Add a new JIT compiler for CPU code (#693)

* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
This commit is contained in:
gdkchan 2019-08-08 15:56:22 -03:00 committed by emmauss
parent 1ba58e9942
commit a731ab3a2a
310 changed files with 37389 additions and 2086 deletions

View file

@ -0,0 +1,17 @@
using ARMeilleure.CodeGen.Unwinding;
namespace ARMeilleure.CodeGen
{
struct CompiledFunction
{
public byte[] Code { get; }
public UnwindInfo UnwindInfo { get; }
public CompiledFunction(byte[] code, UnwindInfo unwindInfo)
{
Code = code;
UnwindInfo = unwindInfo;
}
}
}

View file

@ -0,0 +1,258 @@
using ARMeilleure.IntermediateRepresentation;
using System;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.CodeGen.Optimizations
{
static class ConstantFolding
{
public static void RunPass(Operation operation)
{
if (operation.Destination == null || operation.SourcesCount == 0)
{
return;
}
if (!AreAllSourcesConstant(operation))
{
return;
}
OperandType type = operation.Destination.Type;
switch (operation.Instruction)
{
case Instruction.Add:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x + y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x + y);
}
break;
case Instruction.BitwiseAnd:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x & y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x & y);
}
break;
case Instruction.BitwiseExclusiveOr:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x ^ y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x ^ y);
}
break;
case Instruction.BitwiseNot:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => ~x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => ~x);
}
break;
case Instruction.BitwiseOr:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x | y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x | y);
}
break;
case Instruction.Copy:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => x);
}
break;
case Instruction.Divide:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => y != 0 ? x / y : 0);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => y != 0 ? x / y : 0);
}
break;
case Instruction.DivideUI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => y != 0 ? (int)((uint)x / (uint)y) : 0);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => y != 0 ? (long)((ulong)x / (ulong)y) : 0);
}
break;
case Instruction.Multiply:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x * y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x * y);
}
break;
case Instruction.Negate:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => -x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => -x);
}
break;
case Instruction.ShiftLeft:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x << y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x << (int)y);
}
break;
case Instruction.ShiftRightSI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x >> y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x >> (int)y);
}
break;
case Instruction.ShiftRightUI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => (int)((uint)x >> y));
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => (long)((ulong)x >> (int)y));
}
break;
case Instruction.SignExtend16:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => (short)x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (short)x);
}
break;
case Instruction.SignExtend32:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (int)x);
}
break;
case Instruction.SignExtend8:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => (sbyte)x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (sbyte)x);
}
break;
case Instruction.Subtract:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x - y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x - y);
}
break;
}
}
private static bool AreAllSourcesConstant(Operation operation)
{
for (int index = 0; index < operation.SourcesCount; index++)
{
if (operation.GetSource(index).Kind != OperandKind.Constant)
{
return false;
}
}
return true;
}
private static void EvaluateUnaryI32(Operation operation, Func<int, int> op)
{
int x = operation.GetSource(0).AsInt32();
operation.TurnIntoCopy(Const(op(x)));
}
private static void EvaluateUnaryI64(Operation operation, Func<long, long> op)
{
long x = operation.GetSource(0).AsInt64();
operation.TurnIntoCopy(Const(op(x)));
}
private static void EvaluateBinaryI32(Operation operation, Func<int, int, int> op)
{
int x = operation.GetSource(0).AsInt32();
int y = operation.GetSource(1).AsInt32();
operation.TurnIntoCopy(Const(op(x, y)));
}
private static void EvaluateBinaryI64(Operation operation, Func<long, long, long> op)
{
long x = operation.GetSource(0).AsInt64();
long y = operation.GetSource(1).AsInt64();
operation.TurnIntoCopy(Const(op(x, y)));
}
}
}

View file

@ -0,0 +1,126 @@
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace ARMeilleure.CodeGen.Optimizations
{
static class Optimizer
{
public static void RunPass(ControlFlowGraph cfg)
{
bool modified;
do
{
modified = false;
foreach (BasicBlock block in cfg.Blocks)
{
LinkedListNode<Node> node = block.Operations.First;
while (node != null)
{
LinkedListNode<Node> nextNode = node.Next;
bool isUnused = IsUnused(node.Value);
if (!(node.Value is Operation operation) || isUnused)
{
if (isUnused)
{
RemoveNode(block, node);
modified = true;
}
node = nextNode;
continue;
}
ConstantFolding.RunPass(operation);
Simplification.RunPass(operation);
if (DestIsLocalVar(operation) && IsPropagableCopy(operation))
{
PropagateCopy(operation);
RemoveNode(block, node);
modified = true;
}
node = nextNode;
}
}
}
while (modified);
}
private static void PropagateCopy(Operation copyOp)
{
// Propagate copy source operand to all uses of the destination operand.
Operand dest = copyOp.Destination;
Operand source = copyOp.GetSource(0);
Node[] uses = dest.Uses.ToArray();
foreach (Node use in uses)
{
for (int index = 0; index < use.SourcesCount; index++)
{
if (use.GetSource(index) == dest)
{
use.SetSource(index, source);
}
}
}
}
private static void RemoveNode(BasicBlock block, LinkedListNode<Node> llNode)
{
// Remove a node from the nodes list, and also remove itself
// from all the use lists on the operands that this node uses.
block.Operations.Remove(llNode);
Node node = llNode.Value;
for (int index = 0; index < node.SourcesCount; index++)
{
node.SetSource(index, null);
}
Debug.Assert(node.Destination == null || node.Destination.Uses.Count == 0);
node.Destination = null;
}
private static bool IsUnused(Node node)
{
return DestIsLocalVar(node) && node.Destination.Uses.Count == 0 && !HasSideEffects(node);
}
private static bool DestIsLocalVar(Node node)
{
return node.Destination != null && node.Destination.Kind == OperandKind.LocalVariable;
}
private static bool HasSideEffects(Node node)
{
return (node is Operation operation) && operation.Instruction == Instruction.Call;
}
private static bool IsPropagableCopy(Operation operation)
{
if (operation.Instruction != Instruction.Copy)
{
return false;
}
return operation.Destination.Type == operation.GetSource(0).Type;
}
}
}

View file

@ -0,0 +1,157 @@
using ARMeilleure.IntermediateRepresentation;
using System;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.CodeGen.Optimizations
{
static class Simplification
{
public static void RunPass(Operation operation)
{
switch (operation.Instruction)
{
case Instruction.Add:
case Instruction.BitwiseExclusiveOr:
TryEliminateBinaryOpComutative(operation, 0);
break;
case Instruction.BitwiseAnd:
TryEliminateBitwiseAnd(operation);
break;
case Instruction.BitwiseOr:
TryEliminateBitwiseOr(operation);
break;
case Instruction.ConditionalSelect:
TryEliminateConditionalSelect(operation);
break;
case Instruction.Divide:
TryEliminateBinaryOpY(operation, 1);
break;
case Instruction.Multiply:
TryEliminateBinaryOpComutative(operation, 1);
break;
case Instruction.ShiftLeft:
case Instruction.ShiftRightSI:
case Instruction.ShiftRightUI:
case Instruction.Subtract:
TryEliminateBinaryOpY(operation, 0);
break;
}
}
private static void TryEliminateBitwiseAnd(Operation operation)
{
// Try to recognize and optimize those 3 patterns (in order):
// x & 0xFFFFFFFF == x, 0xFFFFFFFF & y == y,
// x & 0x00000000 == 0x00000000, 0x00000000 & y == 0x00000000
Operand x = operation.GetSource(0);
Operand y = operation.GetSource(1);
if (IsConstEqual(x, AllOnes(x.Type)))
{
operation.TurnIntoCopy(y);
}
else if (IsConstEqual(y, AllOnes(y.Type)))
{
operation.TurnIntoCopy(x);
}
else if (IsConstEqual(x, 0) || IsConstEqual(y, 0))
{
operation.TurnIntoCopy(Const(0));
}
}
private static void TryEliminateBitwiseOr(Operation operation)
{
// Try to recognize and optimize those 3 patterns (in order):
// x | 0x00000000 == x, 0x00000000 | y == y,
// x | 0xFFFFFFFF == 0xFFFFFFFF, 0xFFFFFFFF | y == 0xFFFFFFFF
Operand x = operation.GetSource(0);
Operand y = operation.GetSource(1);
if (IsConstEqual(x, 0))
{
operation.TurnIntoCopy(y);
}
else if (IsConstEqual(y, 0))
{
operation.TurnIntoCopy(x);
}
else if (IsConstEqual(x, AllOnes(x.Type)) || IsConstEqual(y, AllOnes(y.Type)))
{
operation.TurnIntoCopy(Const(AllOnes(x.Type)));
}
}
private static void TryEliminateBinaryOpY(Operation operation, ulong comparand)
{
Operand x = operation.GetSource(0);
Operand y = operation.GetSource(1);
if (IsConstEqual(y, comparand))
{
operation.TurnIntoCopy(x);
}
}
private static void TryEliminateBinaryOpComutative(Operation operation, ulong comparand)
{
Operand x = operation.GetSource(0);
Operand y = operation.GetSource(1);
if (IsConstEqual(x, comparand))
{
operation.TurnIntoCopy(y);
}
else if (IsConstEqual(y, comparand))
{
operation.TurnIntoCopy(x);
}
}
private static void TryEliminateConditionalSelect(Operation operation)
{
Operand cond = operation.GetSource(0);
if (cond.Kind != OperandKind.Constant)
{
return;
}
// The condition is constant, we can turn it into a copy, and select
// the source based on the condition value.
int srcIndex = cond.Value != 0 ? 1 : 2;
Operand source = operation.GetSource(srcIndex);
operation.TurnIntoCopy(source);
}
private static bool IsConstEqual(Operand operand, ulong comparand)
{
if (operand.Kind != OperandKind.Constant || !operand.Type.IsInteger())
{
return false;
}
return operand.Value == comparand;
}
private static ulong AllOnes(OperandType type)
{
switch (type)
{
case OperandType.I32: return ~0U;
case OperandType.I64: return ~0UL;
}
throw new ArgumentException("Invalid operand type \"" + type + "\".");
}
}
}

View file

@ -0,0 +1,19 @@
namespace ARMeilleure.CodeGen.RegisterAllocators
{
struct AllocationResult
{
public int IntUsedRegisters { get; }
public int VecUsedRegisters { get; }
public int SpillRegionSize { get; }
public AllocationResult(
int intUsedRegisters,
int vecUsedRegisters,
int spillRegionSize)
{
IntUsedRegisters = intUsedRegisters;
VecUsedRegisters = vecUsedRegisters;
SpillRegionSize = spillRegionSize;
}
}
}

View file

@ -0,0 +1,246 @@
using ARMeilleure.IntermediateRepresentation;
using System;
using System.Collections.Generic;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
class CopyResolver
{
private class ParallelCopy
{
private struct Copy
{
public Register Dest { get; }
public Register Source { get; }
public OperandType Type { get; }
public Copy(Register dest, Register source, OperandType type)
{
Dest = dest;
Source = source;
Type = type;
}
}
private List<Copy> _copies;
public int Count => _copies.Count;
public ParallelCopy()
{
_copies = new List<Copy>();
}
public void AddCopy(Register dest, Register source, OperandType type)
{
_copies.Add(new Copy(dest, source, type));
}
public void Sequence(List<Operation> sequence)
{
Dictionary<Register, Register> locations = new Dictionary<Register, Register>();
Dictionary<Register, Register> sources = new Dictionary<Register, Register>();
Dictionary<Register, OperandType> types = new Dictionary<Register, OperandType>();
Queue<Register> pendingQueue = new Queue<Register>();
Queue<Register> readyQueue = new Queue<Register>();
foreach (Copy copy in _copies)
{
locations[copy.Source] = copy.Source;
sources[copy.Dest] = copy.Source;
types[copy.Dest] = copy.Type;
pendingQueue.Enqueue(copy.Dest);
}
foreach (Copy copy in _copies)
{
// If the destination is not used anywhere, we can assign it immediately.
if (!locations.ContainsKey(copy.Dest))
{
readyQueue.Enqueue(copy.Dest);
}
}
while (pendingQueue.TryDequeue(out Register current))
{
Register copyDest;
Register origSource;
Register copySource;
while (readyQueue.TryDequeue(out copyDest))
{
origSource = sources[copyDest];
copySource = locations[origSource];
OperandType type = types[copyDest];
EmitCopy(sequence, GetRegister(copyDest, type), GetRegister(copySource, type));
locations[origSource] = copyDest;
if (origSource == copySource && sources.ContainsKey(origSource))
{
readyQueue.Enqueue(origSource);
}
}
copyDest = current;
origSource = sources[copyDest];
copySource = locations[origSource];
if (copyDest != copySource)
{
OperandType type = types[copyDest];
type = type.IsInteger() ? OperandType.I64 : OperandType.V128;
EmitXorSwap(sequence, GetRegister(copyDest, type), GetRegister(copySource, type));
locations[origSource] = copyDest;
Register swapOther = copySource;
if (copyDest != locations[sources[copySource]])
{
// Find the other swap destination register.
// To do that, we search all the pending registers, and pick
// the one where the copy source register is equal to the
// current destination register being processed (copyDest).
foreach (Register pending in pendingQueue)
{
// Is this a copy of pending <- copyDest?
if (copyDest == locations[sources[pending]])
{
swapOther = pending;
break;
}
}
}
// The value that was previously at "copyDest" now lives on
// "copySource" thanks to the swap, now we need to update the
// location for the next copy that is supposed to copy the value
// that used to live on "copyDest".
locations[sources[swapOther]] = copySource;
}
}
}
private static void EmitCopy(List<Operation> sequence, Operand x, Operand y)
{
sequence.Add(new Operation(Instruction.Copy, x, y));
}
private static void EmitXorSwap(List<Operation> sequence, Operand x, Operand y)
{
sequence.Add(new Operation(Instruction.BitwiseExclusiveOr, x, x, y));
sequence.Add(new Operation(Instruction.BitwiseExclusiveOr, y, y, x));
sequence.Add(new Operation(Instruction.BitwiseExclusiveOr, x, x, y));
}
}
private Queue<Operation> _fillQueue = new Queue<Operation>();
private Queue<Operation> _spillQueue = new Queue<Operation>();
private ParallelCopy _parallelCopy;
public bool HasCopy { get; private set; }
public CopyResolver()
{
_fillQueue = new Queue<Operation>();
_spillQueue = new Queue<Operation>();
_parallelCopy = new ParallelCopy();
}
public void AddSplit(LiveInterval left, LiveInterval right)
{
if (left.Local != right.Local)
{
throw new ArgumentException("Intervals of different variables are not allowed.");
}
OperandType type = left.Local.Type;
if (left.IsSpilled && !right.IsSpilled)
{
// Move from the stack to a register.
AddSplitFill(left, right, type);
}
else if (!left.IsSpilled && right.IsSpilled)
{
// Move from a register to the stack.
AddSplitSpill(left, right, type);
}
else if (!left.IsSpilled && !right.IsSpilled && left.Register != right.Register)
{
// Move from one register to another.
AddSplitCopy(left, right, type);
}
else if (left.SpillOffset != right.SpillOffset)
{
// This would be the stack-to-stack move case, but this is not supported.
throw new ArgumentException("Both intervals were spilled.");
}
}
private void AddSplitFill(LiveInterval left, LiveInterval right, OperandType type)
{
Operand register = GetRegister(right.Register, type);
Operand offset = new Operand(left.SpillOffset);
_fillQueue.Enqueue(new Operation(Instruction.Fill, register, offset));
HasCopy = true;
}
private void AddSplitSpill(LiveInterval left, LiveInterval right, OperandType type)
{
Operand offset = new Operand(right.SpillOffset);
Operand register = GetRegister(left.Register, type);
_spillQueue.Enqueue(new Operation(Instruction.Spill, null, offset, register));
HasCopy = true;
}
private void AddSplitCopy(LiveInterval left, LiveInterval right, OperandType type)
{
_parallelCopy.AddCopy(right.Register, left.Register, type);
HasCopy = true;
}
public Operation[] Sequence()
{
List<Operation> sequence = new List<Operation>();
while (_spillQueue.TryDequeue(out Operation spillOp))
{
sequence.Add(spillOp);
}
_parallelCopy.Sequence(sequence);
while (_fillQueue.TryDequeue(out Operation fillOp))
{
sequence.Add(fillOp);
}
return sequence.ToArray();
}
private static Operand GetRegister(Register reg, OperandType type)
{
return new Operand(reg.Index, reg.Type, type);
}
}
}

View file

@ -0,0 +1,382 @@
using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System.Collections.Generic;
using System.Diagnostics;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
class HybridAllocator : IRegisterAllocator
{
private const int RegistersCount = 16;
private const int MaxIROperands = 4;
private struct BlockInfo
{
public bool HasCall { get; }
public int IntFixedRegisters { get; }
public int VecFixedRegisters { get; }
public BlockInfo(bool hasCall, int intFixedRegisters, int vecFixedRegisters)
{
HasCall = hasCall;
IntFixedRegisters = intFixedRegisters;
VecFixedRegisters = vecFixedRegisters;
}
}
private class LocalInfo
{
public int Uses { get; set; }
public int UseCount { get; set; }
public bool PreAllocated { get; set; }
public int Register { get; set; }
public int SpillOffset { get; set; }
public int Sequence { get; set; }
public Operand Temp { get; set; }
public OperandType Type { get; }
private int _first;
private int _last;
public bool IsBlockLocal => _first == _last;
public LocalInfo(OperandType type, int uses)
{
Uses = uses;
Type = type;
_first = -1;
_last = -1;
}
public void SetBlockIndex(int blkIndex)
{
if (_first == -1 || blkIndex < _first)
{
_first = blkIndex;
}
if (_last == -1 || blkIndex > _last)
{
_last = blkIndex;
}
}
}
public AllocationResult RunPass(
ControlFlowGraph cfg,
StackAllocator stackAlloc,
RegisterMasks regMasks)
{
int intUsedRegisters = 0;
int vecUsedRegisters = 0;
int intFreeRegisters = regMasks.IntAvailableRegisters;
int vecFreeRegisters = regMasks.VecAvailableRegisters;
BlockInfo[] blockInfo = new BlockInfo[cfg.Blocks.Count];
List<LocalInfo> locInfo = new List<LocalInfo>();
for (int index = cfg.PostOrderBlocks.Length - 1; index >= 0; index--)
{
BasicBlock block = cfg.PostOrderBlocks[index];
int intFixedRegisters = 0;
int vecFixedRegisters = 0;
bool hasCall = false;
foreach (Node node in block.Operations)
{
if (node is Operation operation && operation.Instruction == Instruction.Call)
{
hasCall = true;
}
for (int srcIndex = 0; srcIndex < node.SourcesCount; srcIndex++)
{
Operand source = node.GetSource(srcIndex);
if (source.Kind == OperandKind.LocalVariable)
{
locInfo[source.AsInt32() - 1].SetBlockIndex(block.Index);
}
}
for (int dstIndex = 0; dstIndex < node.DestinationsCount; dstIndex++)
{
Operand dest = node.GetDestination(dstIndex);
if (dest.Kind == OperandKind.LocalVariable)
{
LocalInfo info;
if (dest.Value != 0)
{
info = locInfo[dest.AsInt32() - 1];
}
else
{
dest.NumberLocal(locInfo.Count + 1);
info = new LocalInfo(dest.Type, UsesCount(dest));
locInfo.Add(info);
}
info.SetBlockIndex(block.Index);
}
else if (dest.Kind == OperandKind.Register)
{
if (dest.Type.IsInteger())
{
intFixedRegisters |= 1 << dest.GetRegister().Index;
}
else
{
vecFixedRegisters |= 1 << dest.GetRegister().Index;
}
}
}
}
blockInfo[block.Index] = new BlockInfo(hasCall, intFixedRegisters, vecFixedRegisters);
}
int sequence = 0;
for (int index = cfg.PostOrderBlocks.Length - 1; index >= 0; index--)
{
BasicBlock block = cfg.PostOrderBlocks[index];
BlockInfo blkInfo = blockInfo[block.Index];
int intLocalFreeRegisters = intFreeRegisters & ~blkInfo.IntFixedRegisters;
int vecLocalFreeRegisters = vecFreeRegisters & ~blkInfo.VecFixedRegisters;
int intCallerSavedRegisters = blkInfo.HasCall ? regMasks.IntCallerSavedRegisters : 0;
int vecCallerSavedRegisters = blkInfo.HasCall ? regMasks.VecCallerSavedRegisters : 0;
int intSpillTempRegisters = SelectSpillTemps(
intCallerSavedRegisters & ~blkInfo.IntFixedRegisters,
intLocalFreeRegisters);
int vecSpillTempRegisters = SelectSpillTemps(
vecCallerSavedRegisters & ~blkInfo.VecFixedRegisters,
vecLocalFreeRegisters);
intLocalFreeRegisters &= ~(intSpillTempRegisters | intCallerSavedRegisters);
vecLocalFreeRegisters &= ~(vecSpillTempRegisters | vecCallerSavedRegisters);
for (LinkedListNode<Node> llNode = block.Operations.First; llNode != null; llNode = llNode.Next)
{
Node node = llNode.Value;
int intLocalUse = 0;
int vecLocalUse = 0;
for (int srcIndex = 0; srcIndex < node.SourcesCount; srcIndex++)
{
Operand source = node.GetSource(srcIndex);
if (source.Kind != OperandKind.LocalVariable)
{
continue;
}
LocalInfo info = locInfo[source.AsInt32() - 1];
info.UseCount++;
Debug.Assert(info.UseCount <= info.Uses);
if (info.Register != -1)
{
node.SetSource(srcIndex, Register(info.Register, source.Type.ToRegisterType(), source.Type));
if (info.UseCount == info.Uses && !info.PreAllocated)
{
if (source.Type.IsInteger())
{
intLocalFreeRegisters |= 1 << info.Register;
}
else
{
vecLocalFreeRegisters |= 1 << info.Register;
}
}
}
else
{
Operand temp = info.Temp;
if (temp == null || info.Sequence != sequence)
{
temp = source.Type.IsInteger()
? GetSpillTemp(source, intSpillTempRegisters, ref intLocalUse)
: GetSpillTemp(source, vecSpillTempRegisters, ref vecLocalUse);
info.Sequence = sequence;
info.Temp = temp;
}
node.SetSource(srcIndex, temp);
Operation fillOp = new Operation(Instruction.Fill, temp, Const(info.SpillOffset));
block.Operations.AddBefore(llNode, fillOp);
}
}
int intLocalAsg = 0;
int vecLocalAsg = 0;
for (int dstIndex = 0; dstIndex < node.DestinationsCount; dstIndex++)
{
Operand dest = node.GetDestination(dstIndex);
if (dest.Kind != OperandKind.LocalVariable)
{
continue;
}
LocalInfo info = locInfo[dest.AsInt32() - 1];
if (info.UseCount == 0 && !info.PreAllocated)
{
int mask = dest.Type.IsInteger()
? intLocalFreeRegisters
: vecLocalFreeRegisters;
if (info.IsBlockLocal && mask != 0)
{
int selectedReg = BitUtils.LowestBitSet(mask);
info.Register = selectedReg;
if (dest.Type.IsInteger())
{
intLocalFreeRegisters &= ~(1 << selectedReg);
intUsedRegisters |= 1 << selectedReg;
}
else
{
vecLocalFreeRegisters &= ~(1 << selectedReg);
vecUsedRegisters |= 1 << selectedReg;
}
}
else
{
info.Register = -1;
info.SpillOffset = stackAlloc.Allocate(dest.Type.GetSizeInBytes());
}
}
info.UseCount++;
Debug.Assert(info.UseCount <= info.Uses);
if (info.Register != -1)
{
node.SetDestination(dstIndex, Register(info.Register, dest.Type.ToRegisterType(), dest.Type));
}
else
{
Operand temp = info.Temp;
if (temp == null || info.Sequence != sequence)
{
temp = dest.Type.IsInteger()
? GetSpillTemp(dest, intSpillTempRegisters, ref intLocalAsg)
: GetSpillTemp(dest, vecSpillTempRegisters, ref vecLocalAsg);
info.Sequence = sequence;
info.Temp = temp;
}
node.SetDestination(dstIndex, temp);
Operation spillOp = new Operation(Instruction.Spill, null, Const(info.SpillOffset), temp);
llNode = block.Operations.AddAfter(llNode, spillOp);
}
}
sequence++;
intUsedRegisters |= intLocalAsg | intLocalUse;
vecUsedRegisters |= vecLocalAsg | vecLocalUse;
}
}
return new AllocationResult(intUsedRegisters, vecUsedRegisters, stackAlloc.TotalSize);
}
private static int SelectSpillTemps(int mask0, int mask1)
{
int selection = 0;
int count = 0;
while (count < MaxIROperands && mask0 != 0)
{
int mask = mask0 & -mask0;
selection |= mask;
mask0 &= ~mask;
count++;
}
while (count < MaxIROperands && mask1 != 0)
{
int mask = mask1 & -mask1;
selection |= mask;
mask1 &= ~mask;
count++;
}
Debug.Assert(count == MaxIROperands, "No enough registers for spill temps.");
return selection;
}
private static Operand GetSpillTemp(Operand local, int freeMask, ref int useMask)
{
int selectedReg = BitUtils.LowestBitSet(freeMask & ~useMask);
useMask |= 1 << selectedReg;
return Register(selectedReg, local.Type.ToRegisterType(), local.Type);
}
private static int UsesCount(Operand local)
{
return local.Assignments.Count + local.Uses.Count;
}
private static IEnumerable<BasicBlock> Successors(BasicBlock block)
{
if (block.Next != null)
{
yield return block.Next;
}
if (block.Branch != null)
{
yield return block.Branch;
}
}
}
}

View file

@ -0,0 +1,12 @@
using ARMeilleure.Translation;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
interface IRegisterAllocator
{
AllocationResult RunPass(
ControlFlowGraph cfg,
StackAllocator stackAlloc,
RegisterMasks regMasks);
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,390 @@
using ARMeilleure.IntermediateRepresentation;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
class LiveInterval : IComparable<LiveInterval>
{
public const int NotFound = -1;
private LiveInterval _parent;
private SortedSet<int> _usePositions;
public int UsesCount => _usePositions.Count;
private List<LiveRange> _ranges;
private SortedList<int, LiveInterval> _childs;
public bool IsSplit => _childs.Count != 0;
public Operand Local { get; }
public Register Register { get; set; }
public int SpillOffset { get; private set; }
public bool IsSpilled => SpillOffset != -1;
public bool IsFixed { get; }
public bool IsEmpty => _ranges.Count == 0;
public LiveInterval(Operand local = null, LiveInterval parent = null)
{
Local = local;
_parent = parent ?? this;
_usePositions = new SortedSet<int>();
_ranges = new List<LiveRange>();
_childs = new SortedList<int, LiveInterval>();
SpillOffset = -1;
}
public LiveInterval(Register register) : this()
{
IsFixed = true;
Register = register;
}
public void SetStart(int position)
{
if (_ranges.Count != 0)
{
Debug.Assert(position != _ranges[0].End);
_ranges[0] = new LiveRange(position, _ranges[0].End);
}
else
{
_ranges.Add(new LiveRange(position, position + 1));
}
}
public int GetStart()
{
if (_ranges.Count == 0)
{
throw new InvalidOperationException("Empty interval.");
}
return _ranges[0].Start;
}
public void SetEnd(int position)
{
if (_ranges.Count != 0)
{
int lastIdx = _ranges.Count - 1;
Debug.Assert(position != _ranges[lastIdx].Start);
_ranges[lastIdx] = new LiveRange(_ranges[lastIdx].Start, position);
}
else
{
_ranges.Add(new LiveRange(position, position + 1));
}
}
public int GetEnd()
{
if (_ranges.Count == 0)
{
throw new InvalidOperationException("Empty interval.");
}
return _ranges[_ranges.Count - 1].End;
}
public void AddRange(int start, int end)
{
if (start >= end)
{
throw new ArgumentException("Invalid range start position " + start + ", " + end);
}
int index = _ranges.BinarySearch(new LiveRange(start, end));
if (index >= 0)
{
// New range insersects with an existing range, we need to remove
// all the intersecting ranges before adding the new one.
// We also extend the new range as needed, based on the values of
// the existing ranges being removed.
int lIndex = index;
int rIndex = index;
while (lIndex > 0 && _ranges[lIndex - 1].End >= start)
{
lIndex--;
}
while (rIndex + 1 < _ranges.Count && _ranges[rIndex + 1].Start <= end)
{
rIndex++;
}
if (start > _ranges[lIndex].Start)
{
start = _ranges[lIndex].Start;
}
if (end < _ranges[rIndex].End)
{
end = _ranges[rIndex].End;
}
_ranges.RemoveRange(lIndex, (rIndex - lIndex) + 1);
InsertRange(lIndex, start, end);
}
else
{
InsertRange(~index, start, end);
}
}
private void InsertRange(int index, int start, int end)
{
// Here we insert a new range on the ranges list.
// If possible, we extend an existing range rather than inserting a new one.
// We can extend an existing range if any of the following conditions are true:
// - The new range starts right after the end of the previous range on the list.
// - The new range ends right before the start of the next range on the list.
// If both cases are true, we can extend either one. We prefer to extend the
// previous range, and then remove the next one, but theres no specific reason
// for that, extending either one will do.
int? extIndex = null;
if (index > 0 && _ranges[index - 1].End == start)
{
start = _ranges[index - 1].Start;
extIndex = index - 1;
}
if (index < _ranges.Count && _ranges[index].Start == end)
{
end = _ranges[index].End;
if (extIndex.HasValue)
{
_ranges.RemoveAt(index);
}
else
{
extIndex = index;
}
}
if (extIndex.HasValue)
{
_ranges[extIndex.Value] = new LiveRange(start, end);
}
else
{
_ranges.Insert(index, new LiveRange(start, end));
}
}
public void AddUsePosition(int position)
{
_usePositions.Add(position);
}
public bool Overlaps(int position)
{
return _ranges.BinarySearch(new LiveRange(position, position + 1)) >= 0;
}
public bool Overlaps(LiveInterval other)
{
foreach (LiveRange range in other._ranges)
{
if (_ranges.BinarySearch(range) >= 0)
{
return true;
}
}
return false;
}
public int GetOverlapPosition(LiveInterval other)
{
foreach (LiveRange range in other._ranges)
{
int overlapIndex = _ranges.BinarySearch(range);
if (overlapIndex >= 0)
{
// It's possible that we have multiple overlaps within a single interval,
// in this case, we pick the one with the lowest start position, since
// we return the first overlap position.
while (overlapIndex > 0 && _ranges[overlapIndex - 1].End > range.Start)
{
overlapIndex--;
}
LiveRange overlappingRange = _ranges[overlapIndex];
return overlappingRange.Start;
}
}
return NotFound;
}
public IEnumerable<LiveInterval> SplitChilds()
{
return _childs.Values;
}
public IEnumerable<int> UsePositions()
{
return _usePositions;
}
public int FirstUse()
{
if (_usePositions.Count == 0)
{
return NotFound;
}
return _usePositions.First();
}
public int NextUseAfter(int position)
{
foreach (int usePosition in _usePositions)
{
if (usePosition >= position)
{
return usePosition;
}
}
return NotFound;
}
public LiveInterval Split(int position)
{
LiveInterval right = new LiveInterval(Local, _parent);
int splitIndex = 0;
for (; splitIndex < _ranges.Count; splitIndex++)
{
LiveRange range = _ranges[splitIndex];
if (position > range.Start && position <= range.End)
{
right._ranges.Add(new LiveRange(position, range.End));
range = new LiveRange(range.Start, position);
_ranges[splitIndex++] = range;
break;
}
if (range.Start >= position)
{
break;
}
}
if (splitIndex < _ranges.Count)
{
int count = _ranges.Count - splitIndex;
right._ranges.AddRange(_ranges.GetRange(splitIndex, count));
_ranges.RemoveRange(splitIndex, count);
}
foreach (int usePosition in _usePositions.Where(x => x >= position))
{
right._usePositions.Add(usePosition);
}
_usePositions.RemoveWhere(x => x >= position);
Debug.Assert(_ranges.Count != 0, "Left interval is empty after split.");
Debug.Assert(right._ranges.Count != 0, "Right interval is empty after split.");
AddSplitChild(right);
return right;
}
private void AddSplitChild(LiveInterval child)
{
Debug.Assert(!child.IsEmpty, "Trying to insert a empty interval.");
_parent._childs.Add(child.GetStart(), child);
}
public LiveInterval GetSplitChild(int position)
{
if (Overlaps(position))
{
return this;
}
foreach (LiveInterval splitChild in _childs.Values)
{
if (splitChild.Overlaps(position))
{
return splitChild;
}
}
return null;
}
public bool TrySpillWithSiblingOffset()
{
foreach (LiveInterval splitChild in _parent._childs.Values)
{
if (splitChild.IsSpilled)
{
Spill(splitChild.SpillOffset);
return true;
}
}
return false;
}
public void Spill(int offset)
{
SpillOffset = offset;
}
public int CompareTo(LiveInterval other)
{
if (_ranges.Count == 0 || other._ranges.Count == 0)
{
return _ranges.Count.CompareTo(other._ranges.Count);
}
return _ranges[0].Start.CompareTo(other._ranges[0].Start);
}
public override string ToString()
{
return string.Join("; ", _ranges);
}
}
}

View file

@ -0,0 +1,31 @@
using System;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
struct LiveRange : IComparable<LiveRange>
{
public int Start { get; }
public int End { get; }
public LiveRange(int start, int end)
{
Start = start;
End = end;
}
public int CompareTo(LiveRange other)
{
if (Start < other.End && other.Start < End)
{
return 0;
}
return Start.CompareTo(other.Start);
}
public override string ToString()
{
return $"[{Start}, {End}[";
}
}
}

View file

@ -0,0 +1,47 @@
using ARMeilleure.IntermediateRepresentation;
using System;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
struct RegisterMasks
{
public int IntAvailableRegisters { get; }
public int VecAvailableRegisters { get; }
public int IntCallerSavedRegisters { get; }
public int VecCallerSavedRegisters { get; }
public int IntCalleeSavedRegisters { get; }
public int VecCalleeSavedRegisters { get; }
public RegisterMasks(
int intAvailableRegisters,
int vecAvailableRegisters,
int intCallerSavedRegisters,
int vecCallerSavedRegisters,
int intCalleeSavedRegisters,
int vecCalleeSavedRegisters)
{
IntAvailableRegisters = intAvailableRegisters;
VecAvailableRegisters = vecAvailableRegisters;
IntCallerSavedRegisters = intCallerSavedRegisters;
VecCallerSavedRegisters = vecCallerSavedRegisters;
IntCalleeSavedRegisters = intCalleeSavedRegisters;
VecCalleeSavedRegisters = vecCalleeSavedRegisters;
}
public int GetAvailableRegisters(RegisterType type)
{
if (type == RegisterType.Integer)
{
return IntAvailableRegisters;
}
else if (type == RegisterType.Vector)
{
return VecAvailableRegisters;
}
else
{
throw new ArgumentException($"Invalid register type \"{type}\".");
}
}
}
}

View file

@ -0,0 +1,27 @@
using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
using System;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
class StackAllocator
{
private int _offset;
public int TotalSize => _offset;
public int Allocate(OperandType type)
{
return Allocate(type.GetSizeInBytes());
}
public int Allocate(int sizeInBytes)
{
int offset = _offset;
_offset += sizeInBytes;
return offset;
}
}
}

View file

@ -0,0 +1,18 @@
namespace ARMeilleure.CodeGen.Unwinding
{
struct UnwindInfo
{
public UnwindPushEntry[] PushEntries { get; }
public int PrologueSize { get; }
public int FixedAllocSize { get; }
public UnwindInfo(UnwindPushEntry[] pushEntries, int prologueSize, int fixedAllocSize)
{
PushEntries = pushEntries;
PrologueSize = prologueSize;
FixedAllocSize = fixedAllocSize;
}
}
}

View file

@ -0,0 +1,20 @@
using ARMeilleure.IntermediateRepresentation;
namespace ARMeilleure.CodeGen.Unwinding
{
struct UnwindPushEntry
{
public int Index { get; }
public RegisterType Type { get; }
public int StreamEndOffset { get; }
public UnwindPushEntry(int index, RegisterType type, int streamEndOffset)
{
Index = index;
Type = type;
StreamEndOffset = streamEndOffset;
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,8 @@
namespace ARMeilleure.CodeGen.X86
{
enum CallConvName
{
SystemV,
Windows
}
}

View file

@ -0,0 +1,159 @@
using System;
using System.Runtime.InteropServices;
namespace ARMeilleure.CodeGen.X86
{
static class CallingConvention
{
private const int RegistersMask = 0xffff;
public static int GetIntAvailableRegisters()
{
return RegistersMask & ~(1 << (int)X86Register.Rsp);
}
public static int GetVecAvailableRegisters()
{
return RegistersMask;
}
public static int GetIntCallerSavedRegisters()
{
if (GetCurrentCallConv() == CallConvName.Windows)
{
return (1 << (int)X86Register.Rax) |
(1 << (int)X86Register.Rcx) |
(1 << (int)X86Register.Rdx) |
(1 << (int)X86Register.R8) |
(1 << (int)X86Register.R9) |
(1 << (int)X86Register.R10) |
(1 << (int)X86Register.R11);
}
else /* if (GetCurrentCallConv() == CallConvName.SystemV) */
{
return (1 << (int)X86Register.Rax) |
(1 << (int)X86Register.Rcx) |
(1 << (int)X86Register.Rdx) |
(1 << (int)X86Register.Rsi) |
(1 << (int)X86Register.Rdi) |
(1 << (int)X86Register.R8) |
(1 << (int)X86Register.R9) |
(1 << (int)X86Register.R10) |
(1 << (int)X86Register.R11);
}
}
public static int GetVecCallerSavedRegisters()
{
if (GetCurrentCallConv() == CallConvName.Windows)
{
return (1 << (int)X86Register.Xmm0) |
(1 << (int)X86Register.Xmm1) |
(1 << (int)X86Register.Xmm2) |
(1 << (int)X86Register.Xmm3) |
(1 << (int)X86Register.Xmm4) |
(1 << (int)X86Register.Xmm5);
}
else /* if (GetCurrentCallConv() == CallConvName.SystemV) */
{
return RegistersMask;
}
}
public static int GetIntCalleeSavedRegisters()
{
return GetIntCallerSavedRegisters() ^ RegistersMask;
}
public static int GetVecCalleeSavedRegisters()
{
return GetVecCallerSavedRegisters() ^ RegistersMask;
}
public static int GetArgumentsOnRegsCount()
{
return 4;
}
public static int GetIntArgumentsOnRegsCount()
{
return 6;
}
public static int GetVecArgumentsOnRegsCount()
{
return 8;
}
public static X86Register GetIntArgumentRegister(int index)
{
if (GetCurrentCallConv() == CallConvName.Windows)
{
switch (index)
{
case 0: return X86Register.Rcx;
case 1: return X86Register.Rdx;
case 2: return X86Register.R8;
case 3: return X86Register.R9;
}
}
else /* if (GetCurrentCallConv() == CallConvName.SystemV) */
{
switch (index)
{
case 0: return X86Register.Rdi;
case 1: return X86Register.Rsi;
case 2: return X86Register.Rdx;
case 3: return X86Register.Rcx;
case 4: return X86Register.R8;
case 5: return X86Register.R9;
}
}
throw new ArgumentOutOfRangeException(nameof(index));
}
public static X86Register GetVecArgumentRegister(int index)
{
int count;
if (GetCurrentCallConv() == CallConvName.Windows)
{
count = 4;
}
else /* if (GetCurrentCallConv() == CallConvName.SystemV) */
{
count = 8;
}
if ((uint)index < count)
{
return X86Register.Xmm0 + index;
}
throw new ArgumentOutOfRangeException(nameof(index));
}
public static X86Register GetIntReturnRegister()
{
return X86Register.Rax;
}
public static X86Register GetIntReturnRegisterHigh()
{
return X86Register.Rdx;
}
public static X86Register GetVecReturnRegister()
{
return X86Register.Xmm0;
}
public static CallConvName GetCurrentCallConv()
{
return RuntimeInformation.IsOSPlatform(OSPlatform.Windows)
? CallConvName.Windows
: CallConvName.SystemV;
}
}
}

View file

@ -0,0 +1,305 @@
using ARMeilleure.CodeGen.RegisterAllocators;
using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
namespace ARMeilleure.CodeGen.X86
{
class CodeGenContext
{
private const int ReservedBytesForJump = 1;
private Stream _stream;
public int StreamOffset => (int)_stream.Length;
public AllocationResult AllocResult { get; }
public Assembler Assembler { get; }
public BasicBlock CurrBlock { get; private set; }
public int CallArgsRegionSize { get; }
public int XmmSaveRegionSize { get; }
private long[] _blockOffsets;
private struct Jump
{
public bool IsConditional { get; }
public X86Condition Condition { get; }
public BasicBlock Target { get; }
public long JumpPosition { get; }
public long RelativeOffset { get; set; }
public int InstSize { get; set; }
public Jump(BasicBlock target, long jumpPosition)
{
IsConditional = false;
Condition = 0;
Target = target;
JumpPosition = jumpPosition;
RelativeOffset = 0;
InstSize = 0;
}
public Jump(X86Condition condition, BasicBlock target, long jumpPosition)
{
IsConditional = true;
Condition = condition;
Target = target;
JumpPosition = jumpPosition;
RelativeOffset = 0;
InstSize = 0;
}
}
private List<Jump> _jumps;
private X86Condition _jNearCondition;
private long _jNearPosition;
private int _jNearLength;
public CodeGenContext(Stream stream, AllocationResult allocResult, int maxCallArgs, int blocksCount)
{
_stream = stream;
AllocResult = allocResult;
Assembler = new Assembler(stream);
CallArgsRegionSize = GetCallArgsRegionSize(allocResult, maxCallArgs, out int xmmSaveRegionSize);
XmmSaveRegionSize = xmmSaveRegionSize;
_blockOffsets = new long[blocksCount];
_jumps = new List<Jump>();
}
private int GetCallArgsRegionSize(AllocationResult allocResult, int maxCallArgs, out int xmmSaveRegionSize)
{
// We need to add 8 bytes to the total size, as the call to this
// function already pushed 8 bytes (the return address).
int intMask = CallingConvention.GetIntCalleeSavedRegisters() & allocResult.IntUsedRegisters;
int vecMask = CallingConvention.GetVecCalleeSavedRegisters() & allocResult.VecUsedRegisters;
xmmSaveRegionSize = BitUtils.CountBits(vecMask) * 16;
int calleeSaveRegionSize = BitUtils.CountBits(intMask) * 8 + xmmSaveRegionSize + 8;
int argsCount = maxCallArgs;
if (argsCount < 0)
{
// When the function has no calls, argsCount is -1.
// In this case, we don't need to allocate the shadow space.
argsCount = 0;
}
else if (argsCount < 4)
{
// The ABI mandates that the space for at least 4 arguments
// is reserved on the stack (this is called shadow space).
argsCount = 4;
}
int frameSize = calleeSaveRegionSize + allocResult.SpillRegionSize;
// TODO: Instead of always multiplying by 16 (the largest possible size of a variable,
// since a V128 has 16 bytes), we should calculate the exact size consumed by the
// arguments passed to the called functions on the stack.
int callArgsAndFrameSize = frameSize + argsCount * 16;
// Ensure that the Stack Pointer will be aligned to 16 bytes.
callArgsAndFrameSize = (callArgsAndFrameSize + 0xf) & ~0xf;
return callArgsAndFrameSize - frameSize;
}
public void EnterBlock(BasicBlock block)
{
_blockOffsets[block.Index] = _stream.Position;
CurrBlock = block;
}
public void JumpTo(BasicBlock target)
{
_jumps.Add(new Jump(target, _stream.Position));
WritePadding(ReservedBytesForJump);
}
public void JumpTo(X86Condition condition, BasicBlock target)
{
_jumps.Add(new Jump(condition, target, _stream.Position));
WritePadding(ReservedBytesForJump);
}
public void JumpToNear(X86Condition condition)
{
_jNearCondition = condition;
_jNearPosition = _stream.Position;
_jNearLength = Assembler.GetJccLength(0);
_stream.Seek(_jNearLength, SeekOrigin.Current);
}
public void JumpHere()
{
long currentPosition = _stream.Position;
_stream.Seek(_jNearPosition, SeekOrigin.Begin);
long offset = currentPosition - (_jNearPosition + _jNearLength);
Debug.Assert(_jNearLength == Assembler.GetJccLength(offset), "Relative offset doesn't fit on near jump.");
Assembler.Jcc(_jNearCondition, offset);
_stream.Seek(currentPosition, SeekOrigin.Begin);
}
private void WritePadding(int size)
{
while (size-- > 0)
{
_stream.WriteByte(0);
}
}
public byte[] GetCode()
{
// Write jump relative offsets.
bool modified;
do
{
modified = false;
for (int index = 0; index < _jumps.Count; index++)
{
Jump jump = _jumps[index];
long jumpTarget = _blockOffsets[jump.Target.Index];
long offset = jumpTarget - jump.JumpPosition;
if (offset < 0)
{
for (int index2 = index - 1; index2 >= 0; index2--)
{
Jump jump2 = _jumps[index2];
if (jump2.JumpPosition < jumpTarget)
{
break;
}
offset -= jump2.InstSize - ReservedBytesForJump;
}
}
else
{
for (int index2 = index + 1; index2 < _jumps.Count; index2++)
{
Jump jump2 = _jumps[index2];
if (jump2.JumpPosition >= jumpTarget)
{
break;
}
offset += jump2.InstSize - ReservedBytesForJump;
}
offset -= ReservedBytesForJump;
}
if (jump.IsConditional)
{
jump.InstSize = Assembler.GetJccLength(offset);
}
else
{
jump.InstSize = Assembler.GetJmpLength(offset);
}
// The jump is relative to the next instruction, not the current one.
// Since we didn't know the next instruction address when calculating
// the offset (as the size of the current jump instruction was not know),
// we now need to compensate the offset with the jump instruction size.
// It's also worth to note that:
// - This is only needed for backward jumps.
// - The GetJmpLength and GetJccLength also compensates the offset
// internally when computing the jump instruction size.
if (offset < 0)
{
offset -= jump.InstSize;
}
if (jump.RelativeOffset != offset)
{
modified = true;
}
jump.RelativeOffset = offset;
_jumps[index] = jump;
}
}
while (modified);
// Write the code, ignoring the dummy bytes after jumps, into a new stream.
_stream.Seek(0, SeekOrigin.Begin);
using (MemoryStream codeStream = new MemoryStream())
{
Assembler assembler = new Assembler(codeStream);
byte[] buffer;
for (int index = 0; index < _jumps.Count; index++)
{
Jump jump = _jumps[index];
buffer = new byte[jump.JumpPosition - _stream.Position];
_stream.Read(buffer, 0, buffer.Length);
_stream.Seek(ReservedBytesForJump, SeekOrigin.Current);
codeStream.Write(buffer);
if (jump.IsConditional)
{
assembler.Jcc(jump.Condition, jump.RelativeOffset);
}
else
{
assembler.Jmp(jump.RelativeOffset);
}
}
buffer = new byte[_stream.Length - _stream.Position];
_stream.Read(buffer, 0, buffer.Length);
codeStream.Write(buffer);
return codeStream.ToArray();
}
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,52 @@
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
namespace ARMeilleure.CodeGen.X86
{
static class HardwareCapabilities
{
private delegate ulong GetFeatureInfo();
private static ulong _featureInfo;
public static bool SupportsSse3 => (_featureInfo & (1UL << 0)) != 0;
public static bool SupportsPclmulqdq => (_featureInfo & (1UL << 1)) != 0;
public static bool SupportsSsse3 => (_featureInfo & (1UL << 9)) != 0;
public static bool SupportsFma => (_featureInfo & (1UL << 12)) != 0;
public static bool SupportsCx16 => (_featureInfo & (1UL << 13)) != 0;
public static bool SupportsSse41 => (_featureInfo & (1UL << 19)) != 0;
public static bool SupportsSse42 => (_featureInfo & (1UL << 20)) != 0;
public static bool SupportsPopcnt => (_featureInfo & (1UL << 23)) != 0;
public static bool SupportsAesni => (_featureInfo & (1UL << 25)) != 0;
public static bool SupportsAvx => (_featureInfo & (1UL << 28)) != 0;
public static bool SupportsF16c => (_featureInfo & (1UL << 29)) != 0;
public static bool SupportsSse => (_featureInfo & (1UL << 32 + 25)) != 0;
public static bool SupportsSse2 => (_featureInfo & (1UL << 32 + 26)) != 0;
public static bool ForceLegacySse { get; set; }
public static bool SupportsVexEncoding => !ForceLegacySse && SupportsAvx;
static HardwareCapabilities()
{
EmitterContext context = new EmitterContext();
Operand featureInfo = context.CpuId();
context.Return(featureInfo);
ControlFlowGraph cfg = context.GetControlFlowGraph();
OperandType[] argTypes = new OperandType[0];
GetFeatureInfo getFeatureInfo = Compiler.Compile<GetFeatureInfo>(
cfg,
argTypes,
OperandType.I64,
CompilerOptions.HighCq);
_featureInfo = getFeatureInfo();
}
}
}

View file

@ -0,0 +1,14 @@
namespace ARMeilleure.CodeGen.X86
{
struct IntrinsicInfo
{
public X86Instruction Inst { get; }
public IntrinsicType Type { get; }
public IntrinsicInfo(X86Instruction inst, IntrinsicType type)
{
Inst = inst;
Type = type;
}
}
}

View file

@ -0,0 +1,160 @@
using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
namespace ARMeilleure.CodeGen.X86
{
static class IntrinsicTable
{
private const int BadOp = 0;
private static IntrinsicInfo[] _intrinTable;
static IntrinsicTable()
{
_intrinTable = new IntrinsicInfo[EnumUtils.GetCount(typeof(Intrinsic))];
Add(Intrinsic.X86Addpd, new IntrinsicInfo(X86Instruction.Addpd, IntrinsicType.Binary));
Add(Intrinsic.X86Addps, new IntrinsicInfo(X86Instruction.Addps, IntrinsicType.Binary));
Add(Intrinsic.X86Addsd, new IntrinsicInfo(X86Instruction.Addsd, IntrinsicType.Binary));
Add(Intrinsic.X86Addss, new IntrinsicInfo(X86Instruction.Addss, IntrinsicType.Binary));
Add(Intrinsic.X86Andnpd, new IntrinsicInfo(X86Instruction.Andnpd, IntrinsicType.Binary));
Add(Intrinsic.X86Andnps, new IntrinsicInfo(X86Instruction.Andnps, IntrinsicType.Binary));
Add(Intrinsic.X86Cmppd, new IntrinsicInfo(X86Instruction.Cmppd, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Cmpps, new IntrinsicInfo(X86Instruction.Cmpps, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Cmpsd, new IntrinsicInfo(X86Instruction.Cmpsd, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Cmpss, new IntrinsicInfo(X86Instruction.Cmpss, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Comisdeq, new IntrinsicInfo(X86Instruction.Comisd, IntrinsicType.Comis_));
Add(Intrinsic.X86Comisdge, new IntrinsicInfo(X86Instruction.Comisd, IntrinsicType.Comis_));
Add(Intrinsic.X86Comisdlt, new IntrinsicInfo(X86Instruction.Comisd, IntrinsicType.Comis_));
Add(Intrinsic.X86Comisseq, new IntrinsicInfo(X86Instruction.Comiss, IntrinsicType.Comis_));
Add(Intrinsic.X86Comissge, new IntrinsicInfo(X86Instruction.Comiss, IntrinsicType.Comis_));
Add(Intrinsic.X86Comisslt, new IntrinsicInfo(X86Instruction.Comiss, IntrinsicType.Comis_));
Add(Intrinsic.X86Cvtdq2pd, new IntrinsicInfo(X86Instruction.Cvtdq2pd, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtdq2ps, new IntrinsicInfo(X86Instruction.Cvtdq2ps, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtpd2dq, new IntrinsicInfo(X86Instruction.Cvtpd2dq, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtpd2ps, new IntrinsicInfo(X86Instruction.Cvtpd2ps, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtps2dq, new IntrinsicInfo(X86Instruction.Cvtps2dq, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtps2pd, new IntrinsicInfo(X86Instruction.Cvtps2pd, IntrinsicType.Unary));
Add(Intrinsic.X86Cvtsd2si, new IntrinsicInfo(X86Instruction.Cvtsd2si, IntrinsicType.UnaryToGpr));
Add(Intrinsic.X86Cvtsd2ss, new IntrinsicInfo(X86Instruction.Cvtsd2ss, IntrinsicType.Binary));
Add(Intrinsic.X86Cvtss2sd, new IntrinsicInfo(X86Instruction.Cvtss2sd, IntrinsicType.Binary));
Add(Intrinsic.X86Divpd, new IntrinsicInfo(X86Instruction.Divpd, IntrinsicType.Binary));
Add(Intrinsic.X86Divps, new IntrinsicInfo(X86Instruction.Divps, IntrinsicType.Binary));
Add(Intrinsic.X86Divsd, new IntrinsicInfo(X86Instruction.Divsd, IntrinsicType.Binary));
Add(Intrinsic.X86Divss, new IntrinsicInfo(X86Instruction.Divss, IntrinsicType.Binary));
Add(Intrinsic.X86Haddpd, new IntrinsicInfo(X86Instruction.Haddpd, IntrinsicType.Binary));
Add(Intrinsic.X86Haddps, new IntrinsicInfo(X86Instruction.Haddps, IntrinsicType.Binary));
Add(Intrinsic.X86Maxpd, new IntrinsicInfo(X86Instruction.Maxpd, IntrinsicType.Binary));
Add(Intrinsic.X86Maxps, new IntrinsicInfo(X86Instruction.Maxps, IntrinsicType.Binary));
Add(Intrinsic.X86Maxsd, new IntrinsicInfo(X86Instruction.Maxsd, IntrinsicType.Binary));
Add(Intrinsic.X86Maxss, new IntrinsicInfo(X86Instruction.Maxss, IntrinsicType.Binary));
Add(Intrinsic.X86Minpd, new IntrinsicInfo(X86Instruction.Minpd, IntrinsicType.Binary));
Add(Intrinsic.X86Minps, new IntrinsicInfo(X86Instruction.Minps, IntrinsicType.Binary));
Add(Intrinsic.X86Minsd, new IntrinsicInfo(X86Instruction.Minsd, IntrinsicType.Binary));
Add(Intrinsic.X86Minss, new IntrinsicInfo(X86Instruction.Minss, IntrinsicType.Binary));
Add(Intrinsic.X86Movhlps, new IntrinsicInfo(X86Instruction.Movhlps, IntrinsicType.Binary));
Add(Intrinsic.X86Movlhps, new IntrinsicInfo(X86Instruction.Movlhps, IntrinsicType.Binary));
Add(Intrinsic.X86Mulpd, new IntrinsicInfo(X86Instruction.Mulpd, IntrinsicType.Binary));
Add(Intrinsic.X86Mulps, new IntrinsicInfo(X86Instruction.Mulps, IntrinsicType.Binary));
Add(Intrinsic.X86Mulsd, new IntrinsicInfo(X86Instruction.Mulsd, IntrinsicType.Binary));
Add(Intrinsic.X86Mulss, new IntrinsicInfo(X86Instruction.Mulss, IntrinsicType.Binary));
Add(Intrinsic.X86Paddb, new IntrinsicInfo(X86Instruction.Paddb, IntrinsicType.Binary));
Add(Intrinsic.X86Paddd, new IntrinsicInfo(X86Instruction.Paddd, IntrinsicType.Binary));
Add(Intrinsic.X86Paddq, new IntrinsicInfo(X86Instruction.Paddq, IntrinsicType.Binary));
Add(Intrinsic.X86Paddw, new IntrinsicInfo(X86Instruction.Paddw, IntrinsicType.Binary));
Add(Intrinsic.X86Pand, new IntrinsicInfo(X86Instruction.Pand, IntrinsicType.Binary));
Add(Intrinsic.X86Pandn, new IntrinsicInfo(X86Instruction.Pandn, IntrinsicType.Binary));
Add(Intrinsic.X86Pavgb, new IntrinsicInfo(X86Instruction.Pavgb, IntrinsicType.Binary));
Add(Intrinsic.X86Pavgw, new IntrinsicInfo(X86Instruction.Pavgw, IntrinsicType.Binary));
Add(Intrinsic.X86Pblendvb, new IntrinsicInfo(X86Instruction.Pblendvb, IntrinsicType.Ternary));
Add(Intrinsic.X86Pcmpeqb, new IntrinsicInfo(X86Instruction.Pcmpeqb, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpeqd, new IntrinsicInfo(X86Instruction.Pcmpeqd, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpeqq, new IntrinsicInfo(X86Instruction.Pcmpeqq, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpeqw, new IntrinsicInfo(X86Instruction.Pcmpeqw, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpgtb, new IntrinsicInfo(X86Instruction.Pcmpgtb, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpgtd, new IntrinsicInfo(X86Instruction.Pcmpgtd, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpgtq, new IntrinsicInfo(X86Instruction.Pcmpgtq, IntrinsicType.Binary));
Add(Intrinsic.X86Pcmpgtw, new IntrinsicInfo(X86Instruction.Pcmpgtw, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxsb, new IntrinsicInfo(X86Instruction.Pmaxsb, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxsd, new IntrinsicInfo(X86Instruction.Pmaxsd, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxsw, new IntrinsicInfo(X86Instruction.Pmaxsw, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxub, new IntrinsicInfo(X86Instruction.Pmaxub, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxud, new IntrinsicInfo(X86Instruction.Pmaxud, IntrinsicType.Binary));
Add(Intrinsic.X86Pmaxuw, new IntrinsicInfo(X86Instruction.Pmaxuw, IntrinsicType.Binary));
Add(Intrinsic.X86Pminsb, new IntrinsicInfo(X86Instruction.Pminsb, IntrinsicType.Binary));
Add(Intrinsic.X86Pminsd, new IntrinsicInfo(X86Instruction.Pminsd, IntrinsicType.Binary));
Add(Intrinsic.X86Pminsw, new IntrinsicInfo(X86Instruction.Pminsw, IntrinsicType.Binary));
Add(Intrinsic.X86Pminub, new IntrinsicInfo(X86Instruction.Pminub, IntrinsicType.Binary));
Add(Intrinsic.X86Pminud, new IntrinsicInfo(X86Instruction.Pminud, IntrinsicType.Binary));
Add(Intrinsic.X86Pminuw, new IntrinsicInfo(X86Instruction.Pminuw, IntrinsicType.Binary));
Add(Intrinsic.X86Pmovsxbw, new IntrinsicInfo(X86Instruction.Pmovsxbw, IntrinsicType.Unary));
Add(Intrinsic.X86Pmovsxdq, new IntrinsicInfo(X86Instruction.Pmovsxdq, IntrinsicType.Unary));
Add(Intrinsic.X86Pmovsxwd, new IntrinsicInfo(X86Instruction.Pmovsxwd, IntrinsicType.Unary));
Add(Intrinsic.X86Pmovzxbw, new IntrinsicInfo(X86Instruction.Pmovzxbw, IntrinsicType.Unary));
Add(Intrinsic.X86Pmovzxdq, new IntrinsicInfo(X86Instruction.Pmovzxdq, IntrinsicType.Unary));
Add(Intrinsic.X86Pmovzxwd, new IntrinsicInfo(X86Instruction.Pmovzxwd, IntrinsicType.Unary));
Add(Intrinsic.X86Pmulld, new IntrinsicInfo(X86Instruction.Pmulld, IntrinsicType.Binary));
Add(Intrinsic.X86Pmullw, new IntrinsicInfo(X86Instruction.Pmullw, IntrinsicType.Binary));
Add(Intrinsic.X86Popcnt, new IntrinsicInfo(X86Instruction.Popcnt, IntrinsicType.PopCount));
Add(Intrinsic.X86Por, new IntrinsicInfo(X86Instruction.Por, IntrinsicType.Binary));
Add(Intrinsic.X86Pshufb, new IntrinsicInfo(X86Instruction.Pshufb, IntrinsicType.Binary));
Add(Intrinsic.X86Pslld, new IntrinsicInfo(X86Instruction.Pslld, IntrinsicType.Binary));
Add(Intrinsic.X86Pslldq, new IntrinsicInfo(X86Instruction.Pslldq, IntrinsicType.Binary));
Add(Intrinsic.X86Psllq, new IntrinsicInfo(X86Instruction.Psllq, IntrinsicType.Binary));
Add(Intrinsic.X86Psllw, new IntrinsicInfo(X86Instruction.Psllw, IntrinsicType.Binary));
Add(Intrinsic.X86Psrad, new IntrinsicInfo(X86Instruction.Psrad, IntrinsicType.Binary));
Add(Intrinsic.X86Psraw, new IntrinsicInfo(X86Instruction.Psraw, IntrinsicType.Binary));
Add(Intrinsic.X86Psrld, new IntrinsicInfo(X86Instruction.Psrld, IntrinsicType.Binary));
Add(Intrinsic.X86Psrlq, new IntrinsicInfo(X86Instruction.Psrlq, IntrinsicType.Binary));
Add(Intrinsic.X86Psrldq, new IntrinsicInfo(X86Instruction.Psrldq, IntrinsicType.Binary));
Add(Intrinsic.X86Psrlw, new IntrinsicInfo(X86Instruction.Psrlw, IntrinsicType.Binary));
Add(Intrinsic.X86Psubb, new IntrinsicInfo(X86Instruction.Psubb, IntrinsicType.Binary));
Add(Intrinsic.X86Psubd, new IntrinsicInfo(X86Instruction.Psubd, IntrinsicType.Binary));
Add(Intrinsic.X86Psubq, new IntrinsicInfo(X86Instruction.Psubq, IntrinsicType.Binary));
Add(Intrinsic.X86Psubw, new IntrinsicInfo(X86Instruction.Psubw, IntrinsicType.Binary));
Add(Intrinsic.X86Punpckhbw, new IntrinsicInfo(X86Instruction.Punpckhbw, IntrinsicType.Binary));
Add(Intrinsic.X86Punpckhdq, new IntrinsicInfo(X86Instruction.Punpckhdq, IntrinsicType.Binary));
Add(Intrinsic.X86Punpckhqdq, new IntrinsicInfo(X86Instruction.Punpckhqdq, IntrinsicType.Binary));
Add(Intrinsic.X86Punpckhwd, new IntrinsicInfo(X86Instruction.Punpckhwd, IntrinsicType.Binary));
Add(Intrinsic.X86Punpcklbw, new IntrinsicInfo(X86Instruction.Punpcklbw, IntrinsicType.Binary));
Add(Intrinsic.X86Punpckldq, new IntrinsicInfo(X86Instruction.Punpckldq, IntrinsicType.Binary));
Add(Intrinsic.X86Punpcklqdq, new IntrinsicInfo(X86Instruction.Punpcklqdq, IntrinsicType.Binary));
Add(Intrinsic.X86Punpcklwd, new IntrinsicInfo(X86Instruction.Punpcklwd, IntrinsicType.Binary));
Add(Intrinsic.X86Pxor, new IntrinsicInfo(X86Instruction.Pxor, IntrinsicType.Binary));
Add(Intrinsic.X86Rcpps, new IntrinsicInfo(X86Instruction.Rcpps, IntrinsicType.Unary));
Add(Intrinsic.X86Rcpss, new IntrinsicInfo(X86Instruction.Rcpss, IntrinsicType.Unary));
Add(Intrinsic.X86Roundpd, new IntrinsicInfo(X86Instruction.Roundpd, IntrinsicType.BinaryImm));
Add(Intrinsic.X86Roundps, new IntrinsicInfo(X86Instruction.Roundps, IntrinsicType.BinaryImm));
Add(Intrinsic.X86Roundsd, new IntrinsicInfo(X86Instruction.Roundsd, IntrinsicType.BinaryImm));
Add(Intrinsic.X86Roundss, new IntrinsicInfo(X86Instruction.Roundss, IntrinsicType.BinaryImm));
Add(Intrinsic.X86Rsqrtps, new IntrinsicInfo(X86Instruction.Rsqrtps, IntrinsicType.Unary));
Add(Intrinsic.X86Rsqrtss, new IntrinsicInfo(X86Instruction.Rsqrtss, IntrinsicType.Unary));
Add(Intrinsic.X86Shufpd, new IntrinsicInfo(X86Instruction.Shufpd, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Shufps, new IntrinsicInfo(X86Instruction.Shufps, IntrinsicType.TernaryImm));
Add(Intrinsic.X86Sqrtpd, new IntrinsicInfo(X86Instruction.Sqrtpd, IntrinsicType.Unary));
Add(Intrinsic.X86Sqrtps, new IntrinsicInfo(X86Instruction.Sqrtps, IntrinsicType.Unary));
Add(Intrinsic.X86Sqrtsd, new IntrinsicInfo(X86Instruction.Sqrtsd, IntrinsicType.Unary));
Add(Intrinsic.X86Sqrtss, new IntrinsicInfo(X86Instruction.Sqrtss, IntrinsicType.Unary));
Add(Intrinsic.X86Subpd, new IntrinsicInfo(X86Instruction.Subpd, IntrinsicType.Binary));
Add(Intrinsic.X86Subps, new IntrinsicInfo(X86Instruction.Subps, IntrinsicType.Binary));
Add(Intrinsic.X86Subsd, new IntrinsicInfo(X86Instruction.Subsd, IntrinsicType.Binary));
Add(Intrinsic.X86Subss, new IntrinsicInfo(X86Instruction.Subss, IntrinsicType.Binary));
Add(Intrinsic.X86Unpckhpd, new IntrinsicInfo(X86Instruction.Unpckhpd, IntrinsicType.Binary));
Add(Intrinsic.X86Unpckhps, new IntrinsicInfo(X86Instruction.Unpckhps, IntrinsicType.Binary));
Add(Intrinsic.X86Unpcklpd, new IntrinsicInfo(X86Instruction.Unpcklpd, IntrinsicType.Binary));
Add(Intrinsic.X86Unpcklps, new IntrinsicInfo(X86Instruction.Unpcklps, IntrinsicType.Binary));
Add(Intrinsic.X86Xorpd, new IntrinsicInfo(X86Instruction.Xorpd, IntrinsicType.Binary));
Add(Intrinsic.X86Xorps, new IntrinsicInfo(X86Instruction.Xorps, IntrinsicType.Binary));
}
private static void Add(Intrinsic intrin, IntrinsicInfo info)
{
_intrinTable[(int)intrin] = info;
}
public static IntrinsicInfo GetInfo(Intrinsic intrin)
{
return _intrinTable[(int)intrin];
}
}
}

View file

@ -0,0 +1,14 @@
namespace ARMeilleure.CodeGen.X86
{
enum IntrinsicType
{
Comis_,
PopCount,
Unary,
UnaryToGpr,
Binary,
BinaryImm,
Ternary,
TernaryImm
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,22 @@
namespace ARMeilleure.CodeGen.X86
{
enum X86Condition
{
Overflow = 0x0,
NotOverflow = 0x1,
Below = 0x2,
AboveOrEqual = 0x3,
Equal = 0x4,
NotEqual = 0x5,
BelowOrEqual = 0x6,
Above = 0x7,
Sign = 0x8,
NotSign = 0x9,
ParityEven = 0xa,
ParityOdd = 0xb,
Less = 0xc,
GreaterOrEqual = 0xd,
LessOrEqual = 0xe,
Greater = 0xf
}
}

View file

@ -0,0 +1,190 @@
namespace ARMeilleure.CodeGen.X86
{
enum X86Instruction
{
Add,
Addpd,
Addps,
Addsd,
Addss,
And,
Andnpd,
Andnps,
Bsr,
Bswap,
Call,
Cmovcc,
Cmp,
Cmppd,
Cmpps,
Cmpsd,
Cmpss,
Cmpxchg16b,
Comisd,
Comiss,
Cpuid,
Cvtdq2pd,
Cvtdq2ps,
Cvtpd2dq,
Cvtpd2ps,
Cvtps2dq,
Cvtps2pd,
Cvtsd2si,
Cvtsd2ss,
Cvtsi2sd,
Cvtsi2ss,
Cvtss2sd,
Div,
Divpd,
Divps,
Divsd,
Divss,
Haddpd,
Haddps,
Idiv,
Imul,
Imul128,
Insertps,
Lea,
Maxpd,
Maxps,
Maxsd,
Maxss,
Minpd,
Minps,
Minsd,
Minss,
Mov,
Mov16,
Mov8,
Movd,
Movdqu,
Movhlps,
Movlhps,
Movq,
Movsd,
Movss,
Movsx16,
Movsx32,
Movsx8,
Movzx16,
Movzx8,
Mul128,
Mulpd,
Mulps,
Mulsd,
Mulss,
Neg,
Not,
Or,
Paddb,
Paddd,
Paddq,
Paddw,
Pand,
Pandn,
Pavgb,
Pavgw,
Pblendvb,
Pcmpeqb,
Pcmpeqd,
Pcmpeqq,
Pcmpeqw,
Pcmpgtb,
Pcmpgtd,
Pcmpgtq,
Pcmpgtw,
Pextrb,
Pextrd,
Pextrq,
Pextrw,
Pinsrb,
Pinsrd,
Pinsrq,
Pinsrw,
Pmaxsb,
Pmaxsd,
Pmaxsw,
Pmaxub,
Pmaxud,
Pmaxuw,
Pminsb,
Pminsd,
Pminsw,
Pminub,
Pminud,
Pminuw,
Pmovsxbw,
Pmovsxdq,
Pmovsxwd,
Pmovzxbw,
Pmovzxdq,
Pmovzxwd,
Pmulld,
Pmullw,
Pop,
Popcnt,
Por,
Pshufb,
Pshufd,
Pslld,
Pslldq,
Psllq,
Psllw,
Psrad,
Psraw,
Psrld,
Psrlq,
Psrldq,
Psrlw,
Psubb,
Psubd,
Psubq,
Psubw,
Punpckhbw,
Punpckhdq,
Punpckhqdq,
Punpckhwd,
Punpcklbw,
Punpckldq,
Punpcklqdq,
Punpcklwd,
Push,
Pxor,
Rcpps,
Rcpss,
Ror,
Roundpd,
Roundps,
Roundsd,
Roundss,
Rsqrtps,
Rsqrtss,
Sar,
Setcc,
Shl,
Shr,
Shufpd,
Shufps,
Sqrtpd,
Sqrtps,
Sqrtsd,
Sqrtss,
Sub,
Subpd,
Subps,
Subsd,
Subss,
Test,
Unpckhpd,
Unpckhps,
Unpcklpd,
Unpcklps,
Vpblendvb,
Xor,
Xorpd,
Xorps,
Count
}
}

View file

@ -0,0 +1,41 @@
namespace ARMeilleure.CodeGen.X86
{
enum X86Register
{
Invalid = -1,
Rax = 0,
Rcx = 1,
Rdx = 2,
Rbx = 3,
Rsp = 4,
Rbp = 5,
Rsi = 6,
Rdi = 7,
R8 = 8,
R9 = 9,
R10 = 10,
R11 = 11,
R12 = 12,
R13 = 13,
R14 = 14,
R15 = 15,
Xmm0 = 0,
Xmm1 = 1,
Xmm2 = 2,
Xmm3 = 3,
Xmm4 = 4,
Xmm5 = 5,
Xmm6 = 6,
Xmm7 = 7,
Xmm8 = 8,
Xmm9 = 9,
Xmm10 = 10,
Xmm11 = 11,
Xmm12 = 12,
Xmm13 = 13,
Xmm14 = 14,
Xmm15 = 15
}
}