Rewrite scheduler context switch code (#1786)
* Rewrite scheduler context switch code * Fix race in UnmapIpcRestorePermission * Fix thread exit issue that could leave the scheduler in a invalid state * Change context switch method to not wait on guest thread, remove spin wait, use SignalAndWait to pass control * Remove multi-core setting (it is always on now) * Re-enable assert * Remove multicore from default config and schema * Fix race in KTimeManager
This commit is contained in:
parent
3484265d37
commit
48278905d1
37 changed files with 1080 additions and 1160 deletions
|
@ -1,7 +1,10 @@
|
|||
using Ryujinx.Common;
|
||||
using Ryujinx.HLE.HOS.Kernel.Process;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Numerics;
|
||||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
|
@ -10,130 +13,88 @@ namespace Ryujinx.HLE.HOS.Kernel.Threading
|
|||
public const int PrioritiesCount = 64;
|
||||
public const int CpuCoresCount = 4;
|
||||
|
||||
private const int PreemptionPriorityCores012 = 59;
|
||||
private const int PreemptionPriorityCore3 = 63;
|
||||
private const int RoundRobinTimeQuantumMs = 10;
|
||||
|
||||
private static readonly int[] PreemptionPriorities = new int[] { 59, 59, 59, 63 };
|
||||
|
||||
private readonly KernelContext _context;
|
||||
private readonly int _coreId;
|
||||
|
||||
public KSchedulingData SchedulingData { get; private set; }
|
||||
private struct SchedulingState
|
||||
{
|
||||
public bool NeedsScheduling;
|
||||
public KThread SelectedThread;
|
||||
}
|
||||
|
||||
public KCoreContext[] CoreContexts { get; private set; }
|
||||
private SchedulingState _state;
|
||||
|
||||
public bool ThreadReselectionRequested { get; set; }
|
||||
private AutoResetEvent _idleInterruptEvent;
|
||||
private readonly object _idleInterruptEventLock;
|
||||
|
||||
public KScheduler(KernelContext context)
|
||||
private KThread _previousThread;
|
||||
private KThread _currentThread;
|
||||
private readonly KThread _idleThread;
|
||||
|
||||
public KThread PreviousThread => _previousThread;
|
||||
public long LastContextSwitchTime { get; private set; }
|
||||
public long TotalIdleTimeTicks => _idleThread.TotalTimeRunning;
|
||||
|
||||
public KScheduler(KernelContext context, int coreId)
|
||||
{
|
||||
_context = context;
|
||||
_coreId = coreId;
|
||||
|
||||
SchedulingData = new KSchedulingData();
|
||||
_idleInterruptEvent = new AutoResetEvent(false);
|
||||
_idleInterruptEventLock = new object();
|
||||
|
||||
CoreManager = new HleCoreManager();
|
||||
KThread idleThread = CreateIdleThread(context, coreId);
|
||||
|
||||
CoreContexts = new KCoreContext[CpuCoresCount];
|
||||
_currentThread = idleThread;
|
||||
_idleThread = idleThread;
|
||||
|
||||
idleThread.StartHostThread();
|
||||
idleThread.SchedulerWaitEvent.Set();
|
||||
}
|
||||
|
||||
private KThread CreateIdleThread(KernelContext context, int cpuCore)
|
||||
{
|
||||
KThread idleThread = new KThread(context);
|
||||
|
||||
idleThread.Initialize(0UL, 0UL, 0UL, PrioritiesCount, cpuCore, null, ThreadType.Dummy, IdleThreadLoop);
|
||||
|
||||
return idleThread;
|
||||
}
|
||||
|
||||
public static ulong SelectThreads(KernelContext context)
|
||||
{
|
||||
if (context.ThreadReselectionRequested)
|
||||
{
|
||||
return SelectThreadsImpl(context);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0UL;
|
||||
}
|
||||
}
|
||||
|
||||
private static ulong SelectThreadsImpl(KernelContext context)
|
||||
{
|
||||
context.ThreadReselectionRequested = false;
|
||||
|
||||
ulong scheduledCoresMask = 0UL;
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
CoreContexts[core] = new KCoreContext(this, CoreManager);
|
||||
}
|
||||
}
|
||||
KThread thread = context.PriorityQueue.ScheduledThreads(core).FirstOrDefault();
|
||||
|
||||
private void PreemptThreads()
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
PreemptThread(PreemptionPriorityCores012, 0);
|
||||
PreemptThread(PreemptionPriorityCores012, 1);
|
||||
PreemptThread(PreemptionPriorityCores012, 2);
|
||||
PreemptThread(PreemptionPriorityCore3, 3);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
private void PreemptThread(int prio, int core)
|
||||
{
|
||||
IEnumerable<KThread> scheduledThreads = SchedulingData.ScheduledThreads(core);
|
||||
|
||||
KThread selectedThread = scheduledThreads.FirstOrDefault(x => x.DynamicPriority == prio);
|
||||
|
||||
// Yield priority queue.
|
||||
if (selectedThread != null)
|
||||
{
|
||||
SchedulingData.Reschedule(prio, core, selectedThread);
|
||||
}
|
||||
|
||||
IEnumerable<KThread> SuitableCandidates()
|
||||
{
|
||||
foreach (KThread thread in SchedulingData.SuggestedThreads(core))
|
||||
{
|
||||
int srcCore = thread.CurrentCore;
|
||||
|
||||
if (srcCore >= 0)
|
||||
{
|
||||
KThread highestPrioSrcCore = SchedulingData.ScheduledThreads(srcCore).FirstOrDefault();
|
||||
|
||||
if (highestPrioSrcCore != null && highestPrioSrcCore.DynamicPriority < 2)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
if (highestPrioSrcCore == thread)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If the candidate was scheduled after the current thread, then it's not worth it.
|
||||
if (selectedThread == null || selectedThread.LastScheduledTime >= thread.LastScheduledTime)
|
||||
{
|
||||
yield return thread;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Select candidate threads that could run on this core.
|
||||
// Only take into account threads that are not yet selected.
|
||||
KThread dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority == prio);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
SchedulingData.TransferToCore(prio, core, dst);
|
||||
|
||||
selectedThread = dst;
|
||||
}
|
||||
|
||||
// If the priority of the currently selected thread is lower than preemption priority,
|
||||
// then allow threads with lower priorities to be selected aswell.
|
||||
if (selectedThread != null && selectedThread.DynamicPriority > prio)
|
||||
{
|
||||
Func<KThread, bool> predicate = x => x.DynamicPriority >= selectedThread.DynamicPriority;
|
||||
|
||||
dst = SuitableCandidates().FirstOrDefault(predicate);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
SchedulingData.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
}
|
||||
}
|
||||
|
||||
ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
public void SelectThreads()
|
||||
{
|
||||
ThreadReselectionRequested = false;
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
KThread thread = SchedulingData.ScheduledThreads(core).FirstOrDefault();
|
||||
|
||||
CoreContexts[core].SelectThread(thread);
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(thread);
|
||||
}
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
// If the core is not idle (there's already a thread running on it),
|
||||
// then we don't need to attempt load balancing.
|
||||
if (SchedulingData.ScheduledThreads(core).Any())
|
||||
if (context.PriorityQueue.ScheduledThreads(core).Any())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
@ -146,16 +107,15 @@ namespace Ryujinx.HLE.HOS.Kernel.Threading
|
|||
|
||||
// Select candidate threads that could run on this core.
|
||||
// Give preference to threads that are not yet selected.
|
||||
foreach (KThread thread in SchedulingData.SuggestedThreads(core))
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
if (thread.CurrentCore < 0 || thread != CoreContexts[thread.CurrentCore].SelectedThread)
|
||||
if (suggested.ActiveCore < 0 || suggested != context.Schedulers[suggested.ActiveCore]._state.SelectedThread)
|
||||
{
|
||||
dst = thread;
|
||||
|
||||
dst = suggested;
|
||||
break;
|
||||
}
|
||||
|
||||
srcCoresHighestPrioThreads[srcCoresHighestPrioThreadsCount++] = thread.CurrentCore;
|
||||
srcCoresHighestPrioThreads[srcCoresHighestPrioThreadsCount++] = suggested.ActiveCore;
|
||||
}
|
||||
|
||||
// Not yet selected candidate found.
|
||||
|
@ -165,9 +125,9 @@ namespace Ryujinx.HLE.HOS.Kernel.Threading
|
|||
// threads, we should skip load balancing entirely.
|
||||
if (dst.DynamicPriority >= 2)
|
||||
{
|
||||
SchedulingData.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
|
||||
CoreContexts[core].SelectThread(dst);
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(dst);
|
||||
}
|
||||
|
||||
continue;
|
||||
|
@ -179,80 +139,480 @@ namespace Ryujinx.HLE.HOS.Kernel.Threading
|
|||
{
|
||||
int srcCore = srcCoresHighestPrioThreads[index];
|
||||
|
||||
KThread src = SchedulingData.ScheduledThreads(srcCore).ElementAtOrDefault(1);
|
||||
KThread src = context.PriorityQueue.ScheduledThreads(srcCore).ElementAtOrDefault(1);
|
||||
|
||||
if (src != null)
|
||||
{
|
||||
// Run the second thread on the queue on the source core,
|
||||
// move the first one to the current core.
|
||||
KThread origSelectedCoreSrc = CoreContexts[srcCore].SelectedThread;
|
||||
KThread origSelectedCoreSrc = context.Schedulers[srcCore]._state.SelectedThread;
|
||||
|
||||
CoreContexts[srcCore].SelectThread(src);
|
||||
scheduledCoresMask |= context.Schedulers[srcCore].SelectThread(src);
|
||||
|
||||
SchedulingData.TransferToCore(origSelectedCoreSrc.DynamicPriority, core, origSelectedCoreSrc);
|
||||
context.PriorityQueue.TransferToCore(origSelectedCoreSrc.DynamicPriority, core, origSelectedCoreSrc);
|
||||
|
||||
CoreContexts[core].SelectThread(origSelectedCoreSrc);
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(origSelectedCoreSrc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return scheduledCoresMask;
|
||||
}
|
||||
|
||||
public KThread GetCurrentThread()
|
||||
private ulong SelectThread(KThread nextThread)
|
||||
{
|
||||
return GetCurrentThreadOrNull() ?? GetDummyThread();
|
||||
}
|
||||
KThread previousThread = _state.SelectedThread;
|
||||
|
||||
public KThread GetCurrentThreadOrNull()
|
||||
{
|
||||
lock (CoreContexts)
|
||||
if (previousThread != nextThread)
|
||||
{
|
||||
if (previousThread != null)
|
||||
{
|
||||
previousThread.LastScheduledTime = PerformanceCounter.ElapsedTicks;
|
||||
}
|
||||
|
||||
_state.SelectedThread = nextThread;
|
||||
_state.NeedsScheduling = true;
|
||||
return 1UL << _coreId;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0UL;
|
||||
}
|
||||
}
|
||||
|
||||
public static void EnableScheduling(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
KScheduler currentScheduler = context.Schedulers[KernelStatic.GetCurrentThread().CurrentCore];
|
||||
|
||||
// Note that "RescheduleCurrentCore" will block, so "RescheduleOtherCores" must be done first.
|
||||
currentScheduler.RescheduleOtherCores(scheduledCoresMask);
|
||||
currentScheduler.RescheduleCurrentCore();
|
||||
}
|
||||
|
||||
public static void EnableSchedulingFromForeignThread(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
RescheduleOtherCores(context, scheduledCoresMask);
|
||||
}
|
||||
|
||||
private void RescheduleCurrentCore()
|
||||
{
|
||||
if (_state.NeedsScheduling)
|
||||
{
|
||||
Schedule();
|
||||
}
|
||||
}
|
||||
|
||||
private void RescheduleOtherCores(ulong scheduledCoresMask)
|
||||
{
|
||||
RescheduleOtherCores(_context, scheduledCoresMask & ~(1UL << _coreId));
|
||||
}
|
||||
|
||||
private static void RescheduleOtherCores(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
while (scheduledCoresMask != 0)
|
||||
{
|
||||
int coreToSignal = BitOperations.TrailingZeroCount(scheduledCoresMask);
|
||||
|
||||
KThread threadToSignal = context.Schedulers[coreToSignal]._currentThread;
|
||||
|
||||
// Request the thread running on that core to stop and reschedule, if we have one.
|
||||
if (threadToSignal != context.Schedulers[coreToSignal]._idleThread)
|
||||
{
|
||||
threadToSignal.Context.RequestInterrupt();
|
||||
}
|
||||
|
||||
// If the core is idle, ensure that the idle thread is awaken.
|
||||
context.Schedulers[coreToSignal]._idleInterruptEvent.Set();
|
||||
|
||||
scheduledCoresMask &= ~(1UL << coreToSignal);
|
||||
}
|
||||
}
|
||||
|
||||
private void IdleThreadLoop()
|
||||
{
|
||||
while (_context.Running)
|
||||
{
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
KThread nextThread = PickNextThread(_state.SelectedThread);
|
||||
|
||||
if (_idleThread != nextThread)
|
||||
{
|
||||
_idleThread.SchedulerWaitEvent.Reset();
|
||||
WaitHandle.SignalAndWait(nextThread.SchedulerWaitEvent, _idleThread.SchedulerWaitEvent);
|
||||
}
|
||||
|
||||
_idleInterruptEvent.WaitOne();
|
||||
}
|
||||
|
||||
lock (_idleInterruptEventLock)
|
||||
{
|
||||
_idleInterruptEvent.Dispose();
|
||||
_idleInterruptEvent = null;
|
||||
}
|
||||
}
|
||||
|
||||
public void Schedule()
|
||||
{
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
KThread selectedThread = _state.SelectedThread;
|
||||
|
||||
// If the thread is already scheduled and running on the core, we have nothing to do.
|
||||
if (currentThread == selectedThread)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
currentThread.SchedulerWaitEvent.Reset();
|
||||
currentThread.ThreadContext.Unlock();
|
||||
|
||||
// Wake all the threads that might be waiting until this thread context is unlocked.
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
_context.Schedulers[core]._idleInterruptEvent.Set();
|
||||
}
|
||||
|
||||
KThread nextThread = PickNextThread(selectedThread);
|
||||
|
||||
if (currentThread.Context.Running)
|
||||
{
|
||||
// Wait until this thread is scheduled again, and allow the next thread to run.
|
||||
WaitHandle.SignalAndWait(nextThread.SchedulerWaitEvent, currentThread.SchedulerWaitEvent);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Allow the next thread to run.
|
||||
nextThread.SchedulerWaitEvent.Set();
|
||||
|
||||
// We don't need to wait since the thread is exiting, however we need to
|
||||
// make sure this thread will never call the scheduler again, since it is
|
||||
// no longer assigned to a core.
|
||||
currentThread.MakeUnschedulable();
|
||||
|
||||
// Just to be sure, set the core to a invalid value.
|
||||
// This will trigger a exception if it attempts to call schedule again,
|
||||
// rather than leaving the scheduler in a invalid state.
|
||||
currentThread.CurrentCore = -1;
|
||||
}
|
||||
}
|
||||
|
||||
private KThread PickNextThread(KThread selectedThread)
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
if (selectedThread != null)
|
||||
{
|
||||
// Try to run the selected thread.
|
||||
// We need to acquire the context lock to be sure the thread is not
|
||||
// already running on another core. If it is, then we return here
|
||||
// and the caller should try again once there is something available for scheduling.
|
||||
// The thread currently running on the core should have been requested to
|
||||
// interrupt so this is not expected to take long.
|
||||
// The idle thread must also be paused if we are scheduling a thread
|
||||
// on the core, as the scheduled thread will handle the next switch.
|
||||
if (selectedThread.ThreadContext.Lock())
|
||||
{
|
||||
SwitchTo(selectedThread);
|
||||
|
||||
if (!_state.NeedsScheduling)
|
||||
{
|
||||
return selectedThread;
|
||||
}
|
||||
|
||||
selectedThread.ThreadContext.Unlock();
|
||||
}
|
||||
else
|
||||
{
|
||||
return _idleThread;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// The core is idle now, make sure that the idle thread can run
|
||||
// and switch the core when a thread is available.
|
||||
SwitchTo(null);
|
||||
return _idleThread;
|
||||
}
|
||||
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
selectedThread = _state.SelectedThread;
|
||||
}
|
||||
}
|
||||
|
||||
private void SwitchTo(KThread nextThread)
|
||||
{
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
nextThread ??= _idleThread;
|
||||
|
||||
if (currentThread == nextThread)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
long previousTicks = LastContextSwitchTime;
|
||||
long currentTicks = PerformanceCounter.ElapsedTicks;
|
||||
long ticksDelta = currentTicks - previousTicks;
|
||||
|
||||
currentThread.AddCpuTime(ticksDelta);
|
||||
|
||||
if (currentProcess != null)
|
||||
{
|
||||
currentProcess.AddCpuTime(ticksDelta);
|
||||
}
|
||||
|
||||
LastContextSwitchTime = currentTicks;
|
||||
|
||||
if (currentProcess != null)
|
||||
{
|
||||
_previousThread = !currentThread.TerminationRequested && currentThread.ActiveCore == _coreId ? currentThread : null;
|
||||
}
|
||||
else if (currentThread == _idleThread)
|
||||
{
|
||||
_previousThread = null;
|
||||
}
|
||||
|
||||
if (nextThread.CurrentCore != _coreId)
|
||||
{
|
||||
nextThread.CurrentCore = _coreId;
|
||||
}
|
||||
|
||||
_currentThread = nextThread;
|
||||
}
|
||||
|
||||
public static void PreemptionThreadLoop(KernelContext context)
|
||||
{
|
||||
while (context.Running)
|
||||
{
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
if (CoreContexts[core].CurrentThread?.IsCurrentHostThread() ?? false)
|
||||
RotateScheduledQueue(context, core, PreemptionPriorities[core]);
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
|
||||
Thread.Sleep(RoundRobinTimeQuantumMs);
|
||||
}
|
||||
}
|
||||
|
||||
private static void RotateScheduledQueue(KernelContext context, int core, int prio)
|
||||
{
|
||||
IEnumerable<KThread> scheduledThreads = context.PriorityQueue.ScheduledThreads(core);
|
||||
|
||||
KThread selectedThread = scheduledThreads.FirstOrDefault(x => x.DynamicPriority == prio);
|
||||
KThread nextThread = null;
|
||||
|
||||
// Yield priority queue.
|
||||
if (selectedThread != null)
|
||||
{
|
||||
nextThread = context.PriorityQueue.Reschedule(prio, core, selectedThread);
|
||||
}
|
||||
|
||||
IEnumerable<KThread> SuitableCandidates()
|
||||
{
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
if (suggestedCore >= 0)
|
||||
{
|
||||
return CoreContexts[core].CurrentThread;
|
||||
KThread selectedSuggestedCore = context.PriorityQueue.ScheduledThreads(suggestedCore).FirstOrDefault();
|
||||
|
||||
if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If the candidate was scheduled after the current thread, then it's not worth it.
|
||||
if (nextThread == selectedThread ||
|
||||
nextThread == null ||
|
||||
nextThread.LastScheduledTime >= suggested.LastScheduledTime)
|
||||
{
|
||||
yield return suggested;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
// Select candidate threads that could run on this core.
|
||||
// Only take into account threads that are not yet selected.
|
||||
KThread dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority == prio);
|
||||
|
||||
private KThread _dummyThread;
|
||||
|
||||
private KThread GetDummyThread()
|
||||
{
|
||||
if (_dummyThread != null)
|
||||
if (dst != null)
|
||||
{
|
||||
return _dummyThread;
|
||||
context.PriorityQueue.TransferToCore(prio, core, dst);
|
||||
}
|
||||
|
||||
KProcess dummyProcess = new KProcess(_context);
|
||||
// If the priority of the currently selected thread is lower or same as the preemption priority,
|
||||
// then try to migrate a thread with lower priority.
|
||||
KThread bestCandidate = context.PriorityQueue.ScheduledThreads(core).FirstOrDefault();
|
||||
|
||||
dummyProcess.HandleTable.Initialize(1024);
|
||||
if (bestCandidate != null && bestCandidate.DynamicPriority >= prio)
|
||||
{
|
||||
dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority < bestCandidate.DynamicPriority);
|
||||
|
||||
KThread dummyThread = new KThread(_context);
|
||||
if (dst != null)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
}
|
||||
}
|
||||
|
||||
dummyThread.Initialize(0, 0, 0, 44, 0, dummyProcess, ThreadType.Dummy);
|
||||
|
||||
return _dummyThread = dummyThread;
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
public KProcess GetCurrentProcess()
|
||||
public static void Yield(KernelContext context)
|
||||
{
|
||||
return GetCurrentThread().Owner;
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
KThread nextThread = context.PriorityQueue.Reschedule(currentThread.DynamicPriority, currentThread.ActiveCore, currentThread);
|
||||
|
||||
if (nextThread != currentThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public static void YieldWithLoadBalancing(KernelContext context)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
int prio = currentThread.DynamicPriority;
|
||||
int core = currentThread.ActiveCore;
|
||||
|
||||
// Move current thread to the end of the queue.
|
||||
KThread nextThread = context.PriorityQueue.Reschedule(prio, core, currentThread);
|
||||
|
||||
IEnumerable<KThread> SuitableCandidates()
|
||||
{
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
if (suggestedCore >= 0)
|
||||
{
|
||||
KThread selectedSuggestedCore = context.Schedulers[suggestedCore]._state.SelectedThread;
|
||||
|
||||
if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If the candidate was scheduled after the current thread, then it's not worth it,
|
||||
// unless the priority is higher than the current one.
|
||||
if (suggested.LastScheduledTime <= nextThread.LastScheduledTime ||
|
||||
suggested.DynamicPriority < nextThread.DynamicPriority)
|
||||
{
|
||||
yield return suggested;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KThread dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority <= prio);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
else if (currentThread != nextThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public static void YieldToAnyThread(KernelContext context)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
int core = currentThread.ActiveCore;
|
||||
|
||||
context.PriorityQueue.TransferToCore(currentThread.DynamicPriority, -1, currentThread);
|
||||
|
||||
if (!context.PriorityQueue.ScheduledThreads(core).Any())
|
||||
{
|
||||
KThread selectedThread = null;
|
||||
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
|
||||
if (suggestedCore < 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
KThread firstCandidate = context.PriorityQueue.ScheduledThreads(suggestedCore).FirstOrDefault();
|
||||
|
||||
if (firstCandidate == suggested)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (firstCandidate == null || firstCandidate.DynamicPriority >= 2)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(suggested.DynamicPriority, core, suggested);
|
||||
}
|
||||
|
||||
selectedThread = suggested;
|
||||
break;
|
||||
}
|
||||
|
||||
if (currentThread != selectedThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
Dispose(true);
|
||||
}
|
||||
|
||||
protected virtual void Dispose(bool disposing)
|
||||
{
|
||||
if (disposing)
|
||||
// Ensure that the idle thread is not blocked and can exit.
|
||||
lock (_idleInterruptEventLock)
|
||||
{
|
||||
_keepPreempting = false;
|
||||
if (_idleInterruptEvent != null)
|
||||
{
|
||||
_idleInterruptEvent.Set();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue