Adjust naming conventions and general refactoring in HLE Project (#490)

* Rename enum fields

* Naming conventions

* Remove unneeded ".this"

* Remove unneeded semicolons

* Remove unused Usings

* Don't use var

* Remove unneeded enum underlying types

* Explicitly label class visibility

* Remove unneeded @ prefixes

* Remove unneeded commas

* Remove unneeded if expressions

* Method doesn't use unsafe code

* Remove unneeded casts

* Initialized objects don't need an empty constructor

* Remove settings from DotSettings

* Revert "Explicitly label class visibility"

This reverts commit ad5eb5787cc5b27a4631cd46ef5f551c4ae95e51.

* Small changes

* Revert external enum renaming

* Changes from feedback

* Remove unneeded property setters
This commit is contained in:
Alex Barney 2018-12-04 14:23:37 -06:00 committed by gdkchan
parent c86aacde76
commit 85dbb9559a
299 changed files with 12268 additions and 12276 deletions

View file

@ -9,641 +9,641 @@ namespace Ryujinx.HLE.HOS.Kernel
{
private const int HasListenersMask = 0x40000000;
private Horizon System;
private Horizon _system;
public List<KThread> CondVarThreads;
public List<KThread> ArbiterThreads;
public KAddressArbiter(Horizon System)
public KAddressArbiter(Horizon system)
{
this.System = System;
_system = system;
CondVarThreads = new List<KThread>();
ArbiterThreads = new List<KThread>();
}
public long ArbitrateLock(int OwnerHandle, long MutexAddress, int RequesterHandle)
public long ArbitrateLock(int ownerHandle, long mutexAddress, int requesterHandle)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
KThread currentThread = _system.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = 0;
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = 0;
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(System, MutexAddress, out int MutexValue))
if (!KernelTransfer.UserToKernelInt32(_system, mutexAddress, out int mutexValue))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);;
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (MutexValue != (OwnerHandle | HasListenersMask))
if (mutexValue != (ownerHandle | HasListenersMask))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return 0;
}
KThread MutexOwner = CurrentProcess.HandleTable.GetObject<KThread>(OwnerHandle);
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
if (MutexOwner == null)
if (mutexOwner == null)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
CurrentThread.MutexAddress = MutexAddress;
CurrentThread.ThreadHandleForUserMutex = RequesterHandle;
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = requesterHandle;
MutexOwner.AddMutexWaiter(CurrentThread);
mutexOwner.AddMutexWaiter(currentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
currentThread.Reschedule(ThreadSchedState.Paused);
System.CriticalSection.Leave();
System.CriticalSection.Enter();
_system.CriticalSection.Leave();
_system.CriticalSection.Enter();
if (CurrentThread.MutexOwner != null)
if (currentThread.MutexOwner != null)
{
CurrentThread.MutexOwner.RemoveMutexWaiter(CurrentThread);
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return (uint)CurrentThread.ObjSyncResult;
return (uint)currentThread.ObjSyncResult;
}
public long ArbitrateUnlock(long MutexAddress)
public long ArbitrateUnlock(long mutexAddress)
{
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
KThread CurrentThread = System.Scheduler.GetCurrentThread();
KThread currentThread = _system.Scheduler.GetCurrentThread();
(long Result, KThread NewOwnerThread) = MutexUnlock(CurrentThread, MutexAddress);
(long result, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
if (Result != 0 && NewOwnerThread != null)
if (result != 0 && newOwnerThread != null)
{
NewOwnerThread.SignaledObj = null;
NewOwnerThread.ObjSyncResult = (int)Result;
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = (int)result;
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return Result;
return result;
}
public long WaitProcessWideKeyAtomic(
long MutexAddress,
long CondVarAddress,
int ThreadHandle,
long Timeout)
long mutexAddress,
long condVarAddress,
int threadHandle,
long timeout)
{
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
KThread CurrentThread = System.Scheduler.GetCurrentThread();
KThread currentThread = _system.Scheduler.GetCurrentThread();
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
(long Result, _) = MutexUnlock(CurrentThread, MutexAddress);
(long result, _) = MutexUnlock(currentThread, mutexAddress);
if (Result != 0)
if (result != 0)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return Result;
return result;
}
CurrentThread.MutexAddress = MutexAddress;
CurrentThread.ThreadHandleForUserMutex = ThreadHandle;
CurrentThread.CondVarAddress = CondVarAddress;
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = threadHandle;
currentThread.CondVarAddress = condVarAddress;
CondVarThreads.Add(CurrentThread);
CondVarThreads.Add(currentThread);
if (Timeout != 0)
if (timeout != 0)
{
CurrentThread.Reschedule(ThreadSchedState.Paused);
currentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
if (CurrentThread.MutexOwner != null)
if (currentThread.MutexOwner != null)
{
CurrentThread.MutexOwner.RemoveMutexWaiter(CurrentThread);
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
CondVarThreads.Remove(CurrentThread);
CondVarThreads.Remove(currentThread);
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return (uint)CurrentThread.ObjSyncResult;
return (uint)currentThread.ObjSyncResult;
}
private (long, KThread) MutexUnlock(KThread CurrentThread, long MutexAddress)
private (long, KThread) MutexUnlock(KThread currentThread, long mutexAddress)
{
KThread NewOwnerThread = CurrentThread.RelinquishMutex(MutexAddress, out int Count);
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
int MutexValue = 0;
int mutexValue = 0;
if (NewOwnerThread != null)
if (newOwnerThread != null)
{
MutexValue = NewOwnerThread.ThreadHandleForUserMutex;
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
if (Count >= 2)
if (count >= 2)
{
MutexValue |= HasListenersMask;
mutexValue |= HasListenersMask;
}
NewOwnerThread.SignaledObj = null;
NewOwnerThread.ObjSyncResult = 0;
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = 0;
NewOwnerThread.ReleaseAndResume();
newOwnerThread.ReleaseAndResume();
}
long Result = 0;
long result = 0;
if (!KernelTransfer.KernelToUserInt32(System, MutexAddress, MutexValue))
if (!KernelTransfer.KernelToUserInt32(_system, mutexAddress, mutexValue))
{
Result = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
result = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
return (Result, NewOwnerThread);
return (result, newOwnerThread);
}
public void SignalProcessWideKey(long Address, int Count)
public void SignalProcessWideKey(long address, int count)
{
Queue<KThread> SignaledThreads = new Queue<KThread>();
Queue<KThread> signaledThreads = new Queue<KThread>();
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
IOrderedEnumerable<KThread> SortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority);
IOrderedEnumerable<KThread> sortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority);
foreach (KThread Thread in SortedThreads.Where(x => x.CondVarAddress == Address))
foreach (KThread thread in sortedThreads.Where(x => x.CondVarAddress == address))
{
TryAcquireMutex(Thread);
TryAcquireMutex(thread);
SignaledThreads.Enqueue(Thread);
signaledThreads.Enqueue(thread);
//If the count is <= 0, we should signal all threads waiting.
if (Count >= 1 && --Count == 0)
if (count >= 1 && --count == 0)
{
break;
}
}
while (SignaledThreads.TryDequeue(out KThread Thread))
while (signaledThreads.TryDequeue(out KThread thread))
{
CondVarThreads.Remove(Thread);
CondVarThreads.Remove(thread);
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
}
private KThread TryAcquireMutex(KThread Requester)
private KThread TryAcquireMutex(KThread requester)
{
long Address = Requester.MutexAddress;
long address = requester.MutexAddress;
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int MutexValue))
if (!KernelTransfer.UserToKernelInt32(_system, address, out int mutexValue))
{
//Invalid address.
CurrentProcess.CpuMemory.ClearExclusive(0);
currentProcess.CpuMemory.ClearExclusive(0);
Requester.SignaledObj = null;
Requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
requester.SignaledObj = null;
requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return null;
}
while (true)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
if (MutexValue != 0)
if (mutexValue != 0)
{
//Update value to indicate there is a mutex waiter now.
CurrentProcess.CpuMemory.WriteInt32(Address, MutexValue | HasListenersMask);
currentProcess.CpuMemory.WriteInt32(address, mutexValue | HasListenersMask);
}
else
{
//No thread owning the mutex, assign to requesting thread.
CurrentProcess.CpuMemory.WriteInt32(Address, Requester.ThreadHandleForUserMutex);
currentProcess.CpuMemory.WriteInt32(address, requester.ThreadHandleForUserMutex);
}
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
MutexValue = CurrentProcess.CpuMemory.ReadInt32(Address);
mutexValue = currentProcess.CpuMemory.ReadInt32(address);
}
if (MutexValue == 0)
if (mutexValue == 0)
{
//We now own the mutex.
Requester.SignaledObj = null;
Requester.ObjSyncResult = 0;
requester.SignaledObj = null;
requester.ObjSyncResult = 0;
Requester.ReleaseAndResume();
requester.ReleaseAndResume();
return null;
}
MutexValue &= ~HasListenersMask;
mutexValue &= ~HasListenersMask;
KThread MutexOwner = CurrentProcess.HandleTable.GetObject<KThread>(MutexValue);
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
if (MutexOwner != null)
if (mutexOwner != null)
{
//Mutex already belongs to another thread, wait for it.
MutexOwner.AddMutexWaiter(Requester);
mutexOwner.AddMutexWaiter(requester);
}
else
{
//Invalid mutex owner.
Requester.SignaledObj = null;
Requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
requester.SignaledObj = null;
requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
Requester.ReleaseAndResume();
requester.ReleaseAndResume();
}
return MutexOwner;
return mutexOwner;
}
public long WaitForAddressIfEqual(long Address, int Value, long Timeout)
public long WaitForAddressIfEqual(long address, int value, long timeout)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
KThread currentThread = _system.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (CurrentValue == Value)
if (currentValue == value)
{
if (Timeout == 0)
if (timeout == 0)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
CurrentThread.MutexAddress = Address;
CurrentThread.WaitingInArbitration = true;
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, CurrentThread);
InsertSortedByPriority(ArbiterThreads, currentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
currentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
if (CurrentThread.WaitingInArbitration)
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(CurrentThread);
ArbiterThreads.Remove(currentThread);
CurrentThread.WaitingInArbitration = false;
currentThread.WaitingInArbitration = false;
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return CurrentThread.ObjSyncResult;
return currentThread.ObjSyncResult;
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
public long WaitForAddressIfLessThan(long Address, int Value, bool ShouldDecrement, long Timeout)
public long WaitForAddressIfLessThan(long address, int value, bool shouldDecrement, long timeout)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
KThread currentThread = _system.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
//If ShouldDecrement is true, do atomic decrement of the value at Address.
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (ShouldDecrement)
if (shouldDecrement)
{
while (CurrentValue < Value)
while (currentValue < value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue - 1);
currentProcess.CpuMemory.WriteInt32(address, currentValue - 1);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
}
CurrentProcess.CpuMemory.ClearExclusive(0);
currentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue < Value)
if (currentValue < value)
{
if (Timeout == 0)
if (timeout == 0)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
CurrentThread.MutexAddress = Address;
CurrentThread.WaitingInArbitration = true;
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, CurrentThread);
InsertSortedByPriority(ArbiterThreads, currentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
currentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
if (Timeout > 0)
if (timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
if (CurrentThread.WaitingInArbitration)
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(CurrentThread);
ArbiterThreads.Remove(currentThread);
CurrentThread.WaitingInArbitration = false;
currentThread.WaitingInArbitration = false;
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return CurrentThread.ObjSyncResult;
return currentThread.ObjSyncResult;
}
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
private void InsertSortedByPriority(List<KThread> Threads, KThread Thread)
private void InsertSortedByPriority(List<KThread> threads, KThread thread)
{
int NextIndex = -1;
int nextIndex = -1;
for (int Index = 0; Index < Threads.Count; Index++)
for (int index = 0; index < threads.Count; index++)
{
if (Threads[Index].DynamicPriority > Thread.DynamicPriority)
if (threads[index].DynamicPriority > thread.DynamicPriority)
{
NextIndex = Index;
nextIndex = index;
break;
}
}
if (NextIndex != -1)
if (nextIndex != -1)
{
Threads.Insert(NextIndex, Thread);
threads.Insert(nextIndex, thread);
}
else
{
Threads.Add(Thread);
threads.Add(thread);
}
}
public long Signal(long Address, int Count)
public long Signal(long address, int count)
{
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
WakeArbiterThreads(Address, Count);
WakeArbiterThreads(address, count);
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return 0;
}
public long SignalAndIncrementIfEqual(long Address, int Value, int Count)
public long SignalAndIncrementIfEqual(long address, int value, int count)
{
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (CurrentValue == Value)
while (currentValue == value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue + 1);
currentProcess.CpuMemory.WriteInt32(address, currentValue + 1);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
CurrentProcess.CpuMemory.ClearExclusive(0);
currentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue != Value)
if (currentValue != value)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(Address, Count);
WakeArbiterThreads(address, count);
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return 0;
}
public long SignalAndModifyIfEqual(long Address, int Value, int Count)
public long SignalAndModifyIfEqual(long address, int value, int count)
{
System.CriticalSection.Enter();
_system.CriticalSection.Enter();
int Offset;
int offset;
//The value is decremented if the number of threads waiting is less
//or equal to the Count of threads to be signaled, or Count is zero
//or negative. It is incremented if there are no threads waiting.
int WaitingCount = 0;
int waitingCount = 0;
foreach (KThread Thread in ArbiterThreads.Where(x => x.MutexAddress == Address))
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
if (++WaitingCount > Count)
if (++waitingCount > count)
{
break;
}
}
if (WaitingCount > 0)
if (waitingCount > 0)
{
Offset = WaitingCount <= Count || Count <= 0 ? -1 : 0;
offset = waitingCount <= count || count <= 0 ? -1 : 0;
}
else
{
Offset = 1;
offset = 1;
}
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (CurrentValue == Value)
while (currentValue == value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue + Offset);
currentProcess.CpuMemory.WriteInt32(address, currentValue + offset);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
currentProcess.CpuMemory.SetExclusive(0, address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
CurrentProcess.CpuMemory.ClearExclusive(0);
currentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue != Value)
if (currentValue != value)
{
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(Address, Count);
WakeArbiterThreads(address, count);
System.CriticalSection.Leave();
_system.CriticalSection.Leave();
return 0;
}
private void WakeArbiterThreads(long Address, int Count)
private void WakeArbiterThreads(long address, int count)
{
Queue<KThread> SignaledThreads = new Queue<KThread>();
Queue<KThread> signaledThreads = new Queue<KThread>();
foreach (KThread Thread in ArbiterThreads.Where(x => x.MutexAddress == Address))
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
SignaledThreads.Enqueue(Thread);
signaledThreads.Enqueue(thread);
//If the count is <= 0, we should signal all threads waiting.
if (Count >= 1 && --Count == 0)
if (count >= 1 && --count == 0)
{
break;
}
}
while (SignaledThreads.TryDequeue(out KThread Thread))
while (signaledThreads.TryDequeue(out KThread thread))
{
Thread.SignaledObj = null;
Thread.ObjSyncResult = 0;
thread.SignaledObj = null;
thread.ObjSyncResult = 0;
Thread.ReleaseAndResume();
thread.ReleaseAndResume();
Thread.WaitingInArbitration = false;
thread.WaitingInArbitration = false;
ArbiterThreads.Remove(Thread);
ArbiterThreads.Remove(thread);
}
}
}