDG can be started by either software or hardware (configurable
through option byte).
(+) The IWDG is clocked by the Low-Speed Internal clock (LSI) and thus stays
active even if the main clock fails.
(+) Once the IWDG is started, the LSI is forced ON and both cannot be
disabled. The counter starts counting down from the reset value (0xFFF).
When it reaches the end of count value (0x000) a reset signal is
generated (IWDG reset).
(+) Whenever the key value 0x0000 AAAA is written in the IWDG_KR register,
the IWDG_RLR value is reloaded into the counter and the watchdog reset
is prevented.
(+) The IWDG is implemented in the VDD voltage domain that is still functional
in STOP and STANDBY mode (IWDG reset can wake up the CPU from STANDBY).
IWDGRST flag in RCC_CSR register can be used to inform when an IWDG
reset occurs.
(+) Debug mode: When the microcontroller enters debug mode (core halted),
the IWDG counter either continues to work normally or stops, depending
on DBG_IWDG_STOP configuration bit in DBG module, accessible through
__HAL_DBGMCU_FREEZE_IWDG() and __HAL_DBGMCU_UNFREEZE_IWDG() macros.
[..] Min-max timeout value @32KHz (LSI): ~125us / ~32.7s
The IWDG timeout may vary due to LSI clock frequency dispersion.
STM32F1xx devices provide the capability to measure the LSI clock
frequency (LSI clock is internally connected to TIM5 CH4 input capture).
The measured value can be used to have an IWDG timeout with an
acceptable accuracy.
[..] Default timeout value (necessary for IWDG_SR status register update):
Constant LSI_VALUE is defined based on the nominal LSI clock frequency.
This frequency being subject to variations as mentioned above, the
default timeout value (defined through constant HAL_IWDG_DEFAULT_TIMEOUT
below) may become too short or too long.
In such cases, this default timeout value can be tuned by redefining
the constant LSI_VALUE at user-application level (based, for instance,
on the measured LSI clock frequency as explained above).
##### How to use this driver #####
==============================================================================
[..]
(#) Use IWDG using HAL_IWDG_Init() function to :
(++) Enable instance by writing Start keyword in IWDG_KEY register. LSI
clock is forced ON and IWDG counter starts counting down.
(++) Enable write access to configuration registers:
IWDG_PR and IWDG_RLR.
(++) Configure the IWDG prescaler and counter reload value. This reload
value will be loaded in the IWDG counter each time the watchdog is
reloaded, then the IWDG will start counting down from this value.
(++) Wait for status flags to be reset.
(#) Then the application program must refresh the IWDG counter at regular
intervals during normal operation to prevent an MCU reset, using
HAL_IWDG_Refresh() function.
*** IWDG HAL driver macros list ***
====================================
[..]
Below the list of most used macros in IWDG HAL driver:
(+) __HAL_IWDG_START: Enable the IWDG peripheral
(+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in
the reload register
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_IWDG_MODULE_ENABLED
/** @addtogroup IWDG
* @brief IWDG HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup IWDG_Private_Defines IWDG Private Defines
* @{
*/
/* Status register needs up to 5 LSI clock periods divided by the clock
prescaler to be updated. The number of LSI clock periods is upper-rounded to
6 for the timeout value calculation.
The timeout value is calculated using the highest prescaler (256) and
the LSI_VALUE constant. The value of this constant can be changed by the user
to take into account possible LSI clock period variations.
The timeout value is multiplied by 1000 to be converted in milliseconds.
LSI startup time is also considered here by adding LSI_STARTUP_TIME
converted in milliseconds. */
#define HAL_IWDG_DEFAULT_TIMEOUT (((6UL * 256UL * 1000UL) / LSI_VALUE) + ((LSI_STARTUP_TIME / 1000UL) + 1UL))
#define IWDG_KERNEL_UPDATE_FLAGS (IWDG_SR_RVU | IWDG_SR_PVU)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup IWDG_Exported_Functions
* @{
*/
/** @addtogroup IWDG_Exported_Functions_Group1
* @brief Initialization and Start functions.
*
@verbatim
===============================================================================
##### Initialization and Start functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the IWDG according to the specified parameters in the
IWDG_InitTypeDef of associated handle.
(+) Once initialization is performed in HAL_IWDG_Init function, Watchdog
is reloaded in order to exit function with correct time base.
@endverbatim
* @{
*/
/**
* @brief Initialize the IWDG according to the specified parameters in the
* IWDG_InitTypeDef and start watchdog. Before exiting function,
* watchdog is refreshed in order to have correct time base.
* @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains
* the configuration information for the specified IWDG module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg)
{
uint32_t tickstart;
/* Check the IWDG handle allocation */
if (hiwdg == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance));
assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler));
assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload));
/* Enable IWDG. LSI is turned on automatically */
__HAL_IWDG_START(hiwdg);
/* Enable write access to IWDG_PR and IWDG_RLR registers by writing
0x5555 in KR */
IWDG_ENABLE_WRITE_ACCESS(hiwdg);
/* Write to IWDG registers the Prescaler & Reload values to work with */
hiwdg->Instance->PR = hiwdg->Init.Prescaler;
hiwdg->Instance->RLR = hiwdg->Init.Reload;
/* Check pending flag, if previous update not done, return timeout */
tickstart = HAL_GetTick();
/* Wait for register to be updated */
while ((hiwdg->Instance->SR & IWDG_KERNEL_UPDATE_FLAGS) != 0x00u)
{
if ((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT)
{
if ((hiwdg->Instance->SR & IWDG_KERNEL_UPDATE_FLAGS) != 0x00u)
{
return HAL_TIMEOUT;
}
}
}
/* Reload IWDG counter with value defined in the reload register */
__HAL_IWDG_RELOAD_COUNTER(hiwdg);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup IWDG_Exported_Functions_Group2
* @brief IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Refresh the IWDG.
@endverbatim
* @{
*/
/**
* @brief Refresh the IWDG.
* @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains
* the configuration information for the specified IWDG module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg)
{
/* Reload IWDG counter with value defined in the reload register */
__HAL_IWDG_RELOAD_COUNTER(hiwdg);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_IWDG_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,92 @@
/**
******************************************************************************
* @file stm32f1xx_hal_msp_template.c
* @author MCD Application Team
* @brief HAL BSP module.
* This file template is located in the HAL folder and should be copied
* to the user folder.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup HAL_MSP HAL_MSP
* @brief HAL MSP module.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup HAL_MSP_Exported_Functions HAL MSP Exported Functions
* @{
*/
/**
* @brief Initializes the Global MSP.
* @retval None
*/
void HAL_MspInit(void)
{
}
/**
* @brief DeInitializes the Global MSP.
* @retval None
*/
void HAL_MspDeInit(void)
{
}
/**
* @brief Initializes the PPP MSP.
* @retval None
*/
void HAL_PPP_MspInit(void)
{
}
/**
* @brief DeInitializes the PPP MSP.
* @retval None
*/
void HAL_PPP_MspDeInit(void)
{
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,946 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pccard.c
* @author MCD Application Team
* @brief PCCARD HAL module driver.
* This file provides a generic firmware to drive PCCARD memories mounted
* as external device.
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
This driver is a generic layered driver which contains a set of APIs used to
control PCCARD/compact flash memories. It uses the FSMC layer functions
to interface with PCCARD devices. This driver is used for:
(+) PCCARD/Compact Flash memory configuration sequence using the function
HAL_PCCARD_Init()/HAL_CF_Init() with control and timing parameters for
both common and attribute spaces.
(+) Read PCCARD/Compact Flash memory maker and device IDs using the function
HAL_PCCARD_Read_ID()/HAL_CF_Read_ID(). The read information is stored in
the CompactFlash_ID structure declared by the function caller.
(+) Access PCCARD/Compact Flash memory by read/write operations using the functions
HAL_PCCARD_Read_Sector()/ HAL_PCCARD_Write_Sector() -
HAL_CF_Read_Sector()/HAL_CF_Write_Sector(), to read/write sector.
(+) Perform PCCARD/Compact Flash Reset chip operation using the function
HAL_PCCARD_Reset()/HAL_CF_Reset.
(+) Perform PCCARD/Compact Flash erase sector operation using the function
HAL_PCCARD_Erase_Sector()/HAL_CF_Erase_Sector.
(+) Read the PCCARD/Compact Flash status operation using the function
HAL_PCCARD_ReadStatus()/HAL_CF_ReadStatus().
(+) You can monitor the PCCARD/Compact Flash device HAL state by calling
the function HAL_PCCARD_GetState()/HAL_CF_GetState()
[..]
(@) This driver is a set of generic APIs which handle standard PCCARD/compact flash
operations. If a PCCARD/Compact Flash device contains different operations
and/or implementations, it should be implemented separately.
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_PCCARD_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_PCCARD_RegisterCallback() to register a user callback,
it allows to register following callbacks:
(+) MspInitCallback : PCCARD MspInit.
(+) MspDeInitCallback : PCCARD MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function HAL_PCCARD_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
(+) MspInitCallback : PCCARD MspInit.
(+) MspDeInitCallback : PCCARD MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_PCCARD_Init and if the state is HAL_PCCARD_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_PCCARD_Init
and HAL_PCCARD_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_PCCARD_Init and HAL_PCCARD_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_PCCARD_RegisterCallback before calling HAL_PCCARD_DeInit
or HAL_PCCARD_Init function.
When The compilation define USE_HAL_PCCARD_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
#if defined(FSMC_BANK4)
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_PCCARD_MODULE_ENABLED
/** @defgroup PCCARD PCCARD
* @brief PCCARD HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PCCARD_Private_Defines PCCARD Private Defines
* @{
*/
#define PCCARD_TIMEOUT_READ_ID 0x0000FFFFU
#define PCCARD_TIMEOUT_READ_WRITE_SECTOR 0x0000FFFFU
#define PCCARD_TIMEOUT_ERASE_SECTOR 0x00000400U
#define PCCARD_TIMEOUT_STATUS 0x01000000U
#define PCCARD_STATUS_OK (uint8_t)0x58
#define PCCARD_STATUS_WRITE_OK (uint8_t)0x50
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function ----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PCCARD_Exported_Functions PCCARD Exported Functions
* @{
*/
/** @defgroup PCCARD_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### PCCARD Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides functions allowing to initialize/de-initialize
the PCCARD memory
@endverbatim
* @{
*/
/**
* @brief Perform the PCCARD memory Initialization sequence
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @param ComSpaceTiming Common space timing structure
* @param AttSpaceTiming Attribute space timing structure
* @param IOSpaceTiming IO space timing structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_Init(PCCARD_HandleTypeDef *hpccard, FSMC_NAND_PCC_TimingTypeDef *ComSpaceTiming,
FSMC_NAND_PCC_TimingTypeDef *AttSpaceTiming, FSMC_NAND_PCC_TimingTypeDef *IOSpaceTiming)
{
/* Check the PCCARD controller state */
if (hpccard == NULL)
{
return HAL_ERROR;
}
if (hpccard->State == HAL_PCCARD_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hpccard->Lock = HAL_UNLOCKED;
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
if (hpccard->MspInitCallback == NULL)
{
hpccard->MspInitCallback = HAL_PCCARD_MspInit;
}
hpccard->ItCallback = HAL_PCCARD_ITCallback;
/* Init the low level hardware */
hpccard->MspInitCallback(hpccard);
#else
/* Initialize the low level hardware (MSP) */
HAL_PCCARD_MspInit(hpccard);
#endif
}
/* Initialize the PCCARD state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
/* Initialize PCCARD control Interface */
FSMC_PCCARD_Init(hpccard->Instance, &(hpccard->Init));
/* Init PCCARD common space timing Interface */
FSMC_PCCARD_CommonSpace_Timing_Init(hpccard->Instance, ComSpaceTiming);
/* Init PCCARD attribute space timing Interface */
FSMC_PCCARD_AttributeSpace_Timing_Init(hpccard->Instance, AttSpaceTiming);
/* Init PCCARD IO space timing Interface */
FSMC_PCCARD_IOSpace_Timing_Init(hpccard->Instance, IOSpaceTiming);
/* Enable the PCCARD device */
__FSMC_PCCARD_ENABLE(hpccard->Instance);
/* Update the PCCARD state */
hpccard->State = HAL_PCCARD_STATE_READY;
return HAL_OK;
}
/**
* @brief Perform the PCCARD memory De-initialization sequence
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_DeInit(PCCARD_HandleTypeDef *hpccard)
{
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
if (hpccard->MspDeInitCallback == NULL)
{
hpccard->MspDeInitCallback = HAL_PCCARD_MspDeInit;
}
/* DeInit the low level hardware */
hpccard->MspDeInitCallback(hpccard);
#else
/* De-Initialize the low level hardware (MSP) */
HAL_PCCARD_MspDeInit(hpccard);
#endif
/* Configure the PCCARD registers with their reset values */
FSMC_PCCARD_DeInit(hpccard->Instance);
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief PCCARD MSP Init
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval None
*/
__weak void HAL_PCCARD_MspInit(PCCARD_HandleTypeDef *hpccard)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpccard);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PCCARD_MspInit could be implemented in the user file
*/
}
/**
* @brief PCCARD MSP DeInit
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval None
*/
__weak void HAL_PCCARD_MspDeInit(PCCARD_HandleTypeDef *hpccard)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpccard);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PCCARD_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup PCCARD_Exported_Functions_Group2 Input and Output functions
* @brief Input Output and memory control functions
*
@verbatim
==============================================================================
##### PCCARD Input and Output functions #####
==============================================================================
[..]
This section provides functions allowing to use and control the PCCARD memory
@endverbatim
* @{
*/
/**
* @brief Read Compact Flash's ID.
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @param CompactFlash_ID Compact flash ID structure.
* @param pStatus pointer to compact flash status
* @retval HAL status
*
*/
HAL_StatusTypeDef HAL_PCCARD_Read_ID(PCCARD_HandleTypeDef *hpccard, uint8_t CompactFlash_ID[], uint8_t *pStatus)
{
uint32_t timeout = PCCARD_TIMEOUT_READ_ID, index = 0U;
uint8_t status = 0;
/* Process Locked */
__HAL_LOCK(hpccard);
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
/* Initialize the PCCARD status */
*pStatus = PCCARD_READY;
/* Send the Identify Command */
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = (uint16_t)0xECEC;
/* Read PCCARD IDs and timeout treatment */
do
{
/* Read the PCCARD status */
status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
} while ((status != PCCARD_STATUS_OK) && timeout);
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
else
{
/* Read PCCARD ID bytes */
for (index = 0U; index < 16U; index++)
{
CompactFlash_ID[index] = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_DATA);
}
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief Read sector from PCCARD memory
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @param pBuffer pointer to destination read buffer
* @param SectorAddress Sector address to read
* @param pStatus pointer to PCCARD status
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_Read_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress,
uint8_t *pStatus)
{
uint32_t timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR, index = 0U;
uint8_t status = 0;
/* Process Locked */
__HAL_LOCK(hpccard);
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
/* Initialize PCCARD status */
*pStatus = PCCARD_READY;
/* Set the parameters to write a sector */
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = (uint16_t)0x0000;
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = ((uint16_t)0x0100) | ((uint16_t)SectorAddress);
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = (uint16_t)0xE4A0;
do
{
/* wait till the Status = 0x80 */
status = *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
} while ((status == 0x80U) && timeout);
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR;
do
{
/* wait till the Status = PCCARD_STATUS_OK */
status = *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
} while ((status != PCCARD_STATUS_OK) && timeout);
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
/* Read bytes */
for (; index < PCCARD_SECTOR_SIZE; index++)
{
*(uint16_t *)pBuffer++ = *(uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR);
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief Write sector to PCCARD memory
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @param pBuffer pointer to source write buffer
* @param SectorAddress Sector address to write
* @param pStatus pointer to PCCARD status
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_Write_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress,
uint8_t *pStatus)
{
uint32_t timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR, index = 0U;
uint8_t status = 0;
/* Process Locked */
__HAL_LOCK(hpccard);
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
/* Initialize PCCARD status */
*pStatus = PCCARD_READY;
/* Set the parameters to write a sector */
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = (uint16_t)0x0000;
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = ((uint16_t)0x0100) | ((uint16_t)SectorAddress);
*(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = (uint16_t)0x30A0;
do
{
/* Wait till the Status = PCCARD_STATUS_OK */
status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
} while ((status != PCCARD_STATUS_OK) && timeout);
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
/* Write bytes */
for (; index < PCCARD_SECTOR_SIZE; index++)
{
*(uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR) = *(uint16_t *)pBuffer++;
}
do
{
/* Wait till the Status = PCCARD_STATUS_WRITE_OK */
status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
} while ((status != PCCARD_STATUS_WRITE_OK) && timeout);
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief Erase sector from PCCARD memory
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @param SectorAddress Sector address to erase
* @param pStatus pointer to PCCARD status
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_Erase_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t SectorAddress, uint8_t *pStatus)
{
uint32_t timeout = PCCARD_TIMEOUT_ERASE_SECTOR;
uint8_t status = 0;
/* Process Locked */
__HAL_LOCK(hpccard);
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_BUSY;
}
/* Update the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
/* Initialize PCCARD status */
*pStatus = PCCARD_READY;
/* Set the parameters to write a sector */
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_LOW) = 0x00;
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = 0x00;
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_NUMBER) = SectorAddress;
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = 0x01;
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CARD_HEAD) = 0xA0;
*(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = ATA_ERASE_SECTOR_CMD;
/* wait till the PCCARD is ready */
status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
while ((status != PCCARD_STATUS_WRITE_OK) && timeout)
{
status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
}
if (timeout == 0U)
{
*pStatus = PCCARD_TIMEOUT_ERROR;
}
/* Check the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief Reset the PCCARD memory
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCCARD_Reset(PCCARD_HandleTypeDef *hpccard)
{
/* Process Locked */
__HAL_LOCK(hpccard);
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_BUSY;
}
/* Provide a SW reset and Read and verify the:
- PCCard Configuration Option Register at address 0x98000200 --> 0x80
- Card Configuration and Status Register at address 0x98000202 --> 0x00
- Pin Replacement Register at address 0x98000204 --> 0x0C
- Socket and Copy Register at address 0x98000206 --> 0x00
*/
/* Check the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_BUSY;
*(__IO uint8_t *)(PCCARD_ATTRIBUTE_SPACE_ADDRESS | ATA_CARD_CONFIGURATION) = 0x01;
/* Check the PCCARD controller state */
hpccard->State = HAL_PCCARD_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hpccard);
return HAL_OK;
}
/**
* @brief This function handles PCCARD device interrupt request.
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval HAL status
*/
void HAL_PCCARD_IRQHandler(PCCARD_HandleTypeDef *hpccard)
{
/* Check PCCARD interrupt Rising edge flag */
if (__FSMC_PCCARD_GET_FLAG(hpccard->Instance, FSMC_FLAG_RISING_EDGE))
{
/* PCCARD interrupt callback*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
hpccard->ItCallback(hpccard);
#else
HAL_PCCARD_ITCallback(hpccard);
#endif
/* Clear PCCARD interrupt Rising edge pending bit */
__FSMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FSMC_FLAG_RISING_EDGE);
}
/* Check PCCARD interrupt Level flag */
if (__FSMC_PCCARD_GET_FLAG(hpccard->Instance, FSMC_FLAG_LEVEL))
{
/* PCCARD interrupt callback*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
hpccard->ItCallback(hpccard);
#else
HAL_PCCARD_ITCallback(hpccard);
#endif
/* Clear PCCARD interrupt Level pending bit */
__FSMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FSMC_FLAG_LEVEL);
}
/* Check PCCARD interrupt Falling edge flag */
if (__FSMC_PCCARD_GET_FLAG(hpccard->Instance, FSMC_FLAG_FALLING_EDGE))
{
/* PCCARD interrupt callback*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
hpccard->ItCallback(hpccard);
#else
HAL_PCCARD_ITCallback(hpccard);
#endif
/* Clear PCCARD interrupt Falling edge pending bit */
__FSMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FSMC_FLAG_FALLING_EDGE);
}
/* Check PCCARD interrupt FIFO empty flag */
if (__FSMC_PCCARD_GET_FLAG(hpccard->Instance, FSMC_FLAG_FEMPT))
{
/* PCCARD interrupt callback*/
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
hpccard->ItCallback(hpccard);
#else
HAL_PCCARD_ITCallback(hpccard);
#endif
/* Clear PCCARD interrupt FIFO empty pending bit */
__FSMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FSMC_FLAG_FEMPT);
}
}
/**
* @brief PCCARD interrupt feature callback
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval None
*/
__weak void HAL_PCCARD_ITCallback(PCCARD_HandleTypeDef *hpccard)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpccard);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PCCARD_ITCallback could be implemented in the user file
*/
}
#if (USE_HAL_PCCARD_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User PCCARD Callback
* To be used instead of the weak (surcharged) predefined callback
* @param hpccard : PCCARD handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_PCCARD_MSP_INIT_CB_ID PCCARD MspInit callback ID
* @arg @ref HAL_PCCARD_MSP_DEINIT_CB_ID PCCARD MspDeInit callback ID
* @arg @ref HAL_PCCARD_IT_CB_ID PCCARD IT callback ID
* @param pCallback : pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_PCCARD_RegisterCallback(PCCARD_HandleTypeDef *hpccard, HAL_PCCARD_CallbackIDTypeDef CallbackId,
pPCCARD_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hpccard);
if (hpccard->State == HAL_PCCARD_STATE_READY)
{
switch (CallbackId)
{
case HAL_PCCARD_MSP_INIT_CB_ID :
hpccard->MspInitCallback = pCallback;
break;
case HAL_PCCARD_MSP_DEINIT_CB_ID :
hpccard->MspDeInitCallback = pCallback;
break;
case HAL_PCCARD_IT_CB_ID :
hpccard->ItCallback = pCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hpccard->State == HAL_PCCARD_STATE_RESET)
{
switch (CallbackId)
{
case HAL_PCCARD_MSP_INIT_CB_ID :
hpccard->MspInitCallback = pCallback;
break;
case HAL_PCCARD_MSP_DEINIT_CB_ID :
hpccard->MspDeInitCallback = pCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hpccard);
return status;
}
/**
* @brief Unregister a User PCCARD Callback
* PCCARD Callback is redirected to the weak (surcharged) predefined callback
* @param hpccard : PCCARD handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_PCCARD_MSP_INIT_CB_ID PCCARD MspInit callback ID
* @arg @ref HAL_PCCARD_MSP_DEINIT_CB_ID PCCARD MspDeInit callback ID
* @arg @ref HAL_PCCARD_IT_CB_ID PCCARD IT callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_PCCARD_UnRegisterCallback(PCCARD_HandleTypeDef *hpccard, HAL_PCCARD_CallbackIDTypeDef CallbackId)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hpccard);
if (hpccard->State == HAL_PCCARD_STATE_READY)
{
switch (CallbackId)
{
case HAL_PCCARD_MSP_INIT_CB_ID :
hpccard->MspInitCallback = HAL_PCCARD_MspInit;
break;
case HAL_PCCARD_MSP_DEINIT_CB_ID :
hpccard->MspDeInitCallback = HAL_PCCARD_MspDeInit;
break;
case HAL_PCCARD_IT_CB_ID :
hpccard->ItCallback = HAL_PCCARD_ITCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hpccard->State == HAL_PCCARD_STATE_RESET)
{
switch (CallbackId)
{
case HAL_PCCARD_MSP_INIT_CB_ID :
hpccard->MspInitCallback = HAL_PCCARD_MspInit;
break;
case HAL_PCCARD_MSP_DEINIT_CB_ID :
hpccard->MspDeInitCallback = HAL_PCCARD_MspDeInit;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hpccard);
return status;
}
#endif
/**
* @}
*/
/** @defgroup PCCARD_Exported_Functions_Group3 State functions
* @brief Peripheral State functions
*
@verbatim
==============================================================================
##### PCCARD State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the PCCARD controller
and the data flow.
@endverbatim
* @{
*/
/**
* @brief return the PCCARD controller state
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval HAL state
*/
HAL_PCCARD_StateTypeDef HAL_PCCARD_GetState(PCCARD_HandleTypeDef *hpccard)
{
return hpccard->State;
}
/**
* @brief Get the compact flash memory status
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval New status of the PCCARD operation. This parameter can be:
* - CompactFlash_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - CompactFlash_READY: when memory is ready for the next operation
*/
HAL_PCCARD_StatusTypeDef HAL_PCCARD_GetStatus(PCCARD_HandleTypeDef *hpccard)
{
uint32_t timeout = PCCARD_TIMEOUT_STATUS, status_pccard = 0U;
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_PCCARD_STATUS_ONGOING;
}
status_pccard = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
while ((status_pccard == PCCARD_BUSY) && timeout)
{
status_pccard = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
timeout--;
}
if (timeout == 0U)
{
status_pccard = PCCARD_TIMEOUT_ERROR;
}
/* Return the operation status */
return (HAL_PCCARD_StatusTypeDef) status_pccard;
}
/**
* @brief Reads the Compact Flash memory status using the Read status command
* @param hpccard pointer to a PCCARD_HandleTypeDef structure that contains
* the configuration information for PCCARD module.
* @retval The status of the Compact Flash memory. This parameter can be:
* - CompactFlash_BUSY: when memory is busy
* - CompactFlash_READY: when memory is ready for the next operation
* - CompactFlash_ERROR: when the previous operation generates error
*/
HAL_PCCARD_StatusTypeDef HAL_PCCARD_ReadStatus(PCCARD_HandleTypeDef *hpccard)
{
uint8_t data = 0U, status_pccard = PCCARD_BUSY;
/* Check the PCCARD controller state */
if (hpccard->State == HAL_PCCARD_STATE_BUSY)
{
return HAL_PCCARD_STATUS_ONGOING;
}
/* Read status operation */
data = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE);
if ((data & PCCARD_TIMEOUT_ERROR) == PCCARD_TIMEOUT_ERROR)
{
status_pccard = PCCARD_TIMEOUT_ERROR;
}
else if ((data & PCCARD_READY) == PCCARD_READY)
{
status_pccard = PCCARD_READY;
}
return (HAL_PCCARD_StatusTypeDef) status_pccard;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PCCARD_MODULE_ENABLED */
/**
* @}
*/
#endif /* FSMC_BANK4 */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,243 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pcd_ex.c
* @author MCD Application Team
* @brief PCD Extended HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the USB Peripheral Controller:
* + Extended features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup PCDEx PCDEx
* @brief PCD Extended HAL module driver
* @{
*/
#ifdef HAL_PCD_MODULE_ENABLED
#if defined (USB) || defined (USB_OTG_FS)
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions
* @{
*/
/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions
* @brief PCDEx control functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Update FIFO configuration
@endverbatim
* @{
*/
#if defined (USB_OTG_FS)
/**
* @brief Set Tx FIFO
* @param hpcd PCD handle
* @param fifo The number of Tx fifo
* @param size Fifo size
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_SetTxFiFo(PCD_HandleTypeDef *hpcd, uint8_t fifo, uint16_t size)
{
uint8_t i;
uint32_t Tx_Offset;
/* TXn min size = 16 words. (n : Transmit FIFO index)
When a TxFIFO is not used, the Configuration should be as follows:
case 1 : n > m and Txn is not used (n,m : Transmit FIFO indexes)
--> Txm can use the space allocated for Txn.
case2 : n < m and Txn is not used (n,m : Transmit FIFO indexes)
--> Txn should be configured with the minimum space of 16 words
The FIFO is used optimally when used TxFIFOs are allocated in the top
of the FIFO.Ex: use EP1 and EP2 as IN instead of EP1 and EP3 as IN ones.
When DMA is used 3n * FIFO locations should be reserved for internal DMA registers */
Tx_Offset = hpcd->Instance->GRXFSIZ;
if (fifo == 0U)
{
hpcd->Instance->DIEPTXF0_HNPTXFSIZ = ((uint32_t)size << 16) | Tx_Offset;
}
else
{
Tx_Offset += (hpcd->Instance->DIEPTXF0_HNPTXFSIZ) >> 16;
for (i = 0U; i < (fifo - 1U); i++)
{
Tx_Offset += (hpcd->Instance->DIEPTXF[i] >> 16);
}
/* Multiply Tx_Size by 2 to get higher performance */
hpcd->Instance->DIEPTXF[fifo - 1U] = ((uint32_t)size << 16) | Tx_Offset;
}
return HAL_OK;
}
/**
* @brief Set Rx FIFO
* @param hpcd PCD handle
* @param size Size of Rx fifo
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_SetRxFiFo(PCD_HandleTypeDef *hpcd, uint16_t size)
{
hpcd->Instance->GRXFSIZ = size;
return HAL_OK;
}
#endif /* defined (USB_OTG_FS) */
#if defined (USB)
/**
* @brief Configure PMA for EP
* @param hpcd Device instance
* @param ep_addr endpoint address
* @param ep_kind endpoint Kind
* USB_SNG_BUF: Single Buffer used
* USB_DBL_BUF: Double Buffer used
* @param pmaadress: EP address in The PMA: In case of single buffer endpoint
* this parameter is 16-bit value providing the address
* in PMA allocated to endpoint.
* In case of double buffer endpoint this parameter
* is a 32-bit value providing the endpoint buffer 0 address
* in the LSB part of 32-bit value and endpoint buffer 1 address
* in the MSB part of 32-bit value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, uint16_t ep_addr,
uint16_t ep_kind, uint32_t pmaadress)
{
PCD_EPTypeDef *ep;
/* initialize ep structure*/
if ((0x80U & ep_addr) == 0x80U)
{
ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK];
}
else
{
ep = &hpcd->OUT_ep[ep_addr];
}
/* Here we check if the endpoint is single or double Buffer*/
if (ep_kind == PCD_SNG_BUF)
{
/* Single Buffer */
ep->doublebuffer = 0U;
/* Configure the PMA */
ep->pmaadress = (uint16_t)pmaadress;
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
else /* USB_DBL_BUF */
{
/* Double Buffer Endpoint */
ep->doublebuffer = 1U;
/* Configure the PMA */
ep->pmaaddr0 = (uint16_t)(pmaadress & 0xFFFFU);
ep->pmaaddr1 = (uint16_t)((pmaadress & 0xFFFF0000U) >> 16);
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
return HAL_OK;
}
/**
* @brief Software Device Connection,
* this function is not required by USB OTG FS peripheral, it is used
* only by USB Device FS peripheral.
* @param hpcd PCD handle
* @param state connection state (0 : disconnected / 1: connected)
* @retval None
*/
__weak void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(state);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PCDEx_SetConnectionState could be implemented in the user file
*/
}
#endif /* defined (USB) */
/**
* @brief Send LPM message to user layer callback.
* @param hpcd PCD handle
* @param msg LPM message
* @retval HAL status
*/
__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(msg);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PCDEx_LPM_Callback could be implemented in the user file
*/
}
/**
* @brief Send BatteryCharging message to user layer callback.
* @param hpcd PCD handle
* @param msg LPM message
* @retval HAL status
*/
__weak void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(msg);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PCDEx_BCD_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) || defined (USB_OTG_FS) */
#endif /* HAL_PCD_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View file

@ -0,0 +1,618 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization/de-initialization functions
* + Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup PWR PWR
* @brief PWR HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Private_Constants PWR Private Constants
* @{
*/
/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
* @{
*/
#define PVD_MODE_IT 0x00010000U
#define PVD_MODE_EVT 0x00020000U
#define PVD_RISING_EDGE 0x00000001U
#define PVD_FALLING_EDGE 0x00000002U
/**
* @}
*/
/** @defgroup PWR_register_alias_address PWR Register alias address
* @{
*/
/* ------------- PWR registers bit address in the alias region ---------------*/
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
#define PWR_CR_OFFSET 0x00U
#define PWR_CSR_OFFSET 0x04U
#define PWR_CR_OFFSET_BB (PWR_OFFSET + PWR_CR_OFFSET)
#define PWR_CSR_OFFSET_BB (PWR_OFFSET + PWR_CSR_OFFSET)
/**
* @}
*/
/** @defgroup PWR_CR_register_alias PWR CR Register alias address
* @{
*/
/* --- CR Register ---*/
/* Alias word address of LPSDSR bit */
#define LPSDSR_BIT_NUMBER PWR_CR_LPDS_Pos
#define CR_LPSDSR_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (LPSDSR_BIT_NUMBER * 4U)))
/* Alias word address of DBP bit */
#define DBP_BIT_NUMBER PWR_CR_DBP_Pos
#define CR_DBP_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (DBP_BIT_NUMBER * 4U)))
/* Alias word address of PVDE bit */
#define PVDE_BIT_NUMBER PWR_CR_PVDE_Pos
#define CR_PVDE_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (PVDE_BIT_NUMBER * 4U)))
/**
* @}
*/
/** @defgroup PWR_CSR_register_alias PWR CSR Register alias address
* @{
*/
/* --- CSR Register ---*/
/* Alias word address of EWUP1 bit */
#define CSR_EWUP_BB(VAL) ((uint32_t)(PERIPH_BB_BASE + (PWR_CSR_OFFSET_BB * 32U) + (POSITION_VAL(VAL) * 4U)))
/**
* @}
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup PWR_Private_Functions PWR Private Functions
* brief WFE cortex command overloaded for HAL_PWR_EnterSTOPMode usage only (see Workaround section)
* @{
*/
static void PWR_OverloadWfe(void);
/* Private functions ---------------------------------------------------------*/
__NOINLINE
static void PWR_OverloadWfe(void)
{
__asm volatile( "wfe" );
__asm volatile( "nop" );
}
/**
* @}
*/
/** @defgroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
After reset, the backup domain (RTC registers, RTC backup data
registers) is protected against possible unwanted
write accesses.
To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
__HAL_RCC_PWR_CLK_ENABLE() macro.
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the PWR peripheral registers to their default reset values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
__HAL_RCC_PWR_FORCE_RESET();
__HAL_RCC_PWR_RELEASE_RESET();
}
/**
* @brief Enables access to the backup domain (RTC registers, RTC
* backup data registers ).
* @note If the HSE divided by 128 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
/* Enable access to RTC and backup registers */
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables access to the backup domain (RTC registers, RTC
* backup data registers).
* @note If the HSE divided by 128 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
/* Disable access to RTC and backup registers */
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
}
/**
* @}
*/
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
*** PVD configuration ***
=========================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a
threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled. This is done through
__HAL_PVD_EXTI_ENABLE_IT() macro.
(+) The PVD is stopped in Standby mode.
*** WakeUp pin configuration ***
================================
[..]
(+) WakeUp pin is used to wake up the system from Standby mode. This pin is
forced in input pull-down configuration and is active on rising edges.
(+) There is one WakeUp pin:
WakeUp Pin 1 on PA.00.
[..]
*** Low Power modes configuration ***
=====================================
[..]
The device features 3 low-power modes:
(+) Sleep mode: CPU clock off, all peripherals including Cortex-M3 core peripherals like
NVIC, SysTick, etc. are kept running
(+) Stop mode: All clocks are stopped
(+) Standby mode: 1.8V domain powered off
*** Sleep mode ***
==================
[..]
(+) Entry:
The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
functions with
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
(+) Exit:
(++) WFI entry mode, Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
(++) WFE entry mode, Any wakeup event can wake up the device from Sleep mode.
(+++) Any peripheral interrupt w/o NVIC configuration & SEVONPEND bit set in the Cortex (HAL_PWR_EnableSEVOnPend)
(+++) Any EXTI Line (Internal or External) configured in Event mode
*** Stop mode ***
=================
[..]
The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
oscillators are disabled. SRAM and register contents are preserved.
In Stop mode, all I/O pins keep the same state as in Run mode.
(+) Entry:
The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_REGULATOR_VALUE, PWR_SLEEPENTRY_WFx )
function with:
(++) PWR_REGULATOR_VALUE= PWR_MAINREGULATOR_ON: Main regulator ON.
(++) PWR_REGULATOR_VALUE= PWR_LOWPOWERREGULATOR_ON: Low Power regulator ON.
(++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction
(+) Exit:
(++) WFI entry mode, Any EXTI Line (Internal or External) configured in Interrupt mode with NVIC configured
(++) WFE entry mode, Any EXTI Line (Internal or External) configured in Event mode.
*** Standby mode ***
====================
[..]
The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
switched off. SRAM and register contents are lost except for registers in the Backup domain
and Standby circuitry
(+) Entry:
(++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm event rising edge, external Reset in
NRSTpin, IWDG Reset
*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]
(+) The MCU can be woken up from low-power mode by an RTC Alarm event,
without depending on an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop and Standby modes
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
*** PWR Workarounds linked to Silicon Limitation ***
====================================================
[..]
Below the list of all silicon limitations known on STM32F1xx prouct.
(#)Workarounds Implemented inside PWR HAL Driver
(##)Debugging Stop mode with WFE entry - overloaded the WFE by an internal function
@endverbatim
* @{
*/
/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration
* information for the PVD.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage threshold corresponding to each
* detection level.
* @retval None
*/
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
{
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
/* Set PLS[7:5] bits according to PVDLevel value */
MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVD_EXTI_DISABLE_EVENT();
__HAL_PWR_PVD_EXTI_DISABLE_IT();
__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
{
__HAL_PWR_PVD_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
{
__HAL_PWR_PVD_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
}
}
/**
* @brief Enables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_EnablePVD(void)
{
/* Enable the power voltage detector */
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_DisablePVD(void)
{
/* Disable the power voltage detector */
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
}
/**
* @brief Enables the WakeUp PINx functionality.
* @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Enable the EWUPx pin */
*(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
}
/**
* @brief Disables the WakeUp PINx functionality.
* @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Disable the EWUPx pin */
*(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
}
/**
* @brief Enters Sleep mode.
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
* @param Regulator: Regulator state as no effect in SLEEP mode - allows to support portability from legacy software
* @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
* When WFI entry is used, tick interrupt have to be disabled if not desired as
* the interrupt wake up source.
* This parameter can be one of the following values:
* @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
/* No check on Regulator because parameter not used in SLEEP mode */
/* Prevent unused argument(s) compilation warning */
UNUSED(Regulator);
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select SLEEP mode entry -------------------------------------------------*/
if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}
/**
* @brief Enters Stop mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by using an interrupt or a wakeup event,
* HSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param Regulator: Specifies the regulator state in Stop mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
* @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
* @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
* @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Clear PDDS bit in PWR register to specify entering in STOP mode when CPU enter in Deepsleep */
CLEAR_BIT(PWR->CR, PWR_CR_PDDS);
/* Select the voltage regulator mode by setting LPDS bit in PWR register according to Regulator parameter value */
MODIFY_REG(PWR->CR, PWR_CR_LPDS, Regulator);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
PWR_OverloadWfe(); /* WFE redefine locally */
PWR_OverloadWfe(); /* WFE redefine locally */
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enters Standby mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* - Reset pad (still available)
* - TAMPER pin if configured for tamper or calibration out.
* - WKUP pin (PA0) if enabled.
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Select Standby mode */
SET_BIT(PWR->CR, PWR_CR_PDDS);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* Setting this bit is useful when the processor is expected to run only on
* interruptions handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
* @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enables CORTEX M3 SEVONPEND bit.
* @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Disables CORTEX M3 SEVONPEND bit.
* @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief This function handles the PWR PVD interrupt request.
* @note This API should be called under the PVD_IRQHandler().
* @retval None
*/
void HAL_PWR_PVD_IRQHandler(void)
{
/* Check PWR exti flag */
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PWR Exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
}
/**
* @brief PWR PVD interrupt callback
* @retval None
*/
__weak void HAL_PWR_PVDCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PWR_PVDCallback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

Some files were not shown because too many files have changed in this diff Show more