Salieri: shader cache (#1701)

Here come Salieri, my implementation of a disk shader cache!

"I'm sure you know why I named it that."
"It doesn't really mean anything."

This implementation collects shaders at runtime and cache them to be later compiled when starting a game.
This commit is contained in:
Mary 2020-11-13 00:15:34 +01:00 committed by GitHub
parent 7166e82c3c
commit 48f6570557
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
57 changed files with 3589 additions and 396 deletions

View file

@ -0,0 +1,595 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Gpu.Shader.Cache.Definition;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.IO.Compression;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Shader.Cache
{
/// <summary>
/// Represent a cache collection handling one shader cache.
/// </summary>
class CacheCollection : IDisposable
{
/// <summary>
/// Possible operation to do on the <see cref="_fileWriterWorkerQueue"/>.
/// </summary>
private enum CacheFileOperation
{
/// <summary>
/// Save a new entry in the temp cache.
/// </summary>
SaveTempEntry,
/// <summary>
/// Save the hash manifest.
/// </summary>
SaveManifest,
/// <summary>
/// Flush temporary cache to archive.
/// </summary>
FlushToArchive,
/// <summary>
/// Signal when hitting this point. This is useful to know if all previous operations were performed.
/// </summary>
Synchronize
}
/// <summary>
/// Represent an operation to perform on the <see cref="_fileWriterWorkerQueue"/>.
/// </summary>
private class CacheFileOperationTask
{
/// <summary>
/// The type of operation to perform.
/// </summary>
public CacheFileOperation Type;
/// <summary>
/// The data associated to this operation or null.
/// </summary>
public object Data;
}
/// <summary>
/// Data associated to the <see cref="CacheFileOperation.SaveTempEntry"/> operation.
/// </summary>
private class CacheFileSaveEntryTaskData
{
/// <summary>
/// The key of the entry to cache.
/// </summary>
public Hash128 Key;
/// <summary>
/// The value of the entry to cache.
/// </summary>
public byte[] Value;
}
/// <summary>
/// The directory of the shader cache.
/// </summary>
private readonly string _cacheDirectory;
/// <summary>
/// The version of the cache.
/// </summary>
private readonly ulong _version;
/// <summary>
/// The hash type of the cache.
/// </summary>
private readonly CacheHashType _hashType;
/// <summary>
/// The graphics API of the cache.
/// </summary>
private readonly CacheGraphicsApi _graphicsApi;
/// <summary>
/// The table of all the hash registered in the cache.
/// </summary>
private HashSet<Hash128> _hashTable;
/// <summary>
/// The queue of operations to be performed by the file writer worker.
/// </summary>
private AsyncWorkQueue<CacheFileOperationTask> _fileWriterWorkerQueue;
/// <summary>
/// Main storage of the cache collection.
/// </summary>
private ZipArchive _cacheArchive;
/// <summary>
/// Immutable copy of the hash table.
/// </summary>
public ReadOnlySpan<Hash128> HashTable => _hashTable.ToArray();
/// <summary>
/// Get the temp path to the cache data directory.
/// </summary>
/// <returns>The temp path to the cache data directory</returns>
private string GetCacheTempDataPath() => Path.Combine(_cacheDirectory, "temp");
/// <summary>
/// The path to the cache archive file.
/// </summary>
/// <returns>The path to the cache archive file</returns>
private string GetArchivePath() => Path.Combine(_cacheDirectory, "cache.zip");
/// <summary>
/// The path to the cache manifest file.
/// </summary>
/// <returns>The path to the cache manifest file</returns>
private string GetManifestPath() => Path.Combine(_cacheDirectory, "cache.info");
/// <summary>
/// Create a new temp path to the given cached file via its hash.
/// </summary>
/// <param name="key">The hash of the cached data</param>
/// <returns>New path to the given cached file</returns>
private string GenCacheTempFilePath(Hash128 key) => Path.Combine(GetCacheTempDataPath(), key.ToString());
/// <summary>
/// Create a new cache collection.
/// </summary>
/// <param name="baseCacheDirectory">The directory of the shader cache</param>
/// <param name="hashType">The hash type of the shader cache</param>
/// <param name="graphicsApi">The graphics api of the shader cache</param>
/// <param name="shaderProvider">The shader provider name of the shader cache</param>
/// <param name="cacheName">The name of the cache</param>
/// <param name="version">The version of the cache</param>
public CacheCollection(string baseCacheDirectory, CacheHashType hashType, CacheGraphicsApi graphicsApi, string shaderProvider, string cacheName, ulong version)
{
if (hashType != CacheHashType.XxHash128)
{
throw new NotImplementedException($"{hashType}");
}
_cacheDirectory = GenerateCachePath(baseCacheDirectory, graphicsApi, shaderProvider, cacheName);
_graphicsApi = graphicsApi;
_hashType = hashType;
_version = version;
_hashTable = new HashSet<Hash128>();
Load();
_fileWriterWorkerQueue = new AsyncWorkQueue<CacheFileOperationTask>(HandleCacheTask, $"CacheCollection.Worker.{cacheName}");
}
/// <summary>
/// Load the cache manifest file and recreate it if invalid.
/// </summary>
private void Load()
{
bool isInvalid = false;
if (!Directory.Exists(_cacheDirectory))
{
isInvalid = true;
}
else
{
string manifestPath = GetManifestPath();
if (File.Exists(manifestPath))
{
Memory<byte> rawManifest = File.ReadAllBytes(manifestPath);
if (MemoryMarshal.TryRead(rawManifest.Span, out CacheManifestHeader manifestHeader))
{
Memory<byte> hashTableRaw = rawManifest.Slice(Unsafe.SizeOf<CacheManifestHeader>());
isInvalid = !manifestHeader.IsValid(_version, _graphicsApi, _hashType, hashTableRaw.Span);
if (!isInvalid)
{
ReadOnlySpan<Hash128> hashTable = MemoryMarshal.Cast<byte, Hash128>(hashTableRaw.Span);
foreach (Hash128 hash in hashTable)
{
_hashTable.Add(hash);
}
}
}
}
else
{
isInvalid = true;
}
}
if (isInvalid)
{
Logger.Warning?.Print(LogClass.Gpu, $"Shader collection \"{_cacheDirectory}\" got invalidated, cache will need to be rebuilt.");
if (Directory.Exists(_cacheDirectory))
{
Directory.Delete(_cacheDirectory, true);
}
Directory.CreateDirectory(_cacheDirectory);
SaveManifest();
}
FlushToArchive();
}
/// <summary>
/// Remove given entries from the manifest.
/// </summary>
/// <param name="entries">Entries to remove from the manifest</param>
public void RemoveManifestEntries(HashSet<Hash128> entries)
{
lock (_hashTable)
{
foreach (Hash128 entry in entries)
{
_hashTable.Remove(entry);
}
SaveManifest();
}
}
/// <summary>
/// Queue a task to flush temporary files to the archive on the worker.
/// </summary>
public void FlushToArchiveAsync()
{
_fileWriterWorkerQueue.Add(new CacheFileOperationTask
{
Type = CacheFileOperation.FlushToArchive
});
}
/// <summary>
/// Wait for all tasks before this given point to be done.
/// </summary>
public void Synchronize()
{
using (ManualResetEvent evnt = new ManualResetEvent(false))
{
_fileWriterWorkerQueue.Add(new CacheFileOperationTask
{
Type = CacheFileOperation.Synchronize,
Data = evnt
});
evnt.WaitOne();
}
}
/// <summary>
/// Flush temporary files to the archive.
/// </summary>
/// <remarks>This dispose <see cref="_cacheArchive"/> if not null and reinstantiate it.</remarks>
private void FlushToArchive()
{
EnsureArchiveUpToDate();
// Open the zip in readonly to avoid anyone modifying/corrupting it during normal operations.
_cacheArchive = ZipFile.Open(GetArchivePath(), ZipArchiveMode.Read);
}
/// <summary>
/// Save temporary files not in archive.
/// </summary>
/// <remarks>This dispose <see cref="_cacheArchive"/> if not null.</remarks>
public void EnsureArchiveUpToDate()
{
// First close previous opened instance if found.
if (_cacheArchive != null)
{
_cacheArchive.Dispose();
}
string archivePath = GetArchivePath();
// Open the zip in read/write.
_cacheArchive = ZipFile.Open(archivePath, ZipArchiveMode.Update);
Logger.Info?.Print(LogClass.Gpu, $"Updating cache collection archive {archivePath}...");
// Update the content of the zip.
lock (_hashTable)
{
foreach (Hash128 hash in _hashTable)
{
string cacheTempFilePath = GenCacheTempFilePath(hash);
if (File.Exists(cacheTempFilePath))
{
string cacheHash = $"{hash}";
ZipArchiveEntry entry = _cacheArchive.GetEntry(cacheHash);
entry?.Delete();
_cacheArchive.CreateEntryFromFile(cacheTempFilePath, cacheHash);
File.Delete(cacheTempFilePath);
}
}
// Close the instance to force a flush.
_cacheArchive.Dispose();
_cacheArchive = null;
string cacheTempDataPath = GetCacheTempDataPath();
// Create the cache data path if missing.
if (!Directory.Exists(cacheTempDataPath))
{
Directory.CreateDirectory(cacheTempDataPath);
}
}
Logger.Info?.Print(LogClass.Gpu, $"Updated cache collection archive {archivePath}.");
}
/// <summary>
/// Save the manifest file.
/// </summary>
private void SaveManifest()
{
CacheManifestHeader manifestHeader = new CacheManifestHeader(_version, _graphicsApi, _hashType);
byte[] data;
lock (_hashTable)
{
data = new byte[Unsafe.SizeOf<CacheManifestHeader>() + _hashTable.Count * Unsafe.SizeOf<Hash128>()];
// CacheManifestHeader has the same size as a Hash128.
Span<Hash128> dataSpan = MemoryMarshal.Cast<byte, Hash128>(data.AsSpan()).Slice(1);
int i = 0;
foreach (Hash128 hash in _hashTable)
{
dataSpan[i++] = hash;
}
}
manifestHeader.UpdateChecksum(data.AsSpan().Slice(Unsafe.SizeOf<CacheManifestHeader>()));
MemoryMarshal.Write(data, ref manifestHeader);
File.WriteAllBytes(GetManifestPath(), data);
}
/// <summary>
/// Generate the path to the cache directory.
/// </summary>
/// <param name="baseCacheDirectory">The base of the cache directory</param>
/// <param name="graphicsApi">The graphics api in use</param>
/// <param name="shaderProvider">The name of the shader provider in use</param>
/// <param name="cacheName">The name of the cache</param>
/// <returns>The path to the cache directory</returns>
private static string GenerateCachePath(string baseCacheDirectory, CacheGraphicsApi graphicsApi, string shaderProvider, string cacheName)
{
string graphicsApiName = graphicsApi switch
{
CacheGraphicsApi.OpenGL => "opengl",
CacheGraphicsApi.OpenGLES => "opengles",
CacheGraphicsApi.Vulkan => "vulkan",
CacheGraphicsApi.DirectX => "directx",
CacheGraphicsApi.Metal => "metal",
CacheGraphicsApi.Guest => "guest",
_ => throw new NotImplementedException(graphicsApi.ToString()),
};
return Path.Combine(baseCacheDirectory, graphicsApiName, shaderProvider, cacheName);
}
/// <summary>
/// Get a cached file with the given hash.
/// </summary>
/// <param name="keyHash">The given hash</param>
/// <returns>The cached file if present or null</returns>
public byte[] GetValueRaw(ref Hash128 keyHash)
{
return GetValueRawFromArchive(ref keyHash) ?? GetValueRawFromFile(ref keyHash);
}
/// <summary>
/// Get a cached file with the given hash that is present in the archive.
/// </summary>
/// <param name="keyHash">The given hash</param>
/// <returns>The cached file if present or null</returns>
private byte[] GetValueRawFromArchive(ref Hash128 keyHash)
{
bool found;
lock (_hashTable)
{
found = _hashTable.Contains(keyHash);
}
if (found)
{
ZipArchiveEntry archiveEntry = _cacheArchive.GetEntry($"{keyHash}");
if (archiveEntry != null)
{
try
{
byte[] result = new byte[archiveEntry.Length];
using (Stream archiveStream = archiveEntry.Open())
{
archiveStream.Read(result);
return result;
}
}
catch (Exception e)
{
Logger.Error?.Print(LogClass.Gpu, $"Cannot load cache file {keyHash} from archive");
Logger.Error?.Print(LogClass.Gpu, e.ToString());
}
}
}
return null;
}
/// <summary>
/// Get a cached file with the given hash that is not present in the archive.
/// </summary>
/// <param name="keyHash">The given hash</param>
/// <returns>The cached file if present or null</returns>
private byte[] GetValueRawFromFile(ref Hash128 keyHash)
{
bool found;
lock (_hashTable)
{
found = _hashTable.Contains(keyHash);
}
if (found)
{
string cacheTempFilePath = GenCacheTempFilePath(keyHash);
try
{
return File.ReadAllBytes(GenCacheTempFilePath(keyHash));
}
catch (Exception e)
{
Logger.Error?.Print(LogClass.Gpu, $"Cannot load cache file at {cacheTempFilePath}");
Logger.Error?.Print(LogClass.Gpu, e.ToString());
}
}
return null;
}
private void HandleCacheTask(CacheFileOperationTask task)
{
switch (task.Type)
{
case CacheFileOperation.SaveTempEntry:
SaveTempEntry((CacheFileSaveEntryTaskData)task.Data);
break;
case CacheFileOperation.SaveManifest:
SaveManifest();
break;
case CacheFileOperation.FlushToArchive:
FlushToArchive();
break;
case CacheFileOperation.Synchronize:
((ManualResetEvent)task.Data).Set();
break;
default:
throw new NotImplementedException($"{task.Type}");
}
}
/// <summary>
/// Save a new entry in the temp cache.
/// </summary>
/// <param name="entry">The entry to save in the temp cache</param>
private void SaveTempEntry(CacheFileSaveEntryTaskData entry)
{
string tempPath = GenCacheTempFilePath(entry.Key);
File.WriteAllBytes(tempPath, entry.Value);
}
/// <summary>
/// Add a new value in the cache with a given hash.
/// </summary>
/// <param name="keyHash">The hash to use for the value in the cache</param>
/// <param name="value">The value to cache</param>
public void AddValue(ref Hash128 keyHash, byte[] value)
{
Debug.Assert(value != null);
Debug.Assert(GetValueRaw(ref keyHash) != null);
bool isAlreadyPresent;
lock (_hashTable)
{
isAlreadyPresent = !_hashTable.Add(keyHash);
}
if (isAlreadyPresent)
{
// NOTE: Used for debug
File.WriteAllBytes(GenCacheTempFilePath(new Hash128()), value);
throw new InvalidOperationException($"Cache collision found on {GenCacheTempFilePath(keyHash)}");
}
// Queue file change operations
_fileWriterWorkerQueue.Add(new CacheFileOperationTask
{
Type = CacheFileOperation.SaveTempEntry,
Data = new CacheFileSaveEntryTaskData
{
Key = keyHash,
Value = value
}
});
// Save the manifest changes
_fileWriterWorkerQueue.Add(new CacheFileOperationTask
{
Type = CacheFileOperation.SaveManifest,
});
}
/// <summary>
/// Replace a value at the given hash in the cache.
/// </summary>
/// <param name="keyHash">The hash to use for the value in the cache</param>
/// <param name="value">The value to cache</param>
public void ReplaceValue(ref Hash128 keyHash, byte[] value)
{
Debug.Assert(value != null);
// Only queue file change operations
_fileWriterWorkerQueue.Add(new CacheFileOperationTask
{
Type = CacheFileOperation.SaveTempEntry,
Data = new CacheFileSaveEntryTaskData
{
Key = keyHash,
Value = value
}
});
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
// Make sure all operations on _fileWriterWorkerQueue are done.
Synchronize();
_fileWriterWorkerQueue.Dispose();
EnsureArchiveUpToDate();
}
}
}
}

View file

@ -0,0 +1,168 @@
using Ryujinx.Common;
using Ryujinx.Common.Configuration;
using Ryujinx.Graphics.Gpu.Shader.Cache.Definition;
using System;
using System.Collections.Generic;
using System.IO;
namespace Ryujinx.Graphics.Gpu.Shader.Cache
{
/// <summary>
/// Global Manager of the shader cache.
/// </summary>
class CacheManager : IDisposable
{
private CacheGraphicsApi _graphicsApi;
private CacheHashType _hashType;
private string _shaderProvider;
/// <summary>
/// Cache storing raw Maxwell shaders as programs.
/// </summary>
private CacheCollection _guestProgramCache;
/// <summary>
/// Cache storing raw host programs.
/// </summary>
private CacheCollection _hostProgramCache;
/// <summary>
/// Version of the guest cache shader (to increment when guest cache structure change).
/// </summary>
private const ulong GuestCacheVersion = 1;
/// <summary>
/// Create a new cache manager instance
/// </summary>
/// <param name="graphicsApi">The graphics api in use</param>
/// <param name="hashType">The hash type in use for the cache</param>
/// <param name="shaderProvider">The name of the codegen provider</param>
/// <param name="titleId">The guest application title ID</param>
/// <param name="shaderCodeGenVersion">Version of the codegen</param>
public CacheManager(CacheGraphicsApi graphicsApi, CacheHashType hashType, string shaderProvider, string titleId, ulong shaderCodeGenVersion)
{
_graphicsApi = graphicsApi;
_hashType = hashType;
_shaderProvider = shaderProvider;
string baseCacheDirectory = Path.Combine(AppDataManager.GamesDirPath, titleId, "cache", "shader");
_guestProgramCache = new CacheCollection(baseCacheDirectory, _hashType, CacheGraphicsApi.Guest, "", "program", GuestCacheVersion);
_hostProgramCache = new CacheCollection(baseCacheDirectory, _hashType, _graphicsApi, _shaderProvider, "host", shaderCodeGenVersion);
}
/// <summary>
/// Entries to remove from the manifest.
/// </summary>
/// <param name="entries">Entries to remove from the manifest of all caches</param>
public void RemoveManifestEntries(HashSet<Hash128> entries)
{
_guestProgramCache.RemoveManifestEntries(entries);
_hostProgramCache.RemoveManifestEntries(entries);
}
/// <summary>
/// Queue a task to flush temporary files to the archives.
/// </summary>
public void FlushToArchive()
{
_guestProgramCache.FlushToArchiveAsync();
_hostProgramCache.FlushToArchiveAsync();
}
/// <summary>
/// Wait for all tasks before this given point to be done.
/// </summary>
public void Synchronize()
{
_guestProgramCache.Synchronize();
_hostProgramCache.Synchronize();
}
/// <summary>
/// Computes the hash of some data using the current cache hashing algorithm.
/// </summary>
/// <param name="data">Some data to generate a hash for.</param>
/// <returns>The hash of some data using the current hashing algorithm of the cache</returns>
public Hash128 ComputeHash(ReadOnlySpan<byte> data)
{
return XXHash128.ComputeHash(data);
}
/// <summary>
/// Save a shader program not present in the program cache.
/// </summary>
/// <param name="programCodeHash">Target program code hash</param>
/// <param name="guestProgram">Guest program raw data</param>
/// <param name="hostProgram">Host program raw data</param>
public void SaveProgram(ref Hash128 programCodeHash, byte[] guestProgram, byte[] hostProgram)
{
_guestProgramCache.AddValue(ref programCodeHash, guestProgram);
_hostProgramCache.AddValue(ref programCodeHash, hostProgram);
}
/// <summary>
/// Add a host shader program not present in the program cache.
/// </summary>
/// <param name="programCodeHash">Target program code hash</param>
/// <param name="data">Host program raw data</param>
public void AddHostProgram(ref Hash128 programCodeHash, byte[] data)
{
_hostProgramCache.AddValue(ref programCodeHash, data);
}
/// <summary>
/// Replace a host shader program present in the program cache.
/// </summary>
/// <param name="programCodeHash">Target program code hash</param>
/// <param name="data">Host program raw data</param>
public void ReplaceHostProgram(ref Hash128 programCodeHash, byte[] data)
{
_hostProgramCache.ReplaceValue(ref programCodeHash, data);
}
/// <summary>
/// Get all guest program hashes.
/// </summary>
/// <returns>All guest program hashes</returns>
public ReadOnlySpan<Hash128> GetGuestProgramList()
{
return _guestProgramCache.HashTable;
}
/// <summary>
/// Get a host program by hash.
/// </summary>
/// <param name="hash">The given hash</param>
/// <returns>The host program if present or null</returns>
public byte[] GetHostProgramByHash(ref Hash128 hash)
{
return _hostProgramCache.GetValueRaw(ref hash);
}
/// <summary>
/// Get a guest program by hash.
/// </summary>
/// <param name="hash">The given hash</param>
/// <returns>The guest program if present or null</returns>
public byte[] GetGuestProgramByHash(ref Hash128 hash)
{
return _guestProgramCache.GetValueRaw(ref hash);
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
_guestProgramCache.Dispose();
_hostProgramCache.Dispose();
}
}
}
}

View file

@ -0,0 +1,38 @@
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Graphics API type accepted by the shader cache.
/// </summary>
enum CacheGraphicsApi : byte
{
/// <summary>
/// OpenGL Core
/// </summary>
OpenGL,
/// <summary>
/// OpenGL ES
/// </summary>
OpenGLES,
/// <summary>
/// Vulkan
/// </summary>
Vulkan,
/// <summary>
/// DirectX
/// </summary>
DirectX,
/// <summary>
/// Metal
/// </summary>
Metal,
/// <summary>
/// Guest, used to cache games raw shader programs.
/// </summary>
Guest
}
}

View file

@ -0,0 +1,13 @@
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Hash algorithm accepted by the shader cache.
/// </summary>
enum CacheHashType : byte
{
/// <summary>
/// xxHash128
/// </summary>
XxHash128
}
}

View file

@ -0,0 +1,97 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Header of the shader cache manifest.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 1, Size = 0x10)]
struct CacheManifestHeader
{
/// <summary>
/// The version of the cache.
/// </summary>
public ulong Version;
/// <summary>
/// The graphics api used for this cache.
/// </summary>
public CacheGraphicsApi GraphicsApi;
/// <summary>
/// The hash type used for this cache.
/// </summary>
public CacheHashType HashType;
/// <summary>
/// CRC-16 checksum over the data in the file.
/// </summary>
public ushort TableChecksum;
/// <summary>
/// Construct a new cache manifest header.
/// </summary>
/// <param name="version">The version of the cache</param>
/// <param name="graphicsApi">The graphics api used for this cache</param>
/// <param name="hashType">The hash type used for this cache</param>
public CacheManifestHeader(ulong version, CacheGraphicsApi graphicsApi, CacheHashType hashType)
{
Version = version;
GraphicsApi = graphicsApi;
HashType = hashType;
TableChecksum = 0;
}
/// <summary>
/// Update the checksum in the header.
/// </summary>
/// <param name="data">The data to perform the checksum on</param>
public void UpdateChecksum(ReadOnlySpan<byte> data)
{
TableChecksum = CalculateCrc16(data);
}
/// <summary>
/// Calculate a CRC-16 over data.
/// </summary>
/// <param name="data">The data to perform the CRC-16 on</param>
/// <returns>A CRC-16 over data</returns>
private static ushort CalculateCrc16(ReadOnlySpan<byte> data)
{
int crc = 0;
const ushort poly = 0x1021;
for (int i = 0; i < data.Length; i++)
{
crc ^= data[i] << 8;
for (int j = 0; j < 8; j++)
{
crc <<= 1;
if ((crc & 0x10000) != 0)
{
crc = (crc ^ poly) & 0xFFFF;
}
}
}
return (ushort)crc;
}
/// <summary>
/// Check the validity of the header.
/// </summary>
/// <param name="version">The target version in use</param>
/// <param name="graphicsApi">The target graphics api in use</param>
/// <param name="hashType">The target hash type in use</param>
/// <param name="data">The data after this header</param>
/// <returns>True if the header is valid</returns>
public bool IsValid(ulong version, CacheGraphicsApi graphicsApi, CacheHashType hashType, ReadOnlySpan<byte> data)
{
return Version == version && GraphicsApi == graphicsApi && HashType == hashType && TableChecksum == CalculateCrc16(data);
}
}
}

View file

@ -0,0 +1,62 @@
using Ryujinx.Graphics.Shader;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Header of a cached guest gpu accessor.
/// </summary>
[StructLayout(LayoutKind.Sequential, Size = 0x20, Pack = 1)]
struct GuestGpuAccessorHeader
{
/// <summary>
/// The count of texture descriptors.
/// </summary>
public int TextureDescriptorCount;
/// <summary>
/// Local Size X for compute shaders.
/// </summary>
public int ComputeLocalSizeX;
/// <summary>
/// Local Size Y for compute shaders.
/// </summary>
public int ComputeLocalSizeY;
/// <summary>
/// Local Size Z for compute shaders.
/// </summary>
public int ComputeLocalSizeZ;
/// <summary>
/// Local Memory size in bytes for compute shaders.
/// </summary>
public int ComputeLocalMemorySize;
/// <summary>
/// Shared Memory size in bytes for compute shaders.
/// </summary>
public int ComputeSharedMemorySize;
/// <summary>
/// Unused/reserved.
/// </summary>
public int Reserved1;
/// <summary>
/// Current primitive topology for geometry shaders.
/// </summary>
public InputTopology PrimitiveTopology;
/// <summary>
/// Unused/reserved.
/// </summary>
public ushort Reserved2;
/// <summary>
/// Unused/reserved.
/// </summary>
public byte Reserved3;
}
}

View file

@ -0,0 +1,88 @@
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Represent a cached shader entry in a guest shader program.
/// </summary>
class GuestShaderCacheEntry
{
/// <summary>
/// The header of the cached shader entry.
/// </summary>
public GuestShaderCacheEntryHeader Header { get; }
/// <summary>
/// The code of this shader.
/// </summary>
/// <remarks>If a Vertex A is present, this also contains the code 2 section.</remarks>
public byte[] Code { get; }
/// <summary>
/// The textures descriptors used for this shader.
/// </summary>
public Dictionary<int, GuestTextureDescriptor> TextureDescriptors { get; }
/// <summary>
/// Create a new instance of <see cref="GuestShaderCacheEntry"/>.
/// </summary>
/// <param name="header">The header of the cached shader entry</param>
/// <param name="code">The code of this shader</param>
private GuestShaderCacheEntry(GuestShaderCacheEntryHeader header, byte[] code)
{
Header = header;
Code = code;
TextureDescriptors = new Dictionary<int, GuestTextureDescriptor>();
}
/// <summary>
/// Parse a raw cached user shader program into an array of shader cache entry.
/// </summary>
/// <param name="data">The raw cached user shader program</param>
/// <param name="fileHeader">The user shader program header</param>
/// <returns>An array of shader cache entry</returns>
public static GuestShaderCacheEntry[] Parse(ref ReadOnlySpan<byte> data, out GuestShaderCacheHeader fileHeader)
{
fileHeader = MemoryMarshal.Read<GuestShaderCacheHeader>(data);
data = data.Slice(Unsafe.SizeOf<GuestShaderCacheHeader>());
ReadOnlySpan<GuestShaderCacheEntryHeader> entryHeaders = MemoryMarshal.Cast<byte, GuestShaderCacheEntryHeader>(data.Slice(0, fileHeader.Count * Unsafe.SizeOf<GuestShaderCacheEntryHeader>()));
data = data.Slice(fileHeader.Count * Unsafe.SizeOf<GuestShaderCacheEntryHeader>());
GuestShaderCacheEntry[] result = new GuestShaderCacheEntry[fileHeader.Count];
for (int i = 0; i < result.Length; i++)
{
GuestShaderCacheEntryHeader header = entryHeaders[i];
// Ignore empty entries
if (header.Size == 0 && header.SizeA == 0)
{
continue;
}
byte[] code = data.Slice(0, header.Size + header.SizeA).ToArray();
data = data.Slice(header.Size + header.SizeA);
result[i] = new GuestShaderCacheEntry(header, code);
ReadOnlySpan<GuestTextureDescriptor> textureDescriptors = MemoryMarshal.Cast<byte, GuestTextureDescriptor>(data.Slice(0, header.GpuAccessorHeader.TextureDescriptorCount * Unsafe.SizeOf<GuestTextureDescriptor>()));
foreach (GuestTextureDescriptor textureDescriptor in textureDescriptors)
{
result[i].TextureDescriptors.Add((int)textureDescriptor.Handle, textureDescriptor);
}
data = data.Slice(header.GpuAccessorHeader.TextureDescriptorCount * Unsafe.SizeOf<GuestTextureDescriptor>());
}
return result;
}
}
}

View file

@ -0,0 +1,67 @@
using Ryujinx.Graphics.Shader;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// The header of a guest shader entry in a guest shader program.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 0x1, Size = 0x30)]
struct GuestShaderCacheEntryHeader
{
/// <summary>
/// The stage of this shader.
/// </summary>
public ShaderStage Stage;
/// <summary>
/// Unused/reserved.
/// </summary>
public byte Reserved1;
/// <summary>
/// Unused/reserved.
/// </summary>
public byte Reserved2;
/// <summary>
/// Unused/reserved.
/// </summary>
public byte Reserved3;
/// <summary>
/// The size of the code section.
/// </summary>
public int Size;
/// <summary>
/// The size of the code2 section if present. (Vertex A)
/// </summary>
public int SizeA;
/// <summary>
/// Unused/reserved.
/// </summary>
public int Reserved4;
/// <summary>
/// The header of the cached gpu accessor.
/// </summary>
public GuestGpuAccessorHeader GpuAccessorHeader;
/// <summary>
/// Create a new guest shader entry header.
/// </summary>
/// <param name="stage">The stage of this shader</param>
/// <param name="size">The size of the code section</param>
/// <param name="sizeA">The size of the code2 section if present (Vertex A)</param>
/// <param name="gpuAccessorHeader">The header of the cached gpu accessor</param>
public GuestShaderCacheEntryHeader(ShaderStage stage, int size, int sizeA, GuestGpuAccessorHeader gpuAccessorHeader) : this()
{
Stage = stage;
Size = size;
SizeA = sizeA;
GpuAccessorHeader = gpuAccessorHeader;
}
}
}

View file

@ -0,0 +1,42 @@
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// The header of a shader program in the guest cache.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 0x1, Size = 0x10)]
struct GuestShaderCacheHeader
{
/// <summary>
/// The count of shaders defining this program.
/// </summary>
public byte Count;
/// <summary>
/// The count of transform feedback data used in this program.
/// </summary>
public byte TransformFeedbackCount;
/// <summary>
/// Unused/reserved.
/// </summary>
public ushort Reserved1;
/// <summary>
/// Unused/reserved.
/// </summary>
public ulong Reserved2;
/// <summary>
/// Create a new guest shader cache header.
/// </summary>
/// <param name="count">The count of shaders defining this program</param>
/// <param name="transformFeedbackCount">The count of transform feedback data used in this program</param>
public GuestShaderCacheHeader(byte count, byte transformFeedbackCount) : this()
{
Count = count;
TransformFeedbackCount = transformFeedbackCount;
}
}
}

View file

@ -0,0 +1,38 @@
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Header for transform feedback.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 1, Size = 0x10)]
struct GuestShaderCacheTransformFeedbackHeader
{
/// <summary>
/// The buffer index of the transform feedback.
/// </summary>
public int BufferIndex;
/// <summary>
/// The stride of the transform feedback.
/// </summary>
public int Stride;
/// <summary>
/// The length of the varying location buffer of the transform feedback.
/// </summary>
public int VaryingLocationsLength;
/// <summary>
/// Reserved/unused.
/// </summary>
public int Reserved1;
public GuestShaderCacheTransformFeedbackHeader(int bufferIndex, int stride, int varyingLocationsLength) : this()
{
BufferIndex = bufferIndex;
Stride = stride;
VaryingLocationsLength = varyingLocationsLength;
}
}
}

View file

@ -0,0 +1,15 @@
using Ryujinx.Graphics.Gpu.Image;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Mostly identical to TextureDescriptor from <see cref="Image"/> but we don't store the address of the texture and store its handle instead.
/// </summary>
[StructLayout(LayoutKind.Sequential, Size = 0x20, Pack = 1)]
struct GuestTextureDescriptor
{
public uint Handle;
internal TextureDescriptor Descriptor;
}
}

View file

@ -0,0 +1,210 @@
using Ryujinx.Common;
using Ryujinx.Graphics.Shader;
using System;
using System.IO;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Host shader entry used for binding information.
/// </summary>
class HostShaderCacheEntry
{
/// <summary>
/// The header of the cached shader entry.
/// </summary>
public HostShaderCacheEntryHeader Header { get; }
/// <summary>
/// Cached constant buffers.
/// </summary>
public BufferDescriptor[] CBuffers { get; }
/// <summary>
/// Cached storage buffers.
/// </summary>
public BufferDescriptor[] SBuffers { get; }
/// <summary>
/// Cached texture descriptors.
/// </summary>
public TextureDescriptor[] Textures { get; }
/// <summary>
/// Cached image descriptors.
/// </summary>
public TextureDescriptor[] Images { get; }
/// <summary>
/// Create a new instance of <see cref="HostShaderCacheEntry"/>.
/// </summary>
/// <param name="header">The header of the cached shader entry</param>
/// <param name="cBuffers">Cached constant buffers</param>
/// <param name="sBuffers">Cached storage buffers</param>
/// <param name="textures">Cached texture descriptors</param>
/// <param name="images">Cached image descriptors</param>
private HostShaderCacheEntry(
HostShaderCacheEntryHeader header,
BufferDescriptor[] cBuffers,
BufferDescriptor[] sBuffers,
TextureDescriptor[] textures,
TextureDescriptor[] images)
{
Header = header;
CBuffers = cBuffers;
SBuffers = sBuffers;
Textures = textures;
Images = images;
}
private HostShaderCacheEntry()
{
Header = new HostShaderCacheEntryHeader();
CBuffers = new BufferDescriptor[0];
SBuffers = new BufferDescriptor[0];
Textures = new TextureDescriptor[0];
Images = new TextureDescriptor[0];
}
private HostShaderCacheEntry(ShaderProgramInfo programInfo)
{
Header = new HostShaderCacheEntryHeader(programInfo.CBuffers.Count,
programInfo.SBuffers.Count,
programInfo.Textures.Count,
programInfo.Images.Count,
programInfo.UsesInstanceId);
CBuffers = programInfo.CBuffers.ToArray();
SBuffers = programInfo.SBuffers.ToArray();
Textures = programInfo.Textures.ToArray();
Images = programInfo.Images.ToArray();
}
/// <summary>
/// Convert the host shader entry to a <see cref="ShaderProgramInfo"/>.
/// </summary>
/// <returns>A new <see cref="ShaderProgramInfo"/> from this instance</returns>
internal ShaderProgramInfo ToShaderProgramInfo()
{
return new ShaderProgramInfo(CBuffers, SBuffers, Textures, Images, Header.UsesInstanceId);
}
/// <summary>
/// Parse a raw cached user shader program into an array of shader cache entry.
/// </summary>
/// <param name="data">The raw cached host shader</param>
/// <param name="programCode">The host shader program</param>
/// <returns>An array of shader cache entry</returns>
internal static HostShaderCacheEntry[] Parse(ReadOnlySpan<byte> data, out ReadOnlySpan<byte> programCode)
{
HostShaderCacheHeader fileHeader = MemoryMarshal.Read<HostShaderCacheHeader>(data);
data = data.Slice(Unsafe.SizeOf<HostShaderCacheHeader>());
ReadOnlySpan<HostShaderCacheEntryHeader> entryHeaders = MemoryMarshal.Cast<byte, HostShaderCacheEntryHeader>(data.Slice(0, fileHeader.Count * Unsafe.SizeOf<HostShaderCacheEntryHeader>()));
data = data.Slice(fileHeader.Count * Unsafe.SizeOf<HostShaderCacheEntryHeader>());
HostShaderCacheEntry[] result = new HostShaderCacheEntry[fileHeader.Count];
for (int i = 0; i < result.Length; i++)
{
HostShaderCacheEntryHeader header = entryHeaders[i];
if (!header.InUse)
{
continue;
}
int cBufferDescriptorsSize = header.CBuffersCount * Unsafe.SizeOf<BufferDescriptor>();
int sBufferDescriptorsSize = header.SBuffersCount * Unsafe.SizeOf<BufferDescriptor>();
int textureDescriptorsSize = header.TexturesCount * Unsafe.SizeOf<TextureDescriptor>();
int imageDescriptorsSize = header.ImagesCount * Unsafe.SizeOf<TextureDescriptor>();
ReadOnlySpan<BufferDescriptor> cBuffers = MemoryMarshal.Cast<byte, BufferDescriptor>(data.Slice(0, cBufferDescriptorsSize));
data = data.Slice(cBufferDescriptorsSize);
ReadOnlySpan<BufferDescriptor> sBuffers = MemoryMarshal.Cast<byte, BufferDescriptor>(data.Slice(0, sBufferDescriptorsSize));
data = data.Slice(sBufferDescriptorsSize);
ReadOnlySpan<TextureDescriptor> textureDescriptors = MemoryMarshal.Cast<byte, TextureDescriptor>(data.Slice(0, textureDescriptorsSize));
data = data.Slice(textureDescriptorsSize);
ReadOnlySpan<TextureDescriptor> imageDescriptors = MemoryMarshal.Cast<byte, TextureDescriptor>(data.Slice(0, imageDescriptorsSize));
data = data.Slice(imageDescriptorsSize);
result[i] = new HostShaderCacheEntry(header, cBuffers.ToArray(), sBuffers.ToArray(), textureDescriptors.ToArray(), imageDescriptors.ToArray());
}
programCode = data.Slice(0, fileHeader.CodeSize);
return result;
}
/// <summary>
/// Create a new host shader cache file.
/// </summary>
/// <param name="programCode">The host shader program</param>
/// <param name="codeHolders">The shaders code holder</param>
/// <returns>Raw data of a new host shader cache file</returns>
internal static byte[] Create(ReadOnlySpan<byte> programCode, ShaderCodeHolder[] codeHolders)
{
HostShaderCacheHeader header = new HostShaderCacheHeader((byte)codeHolders.Length, programCode.Length);
HostShaderCacheEntry[] entries = new HostShaderCacheEntry[codeHolders.Length];
for (int i = 0; i < codeHolders.Length; i++)
{
if (codeHolders[i] == null)
{
entries[i] = new HostShaderCacheEntry();
}
else
{
entries[i] = new HostShaderCacheEntry(codeHolders[i].Info);
}
}
using (MemoryStream stream = new MemoryStream())
{
BinaryWriter writer = new BinaryWriter(stream);
writer.WriteStruct(header);
foreach (HostShaderCacheEntry entry in entries)
{
writer.WriteStruct(entry.Header);
}
foreach (HostShaderCacheEntry entry in entries)
{
foreach (BufferDescriptor cBuffer in entry.CBuffers)
{
writer.WriteStruct(cBuffer);
}
foreach (BufferDescriptor sBuffer in entry.SBuffers)
{
writer.WriteStruct(sBuffer);
}
foreach (TextureDescriptor texture in entry.Textures)
{
writer.WriteStruct(texture);
}
foreach (TextureDescriptor image in entry.Images)
{
writer.WriteStruct(image);
}
}
writer.Write(programCode);
return stream.ToArray();
}
}
}
}

View file

@ -0,0 +1,67 @@
using System.Runtime.InteropServices;
using Ryujinx.Graphics.Shader;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// Host shader entry header used for binding information.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 1, Size = 0x14)]
struct HostShaderCacheEntryHeader
{
/// <summary>
/// Count of constant buffer descriptors.
/// </summary>
public int CBuffersCount;
/// <summary>
/// Count of storage buffer descriptors.
/// </summary>
public int SBuffersCount;
/// <summary>
/// Count of texture descriptors.
/// </summary>
public int TexturesCount;
/// <summary>
/// Count of image descriptors.
/// </summary>
public int ImagesCount;
/// <summary>
/// Set to true if the shader uses instance id.
/// </summary>
[MarshalAs(UnmanagedType.I1)]
public bool UsesInstanceId;
/// <summary>
/// Set to true if this entry is in use.
/// </summary>
[MarshalAs(UnmanagedType.I1)]
public bool InUse;
/// <summary>
/// Reserved / unused.
/// </summary>
public short Reserved;
/// <summary>
/// Create a new host shader cache entry header.
/// </summary>
/// <param name="cBuffersCount">Count of constant buffer descriptors</param>
/// <param name="sBuffersCount">Count of storage buffer descriptors</param>
/// <param name="texturesCount">Count of texture descriptors</param>
/// <param name="imagesCount">Count of image descriptors</param>
/// <param name="usesInstanceId">Set to true if the shader uses instance id</param>
public HostShaderCacheEntryHeader(int cBuffersCount, int sBuffersCount, int texturesCount, int imagesCount, bool usesInstanceId) : this()
{
CBuffersCount = cBuffersCount;
SBuffersCount = sBuffersCount;
TexturesCount = texturesCount;
ImagesCount = imagesCount;
UsesInstanceId = usesInstanceId;
InUse = true;
}
}
}

View file

@ -0,0 +1,42 @@
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader.Cache.Definition
{
/// <summary>
/// The header of a shader program in the guest cache.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 0x1, Size = 0x10)]
struct HostShaderCacheHeader
{
/// <summary>
/// The count of shaders defining this program.
/// </summary>
public byte Count;
/// <summary>
/// Unused/reserved.
/// </summary>
public byte Reserved1;
/// <summary>
/// Unused/reserved.
/// </summary>
public ushort Reserved2;
/// <summary>
/// Size of the shader binary.
/// </summary>
public int CodeSize;
/// <summary>
/// Create a new host shader cache header.
/// </summary>
/// <param name="count">The count of shaders defining this program</param>
/// <param name="codeSize">The size of the shader binary</param>
public HostShaderCacheHeader(byte count, int codeSize) : this()
{
Count = count;
CodeSize = codeSize;
}
}
}

View file

@ -0,0 +1,154 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Gpu.Shader.Cache.Definition;
using Ryujinx.Graphics.Shader;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader
{
class CachedGpuAccessor : TextureDescriptorCapableGpuAccessor, IGpuAccessor
{
private readonly GpuContext _context;
private readonly ReadOnlyMemory<byte> _data;
private readonly GuestGpuAccessorHeader _header;
private readonly Dictionary<int, Image.TextureDescriptor> _textureDescriptors;
/// <summary>
/// Creates a new instance of the cached GPU state accessor for shader translation.
/// </summary>
/// <param name="context">GPU context</param>
/// <param name="data">The data of the shader</param>
/// <param name="header">The cache of the GPU accessor</param>
/// <param name="guestTextureDescriptors">The cache of the texture descriptors</param>
public CachedGpuAccessor(GpuContext context, ReadOnlyMemory<byte> data, GuestGpuAccessorHeader header, Dictionary<int, GuestTextureDescriptor> guestTextureDescriptors)
{
_context = context;
_data = data;
_header = header;
_textureDescriptors = new Dictionary<int, Image.TextureDescriptor>();
foreach (KeyValuePair<int, GuestTextureDescriptor> guestTextureDescriptor in guestTextureDescriptors)
{
_textureDescriptors.Add(guestTextureDescriptor.Key, guestTextureDescriptor.Value.Descriptor);
}
}
/// <summary>
/// Prints a log message.
/// </summary>
/// <param name="message">Message to print</param>
public void Log(string message)
{
Logger.Warning?.Print(LogClass.Gpu, $"Shader translator: {message}");
}
/// <summary>
/// Reads data from GPU memory.
/// </summary>
/// <typeparam name="T">Type of the data to be read</typeparam>
/// <param name="address">GPU virtual address of the data</param>
/// <returns>Data at the memory location</returns>
public override T MemoryRead<T>(ulong address)
{
return MemoryMarshal.Cast<byte, T>(_data.Span.Slice((int)address))[0];
}
/// <summary>
/// Checks if a given memory address is mapped.
/// </summary>
/// <param name="address">GPU virtual address to be checked</param>
/// <returns>True if the address is mapped, false otherwise</returns>
public bool MemoryMapped(ulong address)
{
return address < (ulong)_data.Length;
}
/// <summary>
/// Queries Local Size X for compute shaders.
/// </summary>
/// <returns>Local Size X</returns>
public int QueryComputeLocalSizeX()
{
return _header.ComputeLocalSizeX;
}
/// <summary>
/// Queries Local Size Y for compute shaders.
/// </summary>
/// <returns>Local Size Y</returns>
public int QueryComputeLocalSizeY()
{
return _header.ComputeLocalSizeY;
}
/// <summary>
/// Queries Local Size Z for compute shaders.
/// </summary>
/// <returns>Local Size Z</returns>
public int QueryComputeLocalSizeZ()
{
return _header.ComputeLocalSizeZ;
}
/// <summary>
/// Queries Local Memory size in bytes for compute shaders.
/// </summary>
/// <returns>Local Memory size in bytes</returns>
public int QueryComputeLocalMemorySize()
{
return _header.ComputeLocalMemorySize;
}
/// <summary>
/// Queries Shared Memory size in bytes for compute shaders.
/// </summary>
/// <returns>Shared Memory size in bytes</returns>
public int QueryComputeSharedMemorySize()
{
return _header.ComputeSharedMemorySize;
}
/// <summary>
/// Queries current primitive topology for geometry shaders.
/// </summary>
/// <returns>Current primitive topology</returns>
public InputTopology QueryPrimitiveTopology()
{
return _header.PrimitiveTopology;
}
/// <summary>
/// Queries host storage buffer alignment required.
/// </summary>
/// <returns>Host storage buffer alignment in bytes</returns>
public int QueryStorageBufferOffsetAlignment() => _context.Capabilities.StorageBufferOffsetAlignment;
/// <summary>
/// Queries host support for readable images without a explicit format declaration on the shader.
/// </summary>
/// <returns>True if formatted image load is supported, false otherwise</returns>
public bool QuerySupportsImageLoadFormatted() => _context.Capabilities.SupportsImageLoadFormatted;
/// <summary>
/// Queries host GPU non-constant texture offset support.
/// </summary>
/// <returns>True if the GPU and driver supports non-constant texture offsets, false otherwise</returns>
public bool QuerySupportsNonConstantTextureOffset() => _context.Capabilities.SupportsNonConstantTextureOffset;
/// <summary>
/// Gets the texture descriptor for a given texture on the pool.
/// </summary>
/// <param name="handle">Index of the texture (this is the word offset of the handle in the constant buffer)</param>
/// <returns>Texture descriptor</returns>
public override Image.TextureDescriptor GetTextureDescriptor(int handle)
{
if (!_textureDescriptors.TryGetValue(handle, out Image.TextureDescriptor textureDescriptor))
{
throw new ArgumentException();
}
return textureDescriptor;
}
}
}

View file

@ -1,6 +1,5 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Shader;
@ -9,7 +8,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <summary>
/// Represents a GPU state and memory accessor.
/// </summary>
class GpuAccessor : IGpuAccessor
class GpuAccessor : TextureDescriptorCapableGpuAccessor, IGpuAccessor
{
private readonly GpuContext _context;
private readonly GpuState _state;
@ -78,7 +77,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <typeparam name="T">Type of the data to be read</typeparam>
/// <param name="address">GPU virtual address of the data</param>
/// <returns>Data at the memory location</returns>
public T MemoryRead<T>(ulong address) where T : unmanaged
public override T MemoryRead<T>(ulong address)
{
return _context.MemoryManager.Read<T>(address);
}
@ -134,33 +133,6 @@ namespace Ryujinx.Graphics.Gpu.Shader
: _context.Methods.BufferManager.GetGraphicsUniformBufferUseMask(_stageIndex);
}
/// <summary>
/// Queries texture target information.
/// </summary>
/// <param name="handle">Texture handle</param>
/// <returns>True if the texture is a buffer texture, false otherwise</returns>
public bool QueryIsTextureBuffer(int handle)
{
return GetTextureDescriptor(handle).UnpackTextureTarget() == TextureTarget.TextureBuffer;
}
/// <summary>
/// Queries texture target information.
/// </summary>
/// <param name="handle">Texture handle</param>
/// <returns>True if the texture is a rectangle texture, false otherwise</returns>
public bool QueryIsTextureRectangle(int handle)
{
var descriptor = GetTextureDescriptor(handle);
TextureTarget target = descriptor.UnpackTextureTarget();
bool is2DTexture = target == TextureTarget.Texture2D ||
target == TextureTarget.Texture2DRect;
return !descriptor.UnpackTextureCoordNormalized() && is2DTexture;
}
/// <summary>
/// Queries current primitive topology for geometry shaders.
/// </summary>
@ -208,76 +180,12 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <returns>True if the GPU and driver supports non-constant texture offsets, false otherwise</returns>
public bool QuerySupportsNonConstantTextureOffset() => _context.Capabilities.SupportsNonConstantTextureOffset;
/// <summary>
/// Queries texture format information, for shaders using image load or store.
/// </summary>
/// <remarks>
/// This only returns non-compressed color formats.
/// If the format of the texture is a compressed, depth or unsupported format, then a default value is returned.
/// </remarks>
/// <param name="handle">Texture handle</param>
/// <returns>Color format of the non-compressed texture</returns>
public TextureFormat QueryTextureFormat(int handle)
{
var descriptor = GetTextureDescriptor(handle);
if (!FormatTable.TryGetTextureFormat(descriptor.UnpackFormat(), descriptor.UnpackSrgb(), out FormatInfo formatInfo))
{
return TextureFormat.Unknown;
}
return formatInfo.Format switch
{
Format.R8Unorm => TextureFormat.R8Unorm,
Format.R8Snorm => TextureFormat.R8Snorm,
Format.R8Uint => TextureFormat.R8Uint,
Format.R8Sint => TextureFormat.R8Sint,
Format.R16Float => TextureFormat.R16Float,
Format.R16Unorm => TextureFormat.R16Unorm,
Format.R16Snorm => TextureFormat.R16Snorm,
Format.R16Uint => TextureFormat.R16Uint,
Format.R16Sint => TextureFormat.R16Sint,
Format.R32Float => TextureFormat.R32Float,
Format.R32Uint => TextureFormat.R32Uint,
Format.R32Sint => TextureFormat.R32Sint,
Format.R8G8Unorm => TextureFormat.R8G8Unorm,
Format.R8G8Snorm => TextureFormat.R8G8Snorm,
Format.R8G8Uint => TextureFormat.R8G8Uint,
Format.R8G8Sint => TextureFormat.R8G8Sint,
Format.R16G16Float => TextureFormat.R16G16Float,
Format.R16G16Unorm => TextureFormat.R16G16Unorm,
Format.R16G16Snorm => TextureFormat.R16G16Snorm,
Format.R16G16Uint => TextureFormat.R16G16Uint,
Format.R16G16Sint => TextureFormat.R16G16Sint,
Format.R32G32Float => TextureFormat.R32G32Float,
Format.R32G32Uint => TextureFormat.R32G32Uint,
Format.R32G32Sint => TextureFormat.R32G32Sint,
Format.R8G8B8A8Unorm => TextureFormat.R8G8B8A8Unorm,
Format.R8G8B8A8Snorm => TextureFormat.R8G8B8A8Snorm,
Format.R8G8B8A8Uint => TextureFormat.R8G8B8A8Uint,
Format.R8G8B8A8Sint => TextureFormat.R8G8B8A8Sint,
Format.R8G8B8A8Srgb => TextureFormat.R8G8B8A8Unorm,
Format.R16G16B16A16Float => TextureFormat.R16G16B16A16Float,
Format.R16G16B16A16Unorm => TextureFormat.R16G16B16A16Unorm,
Format.R16G16B16A16Snorm => TextureFormat.R16G16B16A16Snorm,
Format.R16G16B16A16Uint => TextureFormat.R16G16B16A16Uint,
Format.R16G16B16A16Sint => TextureFormat.R16G16B16A16Sint,
Format.R32G32B32A32Float => TextureFormat.R32G32B32A32Float,
Format.R32G32B32A32Uint => TextureFormat.R32G32B32A32Uint,
Format.R32G32B32A32Sint => TextureFormat.R32G32B32A32Sint,
Format.R10G10B10A2Unorm => TextureFormat.R10G10B10A2Unorm,
Format.R10G10B10A2Uint => TextureFormat.R10G10B10A2Uint,
Format.R11G11B10Float => TextureFormat.R11G11B10Float,
_ => TextureFormat.Unknown
};
}
/// <summary>
/// Gets the texture descriptor for a given texture on the pool.
/// </summary>
/// <param name="handle">Index of the texture (this is the shader "fake" handle)</param>
/// <param name="handle">Index of the texture (this is the word offset of the handle in the constant buffer)</param>
/// <returns>Texture descriptor</returns>
private Image.TextureDescriptor GetTextureDescriptor(int handle)
public override Image.TextureDescriptor GetTextureDescriptor(int handle)
{
if (_compute)
{

View file

@ -39,7 +39,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
foreach (ShaderCodeHolder holder in Shaders)
{
holder?.HostShader.Dispose();
holder?.HostShader?.Dispose();
}
}
}

View file

@ -1,9 +1,17 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Shader.Cache;
using Ryujinx.Graphics.Gpu.Shader.Cache.Definition;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader
{
@ -21,6 +29,16 @@ namespace Ryujinx.Graphics.Gpu.Shader
private readonly Dictionary<ulong, List<ShaderBundle>> _cpPrograms;
private readonly Dictionary<ShaderAddresses, List<ShaderBundle>> _gpPrograms;
private CacheManager _cacheManager;
private Dictionary<Hash128, ShaderBundle> _gpProgramsDiskCache;
private Dictionary<Hash128, ShaderBundle> _cpProgramsDiskCache;
/// <summary>
/// Version of the codegen (to be incremented when codegen changes).
/// </summary>
private const ulong ShaderCodeGenVersion = 1;
/// <summary>
/// Creates a new instance of the shader cache.
/// </summary>
@ -33,6 +51,251 @@ namespace Ryujinx.Graphics.Gpu.Shader
_cpPrograms = new Dictionary<ulong, List<ShaderBundle>>();
_gpPrograms = new Dictionary<ShaderAddresses, List<ShaderBundle>>();
_gpProgramsDiskCache = new Dictionary<Hash128, ShaderBundle>();
_cpProgramsDiskCache = new Dictionary<Hash128, ShaderBundle>();
}
/// <summary>
/// Initialize the cache.
/// </summary>
internal void Initialize()
{
if (GraphicsConfig.EnableShaderCache && GraphicsConfig.TitleId != null)
{
_cacheManager = new CacheManager(CacheGraphicsApi.OpenGL, CacheHashType.XxHash128, "glsl", GraphicsConfig.TitleId, ShaderCodeGenVersion);
HashSet<Hash128> invalidEntries = new HashSet<Hash128>();
ReadOnlySpan<Hash128> guestProgramList = _cacheManager.GetGuestProgramList();
for (int programIndex = 0; programIndex < guestProgramList.Length; programIndex++)
{
Hash128 key = guestProgramList[programIndex];
Logger.Info?.Print(LogClass.Gpu, $"Compiling shader {key} ({programIndex + 1} / {guestProgramList.Length})");
byte[] hostProgramBinary = _cacheManager.GetHostProgramByHash(ref key);
bool hasHostCache = hostProgramBinary != null;
IProgram hostProgram = null;
// If the program sources aren't in the cache, compile from saved guest program.
byte[] guestProgram = _cacheManager.GetGuestProgramByHash(ref key);
if (guestProgram == null)
{
Logger.Error?.Print(LogClass.Gpu, $"Ignoring orphan shader hash {key} in cache (is the cache incomplete?)");
// Should not happen, but if someone messed with the cache it's better to catch it.
invalidEntries.Add(key);
continue;
}
ReadOnlySpan<byte> guestProgramReadOnlySpan = guestProgram;
ReadOnlySpan<GuestShaderCacheEntry> cachedShaderEntries = GuestShaderCacheEntry.Parse(ref guestProgramReadOnlySpan, out GuestShaderCacheHeader fileHeader);
if (cachedShaderEntries[0].Header.Stage == ShaderStage.Compute)
{
Debug.Assert(cachedShaderEntries.Length == 1);
GuestShaderCacheEntry entry = cachedShaderEntries[0];
HostShaderCacheEntry[] hostShaderEntries = null;
// Try loading host shader binary.
if (hasHostCache)
{
hostShaderEntries = HostShaderCacheEntry.Parse(hostProgramBinary, out ReadOnlySpan<byte> hostProgramBinarySpan);
hostProgramBinary = hostProgramBinarySpan.ToArray();
hostProgram = _context.Renderer.LoadProgramBinary(hostProgramBinary);
}
bool isHostProgramValid = hostProgram != null;
ShaderProgram program;
ShaderProgramInfo shaderProgramInfo;
// Reconstruct code holder.
if (isHostProgramValid)
{
program = new ShaderProgram(entry.Header.Stage, "", entry.Header.Size, entry.Header.SizeA);
shaderProgramInfo = hostShaderEntries[0].ToShaderProgramInfo();
}
else
{
IGpuAccessor gpuAccessor = new CachedGpuAccessor(_context, entry.Code, entry.Header.GpuAccessorHeader, entry.TextureDescriptors);
program = Translator.CreateContext(0, gpuAccessor, DefaultFlags | TranslationFlags.Compute).Translate(out shaderProgramInfo);
}
ShaderCodeHolder shader = new ShaderCodeHolder(program, shaderProgramInfo, entry.Code);
// If the host program was rejected by the gpu driver or isn't in cache, try to build from program sources again.
if (hostProgram == null)
{
Logger.Info?.Print(LogClass.Gpu, $"Host shader {key} got invalidated, rebuilding from guest...");
// Compile shader and create program as the shader program binary got invalidated.
shader.HostShader = _context.Renderer.CompileShader(ShaderStage.Compute, shader.Program.Code);
hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, null);
// As the host program was invalidated, save the new entry in the cache.
hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), new ShaderCodeHolder[] { shader });
if (hasHostCache)
{
_cacheManager.ReplaceHostProgram(ref key, hostProgramBinary);
}
else
{
Logger.Warning?.Print(LogClass.Gpu, $"Add missing host shader {key} in cache (is the cache incomplete?)");
_cacheManager.AddHostProgram(ref key, hostProgramBinary);
}
}
_cpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shader));
}
else
{
Debug.Assert(cachedShaderEntries.Length == Constants.ShaderStages);
ShaderCodeHolder[] shaders = new ShaderCodeHolder[cachedShaderEntries.Length];
List<ShaderProgram> shaderPrograms = new List<ShaderProgram>();
TransformFeedbackDescriptor[] tfd = ReadTransformationFeedbackInformations(ref guestProgramReadOnlySpan, fileHeader);
TranslationFlags flags = DefaultFlags;
if (tfd != null)
{
flags = TranslationFlags.Feedback;
}
TranslationCounts counts = new TranslationCounts();
HostShaderCacheEntry[] hostShaderEntries = null;
// Try loading host shader binary.
if (hasHostCache)
{
hostShaderEntries = HostShaderCacheEntry.Parse(hostProgramBinary, out ReadOnlySpan<byte> hostProgramBinarySpan);
hostProgramBinary = hostProgramBinarySpan.ToArray();
hostProgram = _context.Renderer.LoadProgramBinary(hostProgramBinary);
}
bool isHostProgramValid = hostProgram != null;
// Reconstruct code holder.
for (int i = 0; i < cachedShaderEntries.Length; i++)
{
GuestShaderCacheEntry entry = cachedShaderEntries[i];
if (entry == null)
{
continue;
}
ShaderProgram program;
if (entry.Header.SizeA != 0)
{
ShaderProgramInfo shaderProgramInfo;
if (isHostProgramValid)
{
program = new ShaderProgram(entry.Header.Stage, "", entry.Header.Size, entry.Header.SizeA);
shaderProgramInfo = hostShaderEntries[i].ToShaderProgramInfo();
}
else
{
IGpuAccessor gpuAccessor = new CachedGpuAccessor(_context, entry.Code, entry.Header.GpuAccessorHeader, entry.TextureDescriptors);
program = Translator.CreateContext((ulong)entry.Header.Size, 0, gpuAccessor, flags, counts).Translate(out shaderProgramInfo);
}
// NOTE: Vertex B comes first in the shader cache.
byte[] code = entry.Code.AsSpan().Slice(0, entry.Header.Size).ToArray();
byte[] code2 = entry.Code.AsSpan().Slice(entry.Header.Size, entry.Header.SizeA).ToArray();
shaders[i] = new ShaderCodeHolder(program, shaderProgramInfo, code, code2);
}
else
{
ShaderProgramInfo shaderProgramInfo;
if (isHostProgramValid)
{
program = new ShaderProgram(entry.Header.Stage, "", entry.Header.Size, entry.Header.SizeA);
shaderProgramInfo = hostShaderEntries[i].ToShaderProgramInfo();
}
else
{
IGpuAccessor gpuAccessor = new CachedGpuAccessor(_context, entry.Code, entry.Header.GpuAccessorHeader, entry.TextureDescriptors);
program = Translator.CreateContext(0, gpuAccessor, flags, counts).Translate(out shaderProgramInfo);
}
shaders[i] = new ShaderCodeHolder(program, shaderProgramInfo, entry.Code);
}
shaderPrograms.Add(program);
}
// If the host program was rejected by the gpu driver or isn't in cache, try to build from program sources again.
if (!isHostProgramValid)
{
Logger.Info?.Print(LogClass.Gpu, $"Host shader {key} got invalidated, rebuilding from guest...");
List<IShader> hostShaders = new List<IShader>();
// Compile shaders and create program as the shader program binary got invalidated.
for (int stage = 0; stage < Constants.ShaderStages; stage++)
{
ShaderProgram program = shaders[stage]?.Program;
if (program == null)
{
continue;
}
IShader hostShader = _context.Renderer.CompileShader(program.Stage, program.Code);
shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), tfd);
// As the host program was invalidated, save the new entry in the cache.
hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), shaders);
if (hasHostCache)
{
_cacheManager.ReplaceHostProgram(ref key, hostProgramBinary);
}
else
{
Logger.Warning?.Print(LogClass.Gpu, $"Add missing host shader {key} in cache (is the cache incomplete?)");
_cacheManager.AddHostProgram(ref key, hostProgramBinary);
}
}
_gpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shaders));
}
}
// Remove entries that are broken in the cache
_cacheManager.RemoveManifestEntries(invalidEntries);
_cacheManager.FlushToArchive();
_cacheManager.Synchronize();
Logger.Info?.Print(LogClass.Gpu, "Shader cache loaded.");
}
}
/// <summary>
@ -71,7 +334,9 @@ namespace Ryujinx.Graphics.Gpu.Shader
}
}
ShaderCodeHolder shader = TranslateComputeShader(
TranslatorContext[] shaderContexts = new TranslatorContext[1];
shaderContexts[0] = DecodeComputeShader(
state,
gpuVa,
localSizeX,
@ -80,11 +345,45 @@ namespace Ryujinx.Graphics.Gpu.Shader
localMemorySize,
sharedMemorySize);
shader.HostShader = _context.Renderer.CompileShader(ShaderStage.Compute, shader.Program.Code);
bool isShaderCacheEnabled = _cacheManager != null;
IProgram hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, null);
byte[] programCode = null;
Hash128 programCodeHash = default;
GuestShaderCacheEntryHeader[] shaderCacheEntries = null;
ShaderBundle cpShader = new ShaderBundle(hostProgram, shader);
if (isShaderCacheEnabled)
{
// Compute hash and prepare data for shader disk cache comparison.
GetProgramInformations(null, shaderContexts, out programCode, out programCodeHash, out shaderCacheEntries);
}
ShaderBundle cpShader;
// Search for the program hash in loaded shaders.
if (!isShaderCacheEnabled || !_cpProgramsDiskCache.TryGetValue(programCodeHash, out cpShader))
{
if (isShaderCacheEnabled)
{
Logger.Debug?.Print(LogClass.Gpu, $"Shader {programCodeHash} not in cache, compiling!");
}
// The shader isn't currently cached, translate it and compile it.
ShaderCodeHolder shader = TranslateShader(shaderContexts[0]);
shader.HostShader = _context.Renderer.CompileShader(ShaderStage.Compute, shader.Program.Code);
IProgram hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, null);
byte[] hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), new ShaderCodeHolder[] { shader });
cpShader = new ShaderBundle(hostProgram, shader);
if (isShaderCacheEnabled)
{
_cpProgramsDiskCache.Add(programCodeHash, cpShader);
_cacheManager.SaveProgram(ref programCodeHash, CreateGuestProgramDump(programCode, shaderCacheEntries, null), hostProgramBinary);
}
}
if (!isCached)
{
@ -123,9 +422,9 @@ namespace Ryujinx.Graphics.Gpu.Shader
}
}
ShaderCodeHolder[] shaders = new ShaderCodeHolder[Constants.ShaderStages];
TranslatorContext[] shaderContexts = new TranslatorContext[Constants.ShaderStages];
var tfd = GetTransformFeedbackDescriptors(state);
TransformFeedbackDescriptor[] tfd = GetTransformFeedbackDescriptors(state);
TranslationFlags flags = DefaultFlags;
@ -138,40 +437,80 @@ namespace Ryujinx.Graphics.Gpu.Shader
if (addresses.VertexA != 0)
{
shaders[0] = TranslateGraphicsShader(state, counts, flags, ShaderStage.Vertex, addresses.Vertex, addresses.VertexA);
shaderContexts[0] = DecodeGraphicsShader(state, counts, flags, ShaderStage.Vertex, addresses.Vertex, addresses.VertexA);
}
else
{
shaders[0] = TranslateGraphicsShader(state, counts, flags, ShaderStage.Vertex, addresses.Vertex);
shaderContexts[0] = DecodeGraphicsShader(state, counts, flags, ShaderStage.Vertex, addresses.Vertex);
}
shaders[1] = TranslateGraphicsShader(state, counts, flags, ShaderStage.TessellationControl, addresses.TessControl);
shaders[2] = TranslateGraphicsShader(state, counts, flags, ShaderStage.TessellationEvaluation, addresses.TessEvaluation);
shaders[3] = TranslateGraphicsShader(state, counts, flags, ShaderStage.Geometry, addresses.Geometry);
shaders[4] = TranslateGraphicsShader(state, counts, flags, ShaderStage.Fragment, addresses.Fragment);
shaderContexts[1] = DecodeGraphicsShader(state, counts, flags, ShaderStage.TessellationControl, addresses.TessControl);
shaderContexts[2] = DecodeGraphicsShader(state, counts, flags, ShaderStage.TessellationEvaluation, addresses.TessEvaluation);
shaderContexts[3] = DecodeGraphicsShader(state, counts, flags, ShaderStage.Geometry, addresses.Geometry);
shaderContexts[4] = DecodeGraphicsShader(state, counts, flags, ShaderStage.Fragment, addresses.Fragment);
List<IShader> hostShaders = new List<IShader>();
bool isShaderCacheEnabled = _cacheManager != null;
for (int stage = 0; stage < Constants.ShaderStages; stage++)
byte[] programCode = null;
Hash128 programCodeHash = default;
GuestShaderCacheEntryHeader[] shaderCacheEntries = null;
if (isShaderCacheEnabled)
{
ShaderProgram program = shaders[stage]?.Program;
// Compute hash and prepare data for shader disk cache comparison.
GetProgramInformations(tfd, shaderContexts, out programCode, out programCodeHash, out shaderCacheEntries);
}
if (program == null)
ShaderBundle gpShaders;
// Search for the program hash in loaded shaders.
if (!isShaderCacheEnabled || !_gpProgramsDiskCache.TryGetValue(programCodeHash, out gpShaders))
{
if (isShaderCacheEnabled)
{
continue;
Logger.Debug?.Print(LogClass.Gpu, $"Shader {programCodeHash} not in cache, compiling!");
}
IShader hostShader = _context.Renderer.CompileShader(program.Stage, program.Code);
// The shader isn't currently cached, translate it and compile it.
ShaderCodeHolder[] shaders = new ShaderCodeHolder[Constants.ShaderStages];
shaders[stage].HostShader = hostShader;
shaders[0] = TranslateShader(shaderContexts[0]);
shaders[1] = TranslateShader(shaderContexts[1]);
shaders[2] = TranslateShader(shaderContexts[2]);
shaders[3] = TranslateShader(shaderContexts[3]);
shaders[4] = TranslateShader(shaderContexts[4]);
hostShaders.Add(hostShader);
List<IShader> hostShaders = new List<IShader>();
for (int stage = 0; stage < Constants.ShaderStages; stage++)
{
ShaderProgram program = shaders[stage]?.Program;
if (program == null)
{
continue;
}
IShader hostShader = _context.Renderer.CompileShader(program.Stage, program.Code);
shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
IProgram hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), tfd);
byte[] hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), shaders);
gpShaders = new ShaderBundle(hostProgram, shaders);
if (isShaderCacheEnabled)
{
_gpProgramsDiskCache.Add(programCodeHash, gpShaders);
_cacheManager.SaveProgram(ref programCodeHash, CreateGuestProgramDump(programCode, shaderCacheEntries, tfd), hostProgramBinary);
}
}
IProgram hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), tfd);
ShaderBundle gpShaders = new ShaderBundle(hostProgram, shaders);
if (!isCached)
{
list = new List<ShaderBundle>();
@ -286,7 +625,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// Decode the binary Maxwell shader code to a translator context.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
@ -295,8 +634,8 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <param name="localMemorySize">Local memory size of the compute shader</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <returns>Compiled compute shader code</returns>
private ShaderCodeHolder TranslateComputeShader(
/// <returns>The generated translator context</returns>
private TranslatorContext DecodeComputeShader(
GpuState state,
ulong gpuVa,
int localSizeX,
@ -312,25 +651,11 @@ namespace Ryujinx.Graphics.Gpu.Shader
GpuAccessor gpuAccessor = new GpuAccessor(_context, state, localSizeX, localSizeY, localSizeZ, localMemorySize, sharedMemorySize);
ShaderProgram program;
program = Translator.Translate(gpuVa, gpuAccessor, DefaultFlags | TranslationFlags.Compute);
byte[] code = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
_dumper.Dump(code, compute: true, out string fullPath, out string codePath);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
return new ShaderCodeHolder(program, code);
return Translator.CreateContext(gpuVa, gpuAccessor, DefaultFlags | TranslationFlags.Compute);
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// Decode the binary Maxwell shader code to a translator context.
/// </summary>
/// <remarks>
/// This will combine the "Vertex A" and "Vertex B" shader stages, if specified, into one shader.
@ -341,8 +666,8 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <param name="stage">Shader stage</param>
/// <param name="gpuVa">GPU virtual address of the shader code</param>
/// <param name="gpuVaA">Optional GPU virtual address of the "Vertex A" shader code</param>
/// <returns>Compiled graphics shader code</returns>
private ShaderCodeHolder TranslateGraphicsShader(
/// <returns>The generated translator context</returns>
private TranslatorContext DecodeGraphicsShader(
GpuState state,
TranslationCounts counts,
TranslationFlags flags,
@ -359,14 +684,36 @@ namespace Ryujinx.Graphics.Gpu.Shader
if (gpuVaA != 0)
{
ShaderProgram program = Translator.Translate(gpuVaA, gpuVa, gpuAccessor, flags, counts);
return Translator.CreateContext(gpuVaA, gpuVa, gpuAccessor, flags, counts);
}
else
{
return Translator.CreateContext(gpuVa, gpuAccessor, flags, counts);
}
}
byte[] codeA = _context.MemoryManager.GetSpan(gpuVaA, program.SizeA).ToArray();
byte[] codeB = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
/// <summary>
/// Translates a previously generated translator context to something that the host API accepts.
/// </summary>
/// <param name="translatorContext">Current translator context to translate</param>
/// <returns>Compiled graphics shader code</returns>
private ShaderCodeHolder TranslateShader(TranslatorContext translatorContext)
{
if (translatorContext == null)
{
return null;
}
if (translatorContext.AddressA != 0)
{
byte[] codeA = _context.MemoryManager.GetSpan(translatorContext.AddressA, translatorContext.SizeA).ToArray();
byte[] codeB = _context.MemoryManager.GetSpan(translatorContext.Address, translatorContext.Size).ToArray();
_dumper.Dump(codeA, compute: false, out string fullPathA, out string codePathA);
_dumper.Dump(codeB, compute: false, out string fullPathB, out string codePathB);
ShaderProgram program = translatorContext.Translate(out ShaderProgramInfo shaderProgramInfo);
if (fullPathA != null && fullPathB != null && codePathA != null && codePathB != null)
{
program.Prepend("// " + codePathB);
@ -375,23 +722,23 @@ namespace Ryujinx.Graphics.Gpu.Shader
program.Prepend("// " + fullPathA);
}
return new ShaderCodeHolder(program, codeB, codeA);
return new ShaderCodeHolder(program, shaderProgramInfo, codeB, codeA);
}
else
{
ShaderProgram program = Translator.Translate(gpuVa, gpuAccessor, flags, counts);
byte[] code = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
byte[] code = _context.MemoryManager.GetSpan(translatorContext.Address, translatorContext.Size).ToArray();
_dumper.Dump(code, compute: false, out string fullPath, out string codePath);
ShaderProgram program = translatorContext.Translate(out ShaderProgramInfo shaderProgramInfo);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
return new ShaderCodeHolder(program, code);
return new ShaderCodeHolder(program, shaderProgramInfo, code);
}
}
@ -416,6 +763,194 @@ namespace Ryujinx.Graphics.Gpu.Shader
bundle.Dispose();
}
}
_cacheManager?.Dispose();
}
/// <summary>
/// Create a guest shader program.
/// </summary>
/// <param name="programCode">The program code of the shader code</param>
/// <param name="shaderCacheEntries">The resulting guest shader entries header</param>
/// <param name="tfd">The transform feedback descriptors in use</param>
/// <returns>The resulting guest shader program</returns>
private static byte[] CreateGuestProgramDump(ReadOnlySpan<byte> programCode, GuestShaderCacheEntryHeader[] shaderCacheEntries, TransformFeedbackDescriptor[] tfd)
{
using (MemoryStream resultStream = new MemoryStream())
{
BinaryWriter resultStreamWriter = new BinaryWriter(resultStream);
byte transformFeedbackCount = 0;
if (tfd != null)
{
transformFeedbackCount = (byte)tfd.Length;
}
// Header
resultStreamWriter.WriteStruct(new GuestShaderCacheHeader((byte)shaderCacheEntries.Length, transformFeedbackCount));
// Write all entries header
foreach (GuestShaderCacheEntryHeader entry in shaderCacheEntries)
{
resultStreamWriter.WriteStruct(entry);
}
// Finally, write all program code and all transform feedback information.
resultStreamWriter.Write(programCode);
return resultStream.ToArray();
}
}
/// <summary>
/// Write transform feedback guest information to the given stream.
/// </summary>
/// <param name="stream">The stream to write data to</param>
/// <param name="tfd">The current transform feedback descriptors used</param>
private static void WriteTransformationFeedbackInformation(Stream stream, TransformFeedbackDescriptor[] tfd)
{
if (tfd != null)
{
BinaryWriter writer = new BinaryWriter(stream);
foreach (TransformFeedbackDescriptor transform in tfd)
{
writer.WriteStruct(new GuestShaderCacheTransformFeedbackHeader(transform.BufferIndex, transform.Stride, transform.VaryingLocations.Length));
writer.Write(transform.VaryingLocations);
}
}
}
/// <summary>
/// Read transform feedback descriptors from guest.
/// </summary>
/// <param name="data">The raw guest transform feedback descriptors</param>
/// <param name="header">The guest shader program header</param>
/// <returns>The transform feedback descriptors read from guest</returns>
private static TransformFeedbackDescriptor[] ReadTransformationFeedbackInformations(ref ReadOnlySpan<byte> data, GuestShaderCacheHeader header)
{
if (header.TransformFeedbackCount != 0)
{
TransformFeedbackDescriptor[] result = new TransformFeedbackDescriptor[header.TransformFeedbackCount];
for (int i = 0; i < result.Length; i++)
{
GuestShaderCacheTransformFeedbackHeader feedbackHeader = MemoryMarshal.Read<GuestShaderCacheTransformFeedbackHeader>(data);
result[i] = new TransformFeedbackDescriptor(feedbackHeader.BufferIndex, feedbackHeader.Stride, data.Slice(Unsafe.SizeOf<GuestShaderCacheTransformFeedbackHeader>(), feedbackHeader.VaryingLocationsLength).ToArray());
data = data.Slice(Unsafe.SizeOf<GuestShaderCacheTransformFeedbackHeader>() + feedbackHeader.VaryingLocationsLength);
}
return result;
}
return null;
}
/// <summary>
/// Create a new instance of <see cref="GuestGpuAccessorHeader"/> from an gpu accessor.
/// </summary>
/// <param name="gpuAccessor">The gpu accessor</param>
/// <returns>a new instance of <see cref="GuestGpuAccessorHeader"/></returns>
private static GuestGpuAccessorHeader CreateGuestGpuAccessorCache(IGpuAccessor gpuAccessor)
{
return new GuestGpuAccessorHeader
{
ComputeLocalSizeX = gpuAccessor.QueryComputeLocalSizeX(),
ComputeLocalSizeY = gpuAccessor.QueryComputeLocalSizeY(),
ComputeLocalSizeZ = gpuAccessor.QueryComputeLocalSizeZ(),
ComputeLocalMemorySize = gpuAccessor.QueryComputeLocalMemorySize(),
ComputeSharedMemorySize = gpuAccessor.QueryComputeSharedMemorySize(),
PrimitiveTopology = gpuAccessor.QueryPrimitiveTopology(),
};
}
/// <summary>
/// Write the guest GpuAccessor informations to the given stream.
/// </summary>
/// <param name="stream">The stream to write the guest GpuAcessor</param>
/// <param name="shaderContext">The shader tranlator context in use</param>
/// <returns>The guest gpu accessor header</returns>
private static GuestGpuAccessorHeader WriteGuestGpuAccessorCache(Stream stream, TranslatorContext shaderContext)
{
BinaryWriter writer = new BinaryWriter(stream);
GuestGpuAccessorHeader header = CreateGuestGpuAccessorCache(shaderContext.GpuAccessor);
// If we have a full gpu accessor, cache textures descriptors
if (shaderContext.GpuAccessor is GpuAccessor gpuAccessor)
{
HashSet<int> textureHandlesInUse = shaderContext.TextureHandlesForCache;
header.TextureDescriptorCount = textureHandlesInUse.Count;
foreach (int textureHandle in textureHandlesInUse)
{
GuestTextureDescriptor textureDescriptor = gpuAccessor.GetTextureDescriptor(textureHandle).ToCache();
textureDescriptor.Handle = (uint)textureHandle;
writer.WriteStruct(textureDescriptor);
}
}
return header;
}
/// <summary>
/// Get the shader program information for use on the shader cache.
/// </summary>
/// <param name="tfd">The current transform feedback descriptors used</param>
/// <param name="shaderContexts">The shader translators context in use</param>
/// <param name="programCode">The resulting raw shader program code</param>
/// <param name="programCodeHash">The resulting raw shader program code hash</param>
/// <param name="entries">The resulting guest shader entries header</param>
private void GetProgramInformations(TransformFeedbackDescriptor[] tfd, ReadOnlySpan<TranslatorContext> shaderContexts, out byte[] programCode, out Hash128 programCodeHash, out GuestShaderCacheEntryHeader[] entries)
{
GuestShaderCacheEntryHeader ComputeStage(Stream stream, TranslatorContext context)
{
if (context == null)
{
return new GuestShaderCacheEntryHeader();
}
ReadOnlySpan<byte> data = _context.MemoryManager.GetSpan(context.Address, context.Size);
stream.Write(data);
int size = data.Length;
int sizeA = 0;
if (context.AddressA != 0)
{
data = _context.MemoryManager.GetSpan(context.AddressA, context.SizeA);
sizeA = data.Length;
stream.Write(data);
}
GuestGpuAccessorHeader gpuAccessorHeader = WriteGuestGpuAccessorCache(stream, context);
return new GuestShaderCacheEntryHeader(context.Stage, size, sizeA, gpuAccessorHeader);
}
entries = new GuestShaderCacheEntryHeader[shaderContexts.Length];
using (MemoryStream stream = new MemoryStream())
{
for (int i = 0; i < shaderContexts.Length; i++)
{
entries[i] = ComputeStage(stream, shaderContexts[i]);
}
WriteTransformationFeedbackInformation(stream, tfd);
programCode = stream.ToArray();
programCodeHash = _cacheManager.ComputeHash(programCode);
}
}
}
}

View file

@ -13,9 +13,15 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// </summary>
public ShaderProgram Program { get; }
/// <summary>
/// Shader program information.
/// </summary>
public ShaderProgramInfo Info { get; }
/// <summary>
/// Host shader object.
/// </summary>
/// <remarks>Null if the host shader program cache is in use.</remarks>
public IShader HostShader { get; set; }
/// <summary>
@ -32,11 +38,13 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// Creates a new instace of the shader code holder.
/// </summary>
/// <param name="program">Shader program</param>
/// <param name="info">Shader program information</param>
/// <param name="code">Maxwell binary shader code</param>
/// <param name="code2">Optional binary shader code of the "Vertex A" shader, when combined with "Vertex B"</param>
public ShaderCodeHolder(ShaderProgram program, byte[] code, byte[] code2 = null)
public ShaderCodeHolder(ShaderProgram program, ShaderProgramInfo info, byte[] code, byte[] code2 = null)
{
Program = program;
Info = info;
Code = code;
Code2 = code2;
}

View file

@ -0,0 +1,104 @@
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Shader;
namespace Ryujinx.Graphics.Gpu.Shader
{
abstract class TextureDescriptorCapableGpuAccessor : IGpuAccessor
{
public abstract T MemoryRead<T>(ulong address) where T : unmanaged;
public abstract Image.TextureDescriptor GetTextureDescriptor(int handle);
/// <summary>
/// Queries texture format information, for shaders using image load or store.
/// </summary>
/// <remarks>
/// This only returns non-compressed color formats.
/// If the format of the texture is a compressed, depth or unsupported format, then a default value is returned.
/// </remarks>
/// <param name="handle">Texture handle</param>
/// <returns>Color format of the non-compressed texture</returns>
public TextureFormat QueryTextureFormat(int handle)
{
var descriptor = GetTextureDescriptor(handle);
if (!FormatTable.TryGetTextureFormat(descriptor.UnpackFormat(), descriptor.UnpackSrgb(), out FormatInfo formatInfo))
{
return TextureFormat.Unknown;
}
return formatInfo.Format switch
{
Format.R8Unorm => TextureFormat.R8Unorm,
Format.R8Snorm => TextureFormat.R8Snorm,
Format.R8Uint => TextureFormat.R8Uint,
Format.R8Sint => TextureFormat.R8Sint,
Format.R16Float => TextureFormat.R16Float,
Format.R16Unorm => TextureFormat.R16Unorm,
Format.R16Snorm => TextureFormat.R16Snorm,
Format.R16Uint => TextureFormat.R16Uint,
Format.R16Sint => TextureFormat.R16Sint,
Format.R32Float => TextureFormat.R32Float,
Format.R32Uint => TextureFormat.R32Uint,
Format.R32Sint => TextureFormat.R32Sint,
Format.R8G8Unorm => TextureFormat.R8G8Unorm,
Format.R8G8Snorm => TextureFormat.R8G8Snorm,
Format.R8G8Uint => TextureFormat.R8G8Uint,
Format.R8G8Sint => TextureFormat.R8G8Sint,
Format.R16G16Float => TextureFormat.R16G16Float,
Format.R16G16Unorm => TextureFormat.R16G16Unorm,
Format.R16G16Snorm => TextureFormat.R16G16Snorm,
Format.R16G16Uint => TextureFormat.R16G16Uint,
Format.R16G16Sint => TextureFormat.R16G16Sint,
Format.R32G32Float => TextureFormat.R32G32Float,
Format.R32G32Uint => TextureFormat.R32G32Uint,
Format.R32G32Sint => TextureFormat.R32G32Sint,
Format.R8G8B8A8Unorm => TextureFormat.R8G8B8A8Unorm,
Format.R8G8B8A8Snorm => TextureFormat.R8G8B8A8Snorm,
Format.R8G8B8A8Uint => TextureFormat.R8G8B8A8Uint,
Format.R8G8B8A8Sint => TextureFormat.R8G8B8A8Sint,
Format.R8G8B8A8Srgb => TextureFormat.R8G8B8A8Unorm,
Format.R16G16B16A16Float => TextureFormat.R16G16B16A16Float,
Format.R16G16B16A16Unorm => TextureFormat.R16G16B16A16Unorm,
Format.R16G16B16A16Snorm => TextureFormat.R16G16B16A16Snorm,
Format.R16G16B16A16Uint => TextureFormat.R16G16B16A16Uint,
Format.R16G16B16A16Sint => TextureFormat.R16G16B16A16Sint,
Format.R32G32B32A32Float => TextureFormat.R32G32B32A32Float,
Format.R32G32B32A32Uint => TextureFormat.R32G32B32A32Uint,
Format.R32G32B32A32Sint => TextureFormat.R32G32B32A32Sint,
Format.R10G10B10A2Unorm => TextureFormat.R10G10B10A2Unorm,
Format.R10G10B10A2Uint => TextureFormat.R10G10B10A2Uint,
Format.R11G11B10Float => TextureFormat.R11G11B10Float,
_ => TextureFormat.Unknown
};
}
/// <summary>
/// Queries texture target information.
/// </summary>
/// <param name="handle">Texture handle</param>
/// <returns>True if the texture is a buffer texture, false otherwise</returns>
public bool QueryIsTextureBuffer(int handle)
{
return GetTextureDescriptor(handle).UnpackTextureTarget() == TextureTarget.TextureBuffer;
}
/// <summary>
/// Queries texture target information.
/// </summary>
/// <param name="handle">Texture handle</param>
/// <returns>True if the texture is a rectangle texture, false otherwise</returns>
public bool QueryIsTextureRectangle(int handle)
{
var descriptor = GetTextureDescriptor(handle);
TextureTarget target = descriptor.UnpackTextureTarget();
bool is2DTexture = target == TextureTarget.Texture2D ||
target == TextureTarget.Texture2DRect;
return !descriptor.UnpackTextureCoordNormalized() && is2DTexture;
}
}
}