1
0
Fork 0

Squashed 'tmk_core/' changes from caca2c0..dc0e46e

dc0e46e Rename LUFA to LUFA-git
3bfa7fa Remove LUFA-120730
215b764 Merge commit 'afa0f22a9299686fd88f58ce09c5b521ac917e8f' as 'protocol/lufa/LUFA'
afa0f22 Squashed 'protocol/lufa/LUFA/' content from commit def7fca
c0c42fa Remove submodule of LUFA
30f897d Merge commit '87ced33feb74e79c3281dda36eb6d6d153399b41' as 'protocol/usb_hid/USB_Host_Shield_2.0'
87ced33 Squashed 'protocol/usb_hid/USB_Host_Shield_2.0/' content from commit aab4a69
14f6d49 Remove submodule of USB_Host_Shield_2.0

git-subtree-dir: tmk_core
git-subtree-split: dc0e46eaa4367d4e218f8816e3c117895820f07c
This commit is contained in:
tmk 2015-05-13 11:13:10 +09:00
parent 4d116a04e9
commit f6d56675f9
1575 changed files with 421901 additions and 63190 deletions

View file

@ -0,0 +1,48 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief Application Configuration Header File
*
* This is a header file which is be used to configure some of
* the application's compile time options, as an alternative to
* specifying the compile time constants supplied through a
* makefile or build system.
*
* For information on what each token does, refer to the
* \ref Sec_Options section of the application documentation.
*/
#ifndef _APP_CONFIG_H_
#define _APP_CONFIG_H_
#define DUMMY_RTC
#endif

View file

@ -0,0 +1,93 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief LUFA Library Configuration Header File
*
* This header file is used to configure LUFA's compile time options,
* as an alternative to the compile time constants supplied through
* a makefile.
*
* For information on what each token does, refer to the LUFA
* manual section "Summary of Compile Tokens".
*/
#ifndef _LUFA_CONFIG_H_
#define _LUFA_CONFIG_H_
#if (ARCH == ARCH_AVR8)
/* Non-USB Related Configuration Tokens: */
// #define DISABLE_TERMINAL_CODES
/* USB Class Driver Related Tokens: */
// #define HID_HOST_BOOT_PROTOCOL_ONLY
// #define HID_STATETABLE_STACK_DEPTH {Insert Value Here}
// #define HID_USAGE_STACK_DEPTH {Insert Value Here}
// #define HID_MAX_COLLECTIONS {Insert Value Here}
// #define HID_MAX_REPORTITEMS {Insert Value Here}
// #define HID_MAX_REPORT_IDS {Insert Value Here}
// #define NO_CLASS_DRIVER_AUTOFLUSH
/* General USB Driver Related Tokens: */
// #define ORDERED_EP_CONFIG
#define USE_STATIC_OPTIONS (USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)
#define USB_DEVICE_ONLY
// #define USB_HOST_ONLY
// #define USB_STREAM_TIMEOUT_MS {Insert Value Here}
// #define NO_LIMITED_CONTROLLER_CONNECT
// #define NO_SOF_EVENTS
/* USB Device Mode Driver Related Tokens: */
// #define USE_RAM_DESCRIPTORS
#define USE_FLASH_DESCRIPTORS
// #define USE_EEPROM_DESCRIPTORS
// #define NO_INTERNAL_SERIAL
#define FIXED_CONTROL_ENDPOINT_SIZE 8
#define DEVICE_STATE_AS_GPIOR 0
#define FIXED_NUM_CONFIGURATIONS 1
// #define CONTROL_ONLY_DEVICE
#define INTERRUPT_CONTROL_ENDPOINT
// #define NO_DEVICE_REMOTE_WAKEUP
// #define NO_DEVICE_SELF_POWER
/* USB Host Mode Driver Related Tokens: */
// #define HOST_STATE_AS_GPIOR 0
// #define USB_HOST_TIMEOUT_MS {Insert Value Here}
// #define HOST_DEVICE_SETTLE_DELAY_MS {Insert Value Here}
// #define NO_AUTO_VBUS_MANAGEMENT
// #define INVERTED_VBUS_ENABLE_LINE
#else
#error Unsupported architecture for this LUFA configuration file.
#endif
#endif

View file

@ -0,0 +1,257 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** HID class report descriptor. This is a special descriptor constructed with values from the
* USBIF HID class specification to describe the reports and capabilities of the HID device. This
* descriptor is parsed by the host and its contents used to determine what data (and in what encoding)
* the device will send, and what it may be sent back from the host. Refer to the HID specification for
* more details on HID report descriptors.
*/
const USB_Descriptor_HIDReport_Datatype_t PROGMEM GenericReport[] =
{
/* Use the HID class driver's standard Vendor HID report.
* Vendor Usage Page: 1
* Vendor Collection Usage: 1
* Vendor Report IN Usage: 2
* Vendor Report OUT Usage: 3
* Vendor Report Size: GENERIC_REPORT_SIZE
*/
HID_DESCRIPTOR_VENDOR(0x00, 0x01, 0x02, 0x03, GENERIC_REPORT_SIZE)
};
/** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
const USB_Descriptor_Device_t PROGMEM DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(1,1,0),
.Class = USB_CSCP_NoDeviceClass,
.SubClass = USB_CSCP_NoDeviceSubclass,
.Protocol = USB_CSCP_NoDeviceProtocol,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = 0x03EB,
.ProductID = 0x2063,
.ReleaseNumber = VERSION_BCD(0,0,1),
.ManufacturerStrIndex = STRING_ID_Manufacturer,
.ProductStrIndex = STRING_ID_Product,
.SerialNumStrIndex = USE_INTERNAL_SERIAL,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
const USB_Descriptor_Configuration_t PROGMEM ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t),
.TotalInterfaces = 2,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = (USB_CONFIG_ATTR_RESERVED | USB_CONFIG_ATTR_SELFPOWERED),
.MaxPowerConsumption = USB_CONFIG_POWER_MA(100)
},
.MS_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = INTERFACE_ID_MassStorage,
.AlternateSetting = 0,
.TotalEndpoints = 2,
.Class = MS_CSCP_MassStorageClass,
.SubClass = MS_CSCP_SCSITransparentSubclass,
.Protocol = MS_CSCP_BulkOnlyTransportProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.MS_DataInEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = MASS_STORAGE_IN_EPADDR,
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = MASS_STORAGE_IO_EPSIZE,
.PollingIntervalMS = 0x05
},
.MS_DataOutEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = MASS_STORAGE_OUT_EPADDR,
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = MASS_STORAGE_IO_EPSIZE,
.PollingIntervalMS = 0x05
},
.HID_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = INTERFACE_ID_HID,
.AlternateSetting = 0,
.TotalEndpoints = 1,
.Class = HID_CSCP_HIDClass,
.SubClass = HID_CSCP_NonBootSubclass,
.Protocol = HID_CSCP_NonBootProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.HID_GenericHID =
{
.Header = {.Size = sizeof(USB_HID_Descriptor_HID_t), .Type = HID_DTYPE_HID},
.HIDSpec = VERSION_BCD(1,1,1),
.CountryCode = 0x00,
.TotalReportDescriptors = 1,
.HIDReportType = HID_DTYPE_Report,
.HIDReportLength = sizeof(GenericReport)
},
.HID_ReportINEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = GENERIC_IN_EPADDR,
.Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = GENERIC_EPSIZE,
.PollingIntervalMS = 0x05
},
};
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG);
/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
* form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera");
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"Temperature Datalogger");
/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
const void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = &DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = &ConfigurationDescriptor;
Size = sizeof(USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
switch (DescriptorNumber)
{
case STRING_ID_Language:
Address = &LanguageString;
Size = pgm_read_byte(&LanguageString.Header.Size);
break;
case STRING_ID_Manufacturer:
Address = &ManufacturerString;
Size = pgm_read_byte(&ManufacturerString.Header.Size);
break;
case STRING_ID_Product:
Address = &ProductString;
Size = pgm_read_byte(&ProductString.Header.Size);
break;
}
break;
case HID_DTYPE_HID:
Address = &ConfigurationDescriptor.HID_GenericHID;
Size = sizeof(USB_HID_Descriptor_HID_t);
break;
case HID_DTYPE_Report:
Address = &GenericReport;
Size = sizeof(GenericReport);
break;
}
*DescriptorAddress = Address;
return Size;
}

View file

@ -0,0 +1,87 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <avr/pgmspace.h>
#include <LUFA/Drivers/USB/USB.h>
#include "TempDataLogger.h"
#include "Config/AppConfig.h"
/* Macros: */
/** Endpoint address of the Mass Storage device-to-host data IN endpoint. */
#define MASS_STORAGE_IN_EPADDR (ENDPOINT_DIR_IN | 3)
/** Endpoint address of the Mass Storage host-to-device data OUT endpoint. */
#define MASS_STORAGE_OUT_EPADDR (ENDPOINT_DIR_OUT | 4)
/** Size in bytes of the Mass Storage data endpoints. */
#define MASS_STORAGE_IO_EPSIZE 64
/** Endpoint address of the Generic HID reporting IN endpoint. */
#define GENERIC_IN_EPADDR (ENDPOINT_DIR_IN | 1)
/** Size in bytes of the Generic HID reporting endpoint. */
#define GENERIC_EPSIZE 16
/** Size in bytes of the Generic HID reports (including report ID byte). */
#define GENERIC_REPORT_SIZE sizeof(Device_Report_t)
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
// Mass Storage Interface
USB_Descriptor_Interface_t MS_Interface;
USB_Descriptor_Endpoint_t MS_DataInEndpoint;
USB_Descriptor_Endpoint_t MS_DataOutEndpoint;
// Settings Management Generic HID Interface
USB_Descriptor_Interface_t HID_Interface;
USB_HID_Descriptor_HID_t HID_GenericHID;
USB_Descriptor_Endpoint_t HID_ReportINEndpoint;
} USB_Descriptor_Configuration_t;
/** Enum for the device interface descriptor IDs within the device. Each interface descriptor
* should have a unique ID index associated with it, which can be used to refer to the
* interface from other descriptors.
*/
enum InterfaceDescriptors_t
{
INTERFACE_ID_MassStorage = 0, /**< Mass storage interface descriptor ID */
INTERFACE_ID_HID = 1, /**< HID interface descriptor ID */
};
/** Enum for the device string descriptor IDs within the device. Each string descriptor should
* have a unique ID index associated with it, which can be used to refer to the string from
* other descriptors.
*/
enum StringDescriptors_t
{
STRING_ID_Language = 0, /**< Supported Languages string descriptor ID (must be zero) */
STRING_ID_Manufacturer = 1, /**< Manufacturer string ID */
STRING_ID_Product = 2, /**< Product string ID */
};
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3);
#endif

View file

@ -0,0 +1,534 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Functions to manage the physical Dataflash media, including reading and writing of
* blocks of data. These functions are called by the SCSI layer when data must be stored
* or retrieved to/from the physical storage media. If a different media is used (such
* as a SD card or EEPROM), functions similar to these will need to be generated.
*/
#define INCLUDE_FROM_DATAFLASHMANAGER_C
#include "DataflashManager.h"
/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from
* the pre-selected data OUT endpoint. This routine reads in OS sized blocks from the endpoint and writes
* them to the Dataflash in Dataflash page sized blocks.
*
* \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state
* \param[in] BlockAddress Data block starting address for the write sequence
* \param[in] TotalBlocks Number of blocks of data to write
*/
void DataflashManager_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress,
uint16_t TotalBlocks)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
bool UsingSecondBuffer = false;
/* Select the correct starting Dataflash IC for the block requested */
Dataflash_SelectChipFromPage(CurrDFPage);
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* Copy selected dataflash's current page contents to the Dataflash buffer */
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
#endif
/* Send the Dataflash buffer write command */
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, CurrDFPageByte);
/* Wait until endpoint is ready before continuing */
if (Endpoint_WaitUntilReady())
return;
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the Dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if the endpoint is currently empty */
if (!(Endpoint_IsReadWriteAllowed()))
{
/* Clear the current endpoint bank */
Endpoint_ClearOUT();
/* Wait until the host has sent another packet */
if (Endpoint_WaitUntilReady())
return;
}
/* Check if end of Dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Write the Dataflash buffer contents back to the Dataflash page */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0);
/* Reset the Dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */
if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS))
UsingSecondBuffer = !(UsingSecondBuffer);
/* Select the next Dataflash chip based on the new Dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */
if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
{
/* Copy selected dataflash's current page contents to the Dataflash buffer */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
}
#endif
/* Send the Dataflash buffer write command */
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, 0);
}
/* Write one 16-byte chunk of data to the Dataflash */
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
Dataflash_SendByte(Endpoint_Read_8());
/* Increment the Dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (MSInterfaceInfo->State.IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* Write the Dataflash buffer contents back to the Dataflash page */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0x00);
Dataflash_WaitWhileBusy();
/* If the endpoint is empty, clear it ready for the next packet from the host */
if (!(Endpoint_IsReadWriteAllowed()))
Endpoint_ClearOUT();
/* Deselect all Dataflash chips */
Dataflash_DeselectChip();
}
/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into
* the pre-selected data IN endpoint. This routine reads in Dataflash page sized blocks from the Dataflash
* and writes them in OS sized blocks to the endpoint.
*
* \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state
* \param[in] BlockAddress Data block starting address for the read sequence
* \param[in] TotalBlocks Number of blocks of data to read
*/
void DataflashManager_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress,
uint16_t TotalBlocks)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Select the correct starting Dataflash IC for the block requested */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the Dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
/* Wait until endpoint is ready before continuing */
if (Endpoint_WaitUntilReady())
return;
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the Dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if the endpoint is currently full */
if (!(Endpoint_IsReadWriteAllowed()))
{
/* Clear the endpoint bank to send its contents to the host */
Endpoint_ClearIN();
/* Wait until the endpoint is ready for more data */
if (Endpoint_WaitUntilReady())
return;
}
/* Check if end of Dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Reset the Dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next Dataflash chip based on the new Dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the Dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
}
/* Read one 16-byte chunk of data from the Dataflash */
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
Endpoint_Write_8(Dataflash_ReceiveByte());
/* Increment the Dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (MSInterfaceInfo->State.IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* If the endpoint is full, send its contents to the host */
if (!(Endpoint_IsReadWriteAllowed()))
Endpoint_ClearIN();
/* Deselect all Dataflash chips */
Dataflash_DeselectChip();
}
/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from
* the given RAM buffer. This routine reads in OS sized blocks from the buffer and writes them to the
* Dataflash in Dataflash page sized blocks. This can be linked to FAT libraries to write files to the
* Dataflash.
*
* \param[in] BlockAddress Data block starting address for the write sequence
* \param[in] TotalBlocks Number of blocks of data to write
* \param[in] BufferPtr Pointer to the data source RAM buffer
*/
void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress,
uint16_t TotalBlocks,
const uint8_t* BufferPtr)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
bool UsingSecondBuffer = false;
/* Select the correct starting Dataflash IC for the block requested */
Dataflash_SelectChipFromPage(CurrDFPage);
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* Copy selected dataflash's current page contents to the Dataflash buffer */
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
#endif
/* Send the Dataflash buffer write command */
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, CurrDFPageByte);
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the Dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if end of Dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Write the Dataflash buffer contents back to the Dataflash page */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0);
/* Reset the Dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */
if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS))
UsingSecondBuffer = !(UsingSecondBuffer);
/* Select the next Dataflash chip based on the new Dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */
if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
{
/* Copy selected dataflash's current page contents to the Dataflash buffer */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
}
#endif
/* Send the Dataflash buffer write command */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, 0);
}
/* Write one 16-byte chunk of data to the Dataflash */
for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
Dataflash_SendByte(*(BufferPtr++));
/* Increment the Dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* Write the Dataflash buffer contents back to the Dataflash page */
Dataflash_WaitWhileBusy();
Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0x00);
Dataflash_WaitWhileBusy();
/* Deselect all Dataflash chips */
Dataflash_DeselectChip();
}
/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into
* the preallocated RAM buffer. This routine reads in Dataflash page sized blocks from the Dataflash
* and writes them in OS sized blocks to the given buffer. This can be linked to FAT libraries to read
* the files stored on the Dataflash.
*
* \param[in] BlockAddress Data block starting address for the read sequence
* \param[in] TotalBlocks Number of blocks of data to read
* \param[out] BufferPtr Pointer to the data destination RAM buffer
*/
void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress,
uint16_t TotalBlocks,
uint8_t* BufferPtr)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Select the correct starting Dataflash IC for the block requested */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the Dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the Dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if end of Dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Reset the Dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next Dataflash chip based on the new Dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the Dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
}
/* Read one 16-byte chunk of data from the Dataflash */
for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
*(BufferPtr++) = Dataflash_ReceiveByte();
/* Increment the Dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* Deselect all Dataflash chips */
Dataflash_DeselectChip();
}
/** Disables the Dataflash memory write protection bits on the board Dataflash ICs, if enabled. */
void DataflashManager_ResetDataflashProtections(void)
{
/* Select first Dataflash chip, send the read status register command */
Dataflash_SelectChip(DATAFLASH_CHIP1);
Dataflash_SendByte(DF_CMD_GETSTATUS);
/* Check if sector protection is enabled */
if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
{
Dataflash_ToggleSelectedChipCS();
/* Send the commands to disable sector protection */
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
}
/* Select second Dataflash chip (if present on selected board), send read status register command */
#if (DATAFLASH_TOTALCHIPS == 2)
Dataflash_SelectChip(DATAFLASH_CHIP2);
Dataflash_SendByte(DF_CMD_GETSTATUS);
/* Check if sector protection is enabled */
if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
{
Dataflash_ToggleSelectedChipCS();
/* Send the commands to disable sector protection */
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
}
#endif
/* Deselect current Dataflash chip */
Dataflash_DeselectChip();
}
/** Performs a simple test on the attached Dataflash IC(s) to ensure that they are working.
*
* \return Boolean \c true if all media chips are working, \c false otherwise
*/
bool DataflashManager_CheckDataflashOperation(void)
{
uint8_t ReturnByte;
/* Test first Dataflash IC is present and responding to commands */
Dataflash_SelectChip(DATAFLASH_CHIP1);
Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
ReturnByte = Dataflash_ReceiveByte();
Dataflash_DeselectChip();
/* If returned data is invalid, fail the command */
if (ReturnByte != DF_MANUFACTURER_ATMEL)
return false;
#if (DATAFLASH_TOTALCHIPS == 2)
/* Test second Dataflash IC is present and responding to commands */
Dataflash_SelectChip(DATAFLASH_CHIP2);
Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
ReturnByte = Dataflash_ReceiveByte();
Dataflash_DeselectChip();
/* If returned data is invalid, fail the command */
if (ReturnByte != DF_MANUFACTURER_ATMEL)
return false;
#endif
return true;
}

View file

@ -0,0 +1,86 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for DataflashManager.c.
*/
#ifndef _DATAFLASH_MANAGER_H_
#define _DATAFLASH_MANAGER_H_
/* Includes: */
#include <avr/io.h>
#include "../TempDataLogger.h"
#include "../Descriptors.h"
#include "Config/AppConfig.h"
#include <LUFA/Common/Common.h>
#include <LUFA/Drivers/USB/USB.h>
#include <LUFA/Drivers/Board/Dataflash.h>
/* Preprocessor Checks: */
#if (DATAFLASH_PAGE_SIZE % 16)
#error Dataflash page size must be a multiple of 16 bytes.
#endif
/* Defines: */
/** Total number of bytes of the storage medium, comprised of one or more Dataflash ICs. */
#define VIRTUAL_MEMORY_BYTES ((uint32_t)DATAFLASH_PAGES * DATAFLASH_PAGE_SIZE * DATAFLASH_TOTALCHIPS)
/** Block size of the device. This is kept at 512 to remain compatible with the OS despite the underlying
* storage media (Dataflash) using a different native block size. Do not change this value.
*/
#define VIRTUAL_MEMORY_BLOCK_SIZE 512
/** Total number of blocks of the virtual memory for reporting to the host as the device's total capacity. Do not
* change this value; change VIRTUAL_MEMORY_BYTES instead to alter the media size.
*/
#define VIRTUAL_MEMORY_BLOCKS (VIRTUAL_MEMORY_BYTES / VIRTUAL_MEMORY_BLOCK_SIZE)
/* Function Prototypes: */
void DataflashManager_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress,
uint16_t TotalBlocks);
void DataflashManager_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress,
uint16_t TotalBlocks);
void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress,
uint16_t TotalBlocks,
const uint8_t* BufferPtr) ATTR_NON_NULL_PTR_ARG(3);
void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress,
uint16_t TotalBlocks,
uint8_t* BufferPtr) ATTR_NON_NULL_PTR_ARG(3);
void DataflashManager_ResetDataflashProtections(void);
bool DataflashManager_CheckDataflashOperation(void);
#endif

View file

@ -0,0 +1,135 @@
FatFs Module Source Files R0.09a (C)ChaN, 2012
FILES
ffconf.h Configuration file for FatFs module.
ff.h Common include file for FatFs and application module.
ff.c FatFs module.
diskio.h Common include file for FatFs and disk I/O module.
diskio.c An example of glue function to attach existing disk I/O module to FatFs.
integer.h Integer type definitions for FatFs.
option Optional external functions.
Low level disk I/O module is not included in this archive because the FatFs
module is only a generic file system layer and not depend on any specific
storage device. You have to provide a low level disk I/O module that written
to control your storage device.
AGREEMENTS
FatFs module is an open source software to implement FAT file system to
small embedded systems. This is a free software and is opened for education,
research and commercial developments under license policy of following trems.
Copyright (C) 2012, ChaN, all right reserved.
* The FatFs module is a free software and there is NO WARRANTY.
* No restriction on use. You can use, modify and redistribute it for
personal, non-profit or commercial product UNDER YOUR RESPONSIBILITY.
* Redistributions of source code must retain the above copyright notice.
REVISION HISTORY
Feb 26, 2006 R0.00 Prototype
Apr 29, 2006 R0.01 First release.
Jun 01, 2006 R0.02 Added FAT12.
Removed unbuffered mode.
Fixed a problem on small (<32M) patition.
Jun 10, 2006 R0.02a Added a configuration option _FS_MINIMUM.
Sep 22, 2006 R0.03 Added f_rename.
Changed option _FS_MINIMUM to _FS_MINIMIZE.
Dec 11, 2006 R0.03a Improved cluster scan algolithm to write files fast.
Fixed f_mkdir creates incorrect directory on FAT32.
Feb 04, 2007 R0.04 Supported multiple drive system. (FatFs)
Changed some APIs for multiple drive system.
Added f_mkfs. (FatFs)
Added _USE_FAT32 option. (Tiny-FatFs)
Apr 01, 2007 R0.04a Supported multiple partitions on a plysical drive. (FatFs)
Fixed an endian sensitive code in f_mkfs. (FatFs)
Added a capability of extending the file size to f_lseek.
Added minimization level 3.
Fixed a problem that can collapse a sector when recreate an
existing file in any sub-directory at non FAT32 cfg. (Tiny-FatFs)
May 05, 2007 R0.04b Added _USE_NTFLAG option.
Added FSInfo support.
Fixed some problems corresponds to FAT32. (Tiny-FatFs)
Fixed DBCS name can result FR_INVALID_NAME.
Fixed short seek (0 < ofs <= csize) collapses the file object.
Aug 25, 2007 R0.05 Changed arguments of f_read, f_write.
Changed arguments of f_mkfs. (FatFs)
Fixed f_mkfs on FAT32 creates incorrect FSInfo. (FatFs)
Fixed f_mkdir on FAT32 creates incorrect directory. (FatFs)
Feb 03, 2008 R0.05a Added f_truncate().
Added f_utime().
Fixed off by one error at FAT sub-type determination.
Fixed btr in f_read() can be mistruncated.
Fixed cached sector is not flushed when create and close without write.
Apr 01, 2008 R0.06 Added f_forward(). (Tiny-FatFs)
Added string functions: fputc(), fputs(), fprintf() and fgets().
Improved performance of f_lseek() on move to the same or following cluster.
Apr 01, 2009, R0.07 Merged Tiny-FatFs as a buffer configuration option.
Added long file name support.
Added multiple code page support.
Added re-entrancy for multitask operation.
Added auto cluster size selection to f_mkfs().
Added rewind option to f_readdir().
Changed result code of critical errors.
Renamed string functions to avoid name collision.
Apr 14, 2009, R0.07a Separated out OS dependent code on reentrant cfg.
Added multiple sector size support.
Jun 21, 2009, R0.07c Fixed f_unlink() may return FR_OK on error.
Fixed wrong cache control in f_lseek().
Added relative path feature.
Added f_chdir().
Added f_chdrive().
Added proper case conversion for extended characters.
Nov 03, 2009 R0.07e Separated out configuration options from ff.h to ffconf.h.
Added a configuration option, _LFN_UNICODE.
Fixed f_unlink() fails to remove a sub-dir on _FS_RPATH.
Fixed name matching error on the 13 char boundary.
Changed f_readdir() to return the SFN with always upper case on non-LFN cfg.
May 15, 2010, R0.08 Added a memory configuration option. (_USE_LFN)
Added file lock feature. (_FS_SHARE)
Added fast seek feature. (_USE_FASTSEEK)
Changed some types on the API, XCHAR->TCHAR.
Changed fname member in the FILINFO structure on Unicode cfg.
String functions support UTF-8 encoding files on Unicode cfg.
Aug 16,'10 R0.08a Added f_getcwd(). (_FS_RPATH = 2)
Added sector erase feature. (_USE_ERASE)
Moved file lock semaphore table from fs object to the bss.
Fixed a wrong directory entry is created on non-LFN cfg when the given name contains ';'.
Fixed f_mkfs() creates wrong FAT32 volume.
Jan 15,'11 R0.08b Fast seek feature is also applied to f_read() and f_write().
f_lseek() reports required table size on creating CLMP.
Extended format syntax of f_printf function.
Ignores duplicated directory separators in given path names.
Sep 06,'11 R0.09 f_mkfs() supports multiple partition to finish the multiple partition feature.
Added f_fdisk(). (_MULTI_PARTITION = 2)
Aug 27,'12 R0.09a Fixed assertion failure due to OS/2 EA on FAT12/16.
Changed API rejects null object pointer to avoid crash.
Changed option name _FS_SHARE to _FS_LOCK.

View file

@ -0,0 +1,98 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2007 */
/*-----------------------------------------------------------------------*/
/* This is a stub disk I/O module that acts as front end of the existing */
/* disk I/O modules and attach it to FatFs module with common interface. */
/*-----------------------------------------------------------------------*/
#include "diskio.h"
/*-----------------------------------------------------------------------*/
/* Initialize a Drive */
DSTATUS disk_initialize (
BYTE drv /* Physical drive number (0..) */
)
{
return FR_OK;
}
/*-----------------------------------------------------------------------*/
/* Return Disk Status */
DSTATUS disk_status (
BYTE drv /* Physical drive number (0..) */
)
{
return FR_OK;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
DRESULT disk_read (
BYTE drv, /* Physical drive number (0..) */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Sector address (LBA) */
BYTE count /* Number of sectors to read (1..128) */
)
{
DataflashManager_ReadBlocks_RAM(sector, count, buff);
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
#if _READONLY == 0
DRESULT disk_write (
BYTE drv, /* Physical drive number (0..) */
const BYTE *buff, /* Data to be written */
DWORD sector, /* Sector address (LBA) */
BYTE count /* Number of sectors to write (1..128) */
)
{
DataflashManager_WriteBlocks_RAM(sector, count, buff);
return RES_OK;
}
#endif /* _READONLY */
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
DRESULT disk_ioctl (
BYTE drv, /* Physical drive number (0..) */
BYTE ctrl, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
if (ctrl == CTRL_SYNC)
return RES_OK;
else
return RES_PARERR;
}
DWORD get_fattime (void)
{
TimeDate_t CurrTimeDate;
RTC_GetTimeDate(&CurrTimeDate);
return ((DWORD)(20 + CurrTimeDate.Year) << 25) |
((DWORD)CurrTimeDate.Month << 21) |
((DWORD)CurrTimeDate.Day << 16) |
((DWORD)CurrTimeDate.Hour << 11) |
((DWORD)CurrTimeDate.Minute << 5) |
(((DWORD)CurrTimeDate.Second >> 1) << 0);
}

View file

@ -0,0 +1,55 @@
/*-----------------------------------------------------------------------
/ Low level disk interface module include file
/-----------------------------------------------------------------------*/
#ifndef _DISKIO_DEFINED
#define _DISKIO_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
#include "integer.h"
#include "../DataflashManager.h"
/* Status of Disk Functions */
typedef BYTE DSTATUS;
/* Results of Disk Functions */
typedef enum {
RES_OK = 0, /* 0: Successful */
RES_ERROR, /* 1: R/W Error */
RES_WRPRT, /* 2: Write Protected */
RES_NOTRDY, /* 3: Not Ready */
RES_PARERR /* 4: Invalid Parameter */
} DRESULT;
/*---------------------------------------*/
/* Prototypes for disk control functions */
DSTATUS disk_initialize (BYTE);
DSTATUS disk_status (BYTE);
DRESULT disk_read (BYTE, BYTE*, DWORD, BYTE);
#if _READONLY == 0
DRESULT disk_write (BYTE, const BYTE*, DWORD, BYTE);
#endif
DRESULT disk_ioctl (BYTE, BYTE, void*);
/* Disk Status Bits (DSTATUS) */
#define STA_NOINIT 0x01 /* Drive not initialized */
#define STA_NODISK 0x02 /* No medium in the drive */
#define STA_PROTECT 0x04 /* Write protected */
/* Generic command */
#define CTRL_SYNC 0 /* Mandatory for write functions */
#ifdef __cplusplus
}
#endif
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,337 @@
/*---------------------------------------------------------------------------/
/ FatFs - FAT file system module include file R0.09a (C)ChaN, 2012
/----------------------------------------------------------------------------/
/ FatFs module is a generic FAT file system module for small embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2012, ChaN, all right reserved.
/
/ * The FatFs module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial product UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/----------------------------------------------------------------------------*/
#ifndef _FATFS
#define _FATFS 4004 /* Revision ID */
#ifdef __cplusplus
extern "C" {
#endif
#include "integer.h" /* Basic integer types */
#include "ffconf.h" /* FatFs configuration options */
#if _FATFS != _FFCONF
#error Wrong configuration file (ffconf.h).
#endif
/* Definitions of volume management */
#if _MULTI_PARTITION /* Multiple partition configuration */
typedef struct {
BYTE pd; /* Physical drive number */
BYTE pt; /* Partition: 0:Auto detect, 1-4:Forced partition) */
} PARTITION;
extern PARTITION VolToPart[]; /* Volume - Partition resolution table */
#define LD2PD(vol) (VolToPart[vol].pd) /* Get physical drive number */
#define LD2PT(vol) (VolToPart[vol].pt) /* Get partition index */
#else /* Single partition configuration */
#define LD2PD(vol) (BYTE)(vol) /* Each logical drive is bound to the same physical drive number */
#define LD2PT(vol) 0 /* Always mounts the 1st partition or in SFD */
#endif
/* Type of path name strings on FatFs API */
#if _LFN_UNICODE /* Unicode string */
#if !_USE_LFN
#error _LFN_UNICODE must be 0 in non-LFN cfg.
#endif
#ifndef _INC_TCHAR
typedef WCHAR TCHAR;
#define _T(x) L ## x
#define _TEXT(x) L ## x
#endif
#else /* ANSI/OEM string */
#ifndef _INC_TCHAR
typedef char TCHAR;
#define _T(x) x
#define _TEXT(x) x
#endif
#endif
/* File system object structure (FATFS) */
typedef struct {
BYTE fs_type; /* FAT sub-type (0:Not mounted) */
BYTE drv; /* Physical drive number */
BYTE csize; /* Sectors per cluster (1,2,4...128) */
BYTE n_fats; /* Number of FAT copies (1,2) */
BYTE wflag; /* win[] dirty flag (1:must be written back) */
BYTE fsi_flag; /* fsinfo dirty flag (1:must be written back) */
WORD id; /* File system mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
#if _MAX_SS != 512
WORD ssize; /* Bytes per sector (512, 1024, 2048 or 4096) */
#endif
#if _FS_REENTRANT
_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !_FS_READONLY
DWORD last_clust; /* Last allocated cluster */
DWORD free_clust; /* Number of free clusters */
DWORD fsi_sector; /* fsinfo sector (FAT32) */
#endif
#if _FS_RPATH
DWORD cdir; /* Current directory start cluster (0:root) */
#endif
DWORD n_fatent; /* Number of FAT entries (= number of clusters + 2) */
DWORD fsize; /* Sectors per FAT */
DWORD fatbase; /* FAT start sector */
DWORD dirbase; /* Root directory start sector (FAT32:Cluster#) */
DWORD database; /* Data start sector */
DWORD winsect; /* Current sector appearing in the win[] */
BYTE win[_MAX_SS]; /* Disk access window for Directory, FAT (and Data on tiny cfg) */
} FATFS;
/* File object structure (FIL) */
typedef struct {
FATFS* fs; /* Pointer to the related file system object */
WORD id; /* File system mount ID of the related file system object */
BYTE flag; /* File status flags */
BYTE pad1;
DWORD fptr; /* File read/write pointer (0ed on file open) */
DWORD fsize; /* File size */
DWORD sclust; /* File data start cluster (0:no data cluster, always 0 when fsize is 0) */
DWORD clust; /* Current cluster of fpter */
DWORD dsect; /* Current data sector of fpter */
#if !_FS_READONLY
DWORD dir_sect; /* Sector containing the directory entry */
BYTE* dir_ptr; /* Pointer to the directory entry in the window */
#endif
#if _USE_FASTSEEK
DWORD* cltbl; /* Pointer to the cluster link map table (null on file open) */
#endif
#if _FS_LOCK
UINT lockid; /* File lock ID (index of file semaphore table Files[]) */
#endif
#if !_FS_TINY
BYTE buf[_MAX_SS]; /* File data read/write buffer */
#endif
} FIL;
/* Directory object structure (DIR) */
typedef struct {
FATFS* fs; /* Pointer to the owner file system object */
WORD id; /* Owner file system mount ID */
WORD index; /* Current read/write index number */
DWORD sclust; /* Table start cluster (0:Root dir) */
DWORD clust; /* Current cluster */
DWORD sect; /* Current sector */
BYTE* dir; /* Pointer to the current SFN entry in the win[] */
BYTE* fn; /* Pointer to the SFN (in/out) {file[8],ext[3],status[1]} */
#if _USE_LFN
WCHAR* lfn; /* Pointer to the LFN working buffer */
WORD lfn_idx; /* Last matched LFN index number (0xFFFF:No LFN) */
#endif
} DIR;
/* File status structure (FILINFO) */
typedef struct {
DWORD fsize; /* File size */
WORD fdate; /* Last modified date */
WORD ftime; /* Last modified time */
BYTE fattrib; /* Attribute */
TCHAR fname[13]; /* Short file name (8.3 format) */
#if _USE_LFN
TCHAR* lfname; /* Pointer to the LFN buffer */
UINT lfsize; /* Size of LFN buffer in TCHAR */
#endif
} FILINFO;
/* File function return code (FRESULT) */
typedef enum {
FR_OK = 0, /* (0) Succeeded */
FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */
FR_INT_ERR, /* (2) Assertion failed */
FR_NOT_READY, /* (3) The physical drive cannot work */
FR_NO_FILE, /* (4) Could not find the file */
FR_NO_PATH, /* (5) Could not find the path */
FR_INVALID_NAME, /* (6) The path name format is invalid */
FR_DENIED, /* (7) Access denied due to prohibited access or directory full */
FR_EXIST, /* (8) Access denied due to prohibited access */
FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */
FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */
FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */
FR_NOT_ENABLED, /* (12) The volume has no work area */
FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any parameter error */
FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */
FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */
FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */
FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > _FS_SHARE */
FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
} FRESULT;
/*--------------------------------------------------------------*/
/* FatFs module application interface */
FRESULT f_mount (BYTE, FATFS*); /* Mount/Unmount a logical drive */
FRESULT f_open (FIL*, const TCHAR*, BYTE); /* Open or create a file */
FRESULT f_read (FIL*, void*, UINT, UINT*); /* Read data from a file */
FRESULT f_lseek (FIL*, DWORD); /* Move file pointer of a file object */
FRESULT f_close (FIL*); /* Close an open file object */
FRESULT f_opendir (DIR*, const TCHAR*); /* Open an existing directory */
FRESULT f_readdir (DIR*, FILINFO*); /* Read a directory item */
FRESULT f_stat (const TCHAR*, FILINFO*); /* Get file status */
FRESULT f_write (FIL*, const void*, UINT, UINT*); /* Write data to a file */
FRESULT f_getfree (const TCHAR*, DWORD*, FATFS**); /* Get number of free clusters on the drive */
FRESULT f_truncate (FIL*); /* Truncate file */
FRESULT f_sync (FIL*); /* Flush cached data of a writing file */
FRESULT f_unlink (const TCHAR*); /* Delete an existing file or directory */
FRESULT f_mkdir (const TCHAR*); /* Create a new directory */
FRESULT f_chmod (const TCHAR*, BYTE, BYTE); /* Change attribute of the file/dir */
FRESULT f_utime (const TCHAR*, const FILINFO*); /* Change times-tamp of the file/dir */
FRESULT f_rename (const TCHAR*, const TCHAR*); /* Rename/Move a file or directory */
FRESULT f_chdrive (BYTE); /* Change current drive */
FRESULT f_chdir (const TCHAR*); /* Change current directory */
FRESULT f_getcwd (TCHAR*, UINT); /* Get current directory */
FRESULT f_forward (FIL*, UINT(*)(const BYTE*,UINT), UINT, UINT*); /* Forward data to the stream */
FRESULT f_mkfs (BYTE, BYTE, UINT); /* Create a file system on the drive */
FRESULT f_fdisk (BYTE, const DWORD[], void*); /* Divide a physical drive into some partitions */
int f_putc (TCHAR, FIL*); /* Put a character to the file */
int f_puts (const TCHAR*, FIL*); /* Put a string to the file */
int f_printf (FIL*, const TCHAR*, ...); /* Put a formatted string to the file */
TCHAR* f_gets (TCHAR*, int, FIL*); /* Get a string from the file */
#define f_eof(fp) (((fp)->fptr == (fp)->fsize) ? 1 : 0)
#define f_error(fp) (((fp)->flag & FA__ERROR) ? 1 : 0)
#define f_tell(fp) ((fp)->fptr)
#define f_size(fp) ((fp)->fsize)
#ifndef EOF
#define EOF (-1)
#endif
/*--------------------------------------------------------------*/
/* Additional user defined functions */
/* RTC function */
#if !_FS_READONLY
DWORD get_fattime (void);
#endif
/* Unicode support functions */
#if _USE_LFN /* Unicode - OEM code conversion */
WCHAR ff_convert (WCHAR, UINT); /* OEM-Unicode bidirectional conversion */
WCHAR ff_wtoupper (WCHAR); /* Unicode upper-case conversion */
#if _USE_LFN == 3 /* Memory functions */
void* ff_memalloc (UINT); /* Allocate memory block */
void ff_memfree (void*); /* Free memory block */
#endif
#endif
/* Sync functions */
#if _FS_REENTRANT
int ff_cre_syncobj (BYTE, _SYNC_t*);/* Create a sync object */
int ff_req_grant (_SYNC_t); /* Lock sync object */
void ff_rel_grant (_SYNC_t); /* Unlock sync object */
int ff_del_syncobj (_SYNC_t); /* Delete a sync object */
#endif
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* File access control and file status flags (FIL.flag) */
#define FA_READ 0x01
#define FA_OPEN_EXISTING 0x00
#define FA__ERROR 0x80
#if !_FS_READONLY
#define FA_WRITE 0x02
#define FA_CREATE_NEW 0x04
#define FA_CREATE_ALWAYS 0x08
#define FA_OPEN_ALWAYS 0x10
#define FA__WRITTEN 0x20
#define FA__DIRTY 0x40
#endif
/* FAT sub type (FATFS.fs_type) */
#define FS_FAT12 1
#define FS_FAT16 2
#define FS_FAT32 3
/* File attribute bits for directory entry */
#define AM_RDO 0x01 /* Read only */
#define AM_HID 0x02 /* Hidden */
#define AM_SYS 0x04 /* System */
#define AM_VOL 0x08 /* Volume label */
#define AM_LFN 0x0F /* LFN entry */
#define AM_DIR 0x10 /* Directory */
#define AM_ARC 0x20 /* Archive */
#define AM_MASK 0x3F /* Mask of defined bits */
/* Fast seek feature */
#define CREATE_LINKMAP 0xFFFFFFFF
/*--------------------------------*/
/* Multi-byte word access macros */
#if _WORD_ACCESS == 1 /* Enable word access to the FAT structure */
#define LD_WORD(ptr) (WORD)(*(WORD*)(BYTE*)(ptr))
#define LD_DWORD(ptr) (DWORD)(*(DWORD*)(BYTE*)(ptr))
#define ST_WORD(ptr,val) *(WORD*)(BYTE*)(ptr)=(WORD)(val)
#define ST_DWORD(ptr,val) *(DWORD*)(BYTE*)(ptr)=(DWORD)(val)
#else /* Use byte-by-byte access to the FAT structure */
#define LD_WORD(ptr) (WORD)(((WORD)*((BYTE*)(ptr)+1)<<8)|(WORD)*(BYTE*)(ptr))
#define LD_DWORD(ptr) (DWORD)(((DWORD)*((BYTE*)(ptr)+3)<<24)|((DWORD)*((BYTE*)(ptr)+2)<<16)|((WORD)*((BYTE*)(ptr)+1)<<8)|*(BYTE*)(ptr))
#define ST_WORD(ptr,val) *(BYTE*)(ptr)=(BYTE)(val); *((BYTE*)(ptr)+1)=(BYTE)((WORD)(val)>>8)
#define ST_DWORD(ptr,val) *(BYTE*)(ptr)=(BYTE)(val); *((BYTE*)(ptr)+1)=(BYTE)((WORD)(val)>>8); *((BYTE*)(ptr)+2)=(BYTE)((DWORD)(val)>>16); *((BYTE*)(ptr)+3)=(BYTE)((DWORD)(val)>>24)
#endif
#ifdef __cplusplus
}
#endif
#endif /* _FATFS */

View file

@ -0,0 +1,191 @@
/*---------------------------------------------------------------------------/
/ FatFs - FAT file system module configuration file R0.09a (C)ChaN, 2012
/----------------------------------------------------------------------------/
/
/ CAUTION! Do not forget to make clean the project after any changes to
/ the configuration options.
/
/----------------------------------------------------------------------------*/
#ifndef _FFCONF
#define _FFCONF 4004 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function and Buffer Configurations
/----------------------------------------------------------------------------*/
#define _FS_TINY 1 /* 0:Normal or 1:Tiny */
/* When _FS_TINY is set to 1, FatFs uses the sector buffer in the file system
/ object instead of the sector buffer in the individual file object for file
/ data transfer. This reduces memory consumption 512 bytes each file object. */
#define _FS_READONLY 0 /* 0:Read/Write or 1:Read only */
/* Setting _FS_READONLY to 1 defines read only configuration. This removes
/ writing functions, f_write, f_sync, f_unlink, f_mkdir, f_chmod, f_rename,
/ f_truncate and useless f_getfree. */
#define _FS_MINIMIZE 2 /* 0 to 3 */
/* The _FS_MINIMIZE option defines minimization level to remove some functions.
/
/ 0: Full function.
/ 1: f_stat, f_getfree, f_unlink, f_mkdir, f_chmod, f_truncate and f_rename
/ are removed.
/ 2: f_opendir and f_readdir are removed in addition to 1.
/ 3: f_lseek is removed in addition to 2. */
#define _USE_STRFUNC 0 /* 0:Disable or 1-2:Enable */
/* To enable string functions, set _USE_STRFUNC to 1 or 2. */
#define _USE_MKFS 0 /* 0:Disable or 1:Enable */
/* To enable f_mkfs function, set _USE_MKFS to 1 and set _FS_READONLY to 0 */
#define _USE_FORWARD 0 /* 0:Disable or 1:Enable */
/* To enable f_forward function, set _USE_FORWARD to 1 and set _FS_TINY to 1. */
#define _USE_FASTSEEK 0 /* 0:Disable or 1:Enable */
/* To enable fast seek feature, set _USE_FASTSEEK to 1. */
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/----------------------------------------------------------------------------*/
#define _CODE_PAGE 932
/* The _CODE_PAGE specifies the OEM code page to be used on the target system.
/ Incorrect setting of the code page can cause a file open failure.
/
/ 932 - Japanese Shift-JIS (DBCS, OEM, Windows)
/ 936 - Simplified Chinese GBK (DBCS, OEM, Windows)
/ 949 - Korean (DBCS, OEM, Windows)
/ 950 - Traditional Chinese Big5 (DBCS, OEM, Windows)
/ 1250 - Central Europe (Windows)
/ 1251 - Cyrillic (Windows)
/ 1252 - Latin 1 (Windows)
/ 1253 - Greek (Windows)
/ 1254 - Turkish (Windows)
/ 1255 - Hebrew (Windows)
/ 1256 - Arabic (Windows)
/ 1257 - Baltic (Windows)
/ 1258 - Vietnam (OEM, Windows)
/ 437 - U.S. (OEM)
/ 720 - Arabic (OEM)
/ 737 - Greek (OEM)
/ 775 - Baltic (OEM)
/ 850 - Multilingual Latin 1 (OEM)
/ 858 - Multilingual Latin 1 + Euro (OEM)
/ 852 - Latin 2 (OEM)
/ 855 - Cyrillic (OEM)
/ 866 - Russian (OEM)
/ 857 - Turkish (OEM)
/ 862 - Hebrew (OEM)
/ 874 - Thai (OEM, Windows)
/ 1 - ASCII only (Valid for non LFN cfg.)
*/
#define _USE_LFN 0 /* 0 to 3 */
#define _MAX_LFN 255 /* Maximum LFN length to handle (12 to 255) */
/* The _USE_LFN option switches the LFN support.
/
/ 0: Disable LFN feature. _MAX_LFN and _LFN_UNICODE have no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT reentrant.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ The LFN working buffer occupies (_MAX_LFN + 1) * 2 bytes. To enable LFN,
/ Unicode handling functions ff_convert() and ff_wtoupper() must be added
/ to the project. When enable to use heap, memory control functions
/ ff_memalloc() and ff_memfree() must be added to the project. */
#define _LFN_UNICODE 0 /* 0:ANSI/OEM or 1:Unicode */
/* To switch the character code set on FatFs API to Unicode,
/ enable LFN feature and set _LFN_UNICODE to 1. */
#define _FS_RPATH 0 /* 0 to 2 */
/* The _FS_RPATH option configures relative path feature.
/
/ 0: Disable relative path feature and remove related functions.
/ 1: Enable relative path. f_chdrive() and f_chdir() are available.
/ 2: f_getcwd() is available in addition to 1.
/
/ Note that output of the f_readdir fnction is affected by this option. */
/*---------------------------------------------------------------------------/
/ Physical Drive Configurations
/----------------------------------------------------------------------------*/
#define _VOLUMES 1
/* Number of volumes (logical drives) to be used. */
#define _MAX_SS 512 /* 512, 1024, 2048 or 4096 */
/* Maximum sector size to be handled.
/ Always set 512 for memory card and hard disk but a larger value may be
/ required for on-board flash memory, floppy disk and optical disk.
/ When _MAX_SS is larger than 512, it configures FatFs to variable sector size
/ and GET_SECTOR_SIZE command must be implememted to the disk_ioctl function. */
#define _MULTI_PARTITION 0 /* 0:Single partition, 1/2:Enable multiple partition */
/* When set to 0, each volume is bound to the same physical drive number and
/ it can mount only first primaly partition. When it is set to 1, each volume
/ is tied to the partitions listed in VolToPart[]. */
#define _USE_ERASE 0 /* 0:Disable or 1:Enable */
/* To enable sector erase feature, set _USE_ERASE to 1. CTRL_ERASE_SECTOR command
/ should be added to the disk_ioctl functio. */
/*---------------------------------------------------------------------------/
/ System Configurations
/----------------------------------------------------------------------------*/
#define _WORD_ACCESS 1 /* 0 or 1 */
/* Set 0 first and it is always compatible with all platforms. The _WORD_ACCESS
/ option defines which access method is used to the word data on the FAT volume.
/
/ 0: Byte-by-byte access.
/ 1: Word access. Do not choose this unless following condition is met.
/
/ When the byte order on the memory is big-endian or address miss-aligned word
/ access results incorrect behavior, the _WORD_ACCESS must be set to 0.
/ If it is not the case, the value can also be set to 1 to improve the
/ performance and code size.
*/
/* A header file that defines sync object types on the O/S, such as
/ windows.h, ucos_ii.h and semphr.h, must be included prior to ff.h. */
#define _FS_REENTRANT 0 /* 0:Disable or 1:Enable */
#define _FS_TIMEOUT 1000 /* Timeout period in unit of time ticks */
#define _SYNC_t HANDLE /* O/S dependent type of sync object. e.g. HANDLE, OS_EVENT*, ID and etc.. */
/* The _FS_REENTRANT option switches the reentrancy (thread safe) of the FatFs module.
/
/ 0: Disable reentrancy. _SYNC_t and _FS_TIMEOUT have no effect.
/ 1: Enable reentrancy. Also user provided synchronization handlers,
/ ff_req_grant, ff_rel_grant, ff_del_syncobj and ff_cre_syncobj
/ function must be added to the project. */
#define _FS_LOCK 0 /* 0:Disable or >=1:Enable */
/* To enable file lock control feature, set _FS_LOCK to 1 or greater.
The value defines how many files can be opened simultaneously. */
#endif /* _FFCONFIG */

View file

@ -0,0 +1,38 @@
/*-------------------------------------------*/
/* Integer type definitions for FatFs module */
/*-------------------------------------------*/
#ifndef _INTEGER
#define _INTEGER
#ifdef _WIN32 /* FatFs development platform */
#include <windows.h>
#include <tchar.h>
#else /* Embedded platform */
/* These types must be 16-bit, 32-bit or larger integer */
typedef int INT;
typedef unsigned int UINT;
/* These types must be 8-bit integer */
typedef char CHAR;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;
/* These types must be 16-bit integer */
typedef short SHORT;
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned short WCHAR;
/* These types must be 32-bit integer */
typedef long LONG;
typedef unsigned long ULONG;
typedef unsigned long DWORD;
#endif
#endif

View file

@ -0,0 +1,159 @@
/*
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
#include "RTC.h"
#if defined(DUMMY_RTC)
/** Current dummy RTC time and date */
static volatile TimeDate_t DummyRTC_Count;
void RTC_Init(void)
{
DummyRTC_Count.Hour = 0;
DummyRTC_Count.Minute = 0;
DummyRTC_Count.Second = 0;
DummyRTC_Count.Day = 1;
DummyRTC_Count.Month = 1;
DummyRTC_Count.Year = 00;
}
void RTC_Tick500ms(void)
{
static bool HalfSecondElapsed = false;
HalfSecondElapsed = !HalfSecondElapsed;
if (HalfSecondElapsed == false)
return;
if (++DummyRTC_Count.Second < 60)
return;
DummyRTC_Count.Second = 0;
if (++DummyRTC_Count.Minute < 60)
return;
DummyRTC_Count.Minute = 0;
if (++DummyRTC_Count.Hour < 24)
return;
DummyRTC_Count.Hour = 0;
static const char MonthLength[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
uint8_t DaysInMonth = MonthLength[DummyRTC_Count.Month - 1];
/* Check if we need to account for a leap year */
if ((DummyRTC_Count.Month == 2) &&
((!(DummyRTC_Count.Year % 400)) || ((DummyRTC_Count.Year % 100) && !(DummyRTC_Count.Year % 4))))
{
DaysInMonth++;
}
if (++DummyRTC_Count.Day <= DaysInMonth)
return;
DummyRTC_Count.Day = 1;
if (++DummyRTC_Count.Month <= 12)
return;
DummyRTC_Count.Month = 1;
DummyRTC_Count.Year++;
}
bool RTC_SetTimeDate(const TimeDate_t* NewTimeDate)
{
GlobalInterruptDisable();
DummyRTC_Count = *NewTimeDate;
GlobalInterruptEnable();
return true;
}
bool RTC_GetTimeDate(TimeDate_t* const TimeDate)
{
GlobalInterruptDisable();
*TimeDate = DummyRTC_Count;
GlobalInterruptEnable();
return true;
}
#else
void RTC_Init(void)
{
/* Unused for a real external DS1307 RTC device */
}
void RTC_Tick500ms(void)
{
/* Unused for a real external DS1307 RTC device */
}
bool RTC_SetTimeDate(const TimeDate_t* NewTimeDate)
{
DS1307_DateTimeRegs_t NewRegValues;
const uint8_t WriteAddress = 0;
// Convert new time data to the DS1307's time register layout
NewRegValues.Byte1.Fields.TenSec = (NewTimeDate->Second / 10);
NewRegValues.Byte1.Fields.Sec = (NewTimeDate->Second % 10);
NewRegValues.Byte1.Fields.CH = false;
NewRegValues.Byte2.Fields.TenMin = (NewTimeDate->Minute / 10);
NewRegValues.Byte2.Fields.Min = (NewTimeDate->Minute % 10);
NewRegValues.Byte3.Fields.TenHour = (NewTimeDate->Hour / 10);
NewRegValues.Byte3.Fields.Hour = (NewTimeDate->Hour % 10);
NewRegValues.Byte3.Fields.TwelveHourMode = false;
// Convert new date data to the DS1307's date register layout
NewRegValues.Byte4.Fields.DayOfWeek = 0;
NewRegValues.Byte5.Fields.TenDay = (NewTimeDate->Day / 10);
NewRegValues.Byte5.Fields.Day = (NewTimeDate->Day % 10);
NewRegValues.Byte6.Fields.TenMonth = (NewTimeDate->Month / 10);
NewRegValues.Byte6.Fields.Month = (NewTimeDate->Month % 10);
NewRegValues.Byte7.Fields.TenYear = (NewTimeDate->Year / 10);
NewRegValues.Byte7.Fields.Year = (NewTimeDate->Year % 10);
// Write the new Time and Date into the DS1307
if (TWI_WritePacket(DS1307_ADDRESS, 10, &WriteAddress, sizeof(WriteAddress),
(uint8_t*)&NewRegValues, sizeof(DS1307_DateTimeRegs_t)) != TWI_ERROR_NoError)
{
return false;
}
return true;
}
bool RTC_GetTimeDate(TimeDate_t* const TimeDate)
{
DS1307_DateTimeRegs_t CurrentRegValues;
const uint8_t ReadAddress = 0;
// Read in the stored Time and Date from the DS1307
if (TWI_ReadPacket(DS1307_ADDRESS, 10, &ReadAddress, sizeof(ReadAddress),
(uint8_t*)&CurrentRegValues, sizeof(DS1307_DateTimeRegs_t)) != TWI_ERROR_NoError)
{
return false;
}
// Convert stored time value into decimal
TimeDate->Second = (CurrentRegValues.Byte1.Fields.TenSec * 10) + CurrentRegValues.Byte1.Fields.Sec;
TimeDate->Minute = (CurrentRegValues.Byte2.Fields.TenMin * 10) + CurrentRegValues.Byte2.Fields.Min;
TimeDate->Hour = (CurrentRegValues.Byte3.Fields.TenHour * 10) + CurrentRegValues.Byte3.Fields.Hour;
// Convert stored date value into decimal
TimeDate->Day = (CurrentRegValues.Byte5.Fields.TenDay * 10) + CurrentRegValues.Byte5.Fields.Day;
TimeDate->Month = (CurrentRegValues.Byte6.Fields.TenMonth * 10) + CurrentRegValues.Byte6.Fields.Month;
TimeDate->Year = (CurrentRegValues.Byte7.Fields.TenYear * 10) + CurrentRegValues.Byte7.Fields.Year;
return true;
}
#endif

View file

@ -0,0 +1,126 @@
/*
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
#ifndef _RTC_H_
#define _RTC_H_
/* Includes: */
#include <avr/io.h>
#include <LUFA/Drivers/Peripheral/TWI.h>
#include "Config/AppConfig.h"
/* Type Defines: */
typedef struct
{
uint8_t Hour;
uint8_t Minute;
uint8_t Second;
uint8_t Day;
uint8_t Month;
uint8_t Year;
} TimeDate_t;
typedef struct
{
union
{
struct
{
unsigned Sec : 4;
unsigned TenSec : 3;
unsigned CH : 1;
} Fields;
uint8_t IntVal;
} Byte1;
union
{
struct
{
unsigned Min : 4;
unsigned TenMin : 3;
unsigned Reserved : 1;
} Fields;
uint8_t IntVal;
} Byte2;
union
{
struct
{
unsigned Hour : 4;
unsigned TenHour : 2;
unsigned TwelveHourMode : 1;
unsigned Reserved : 1;
} Fields;
uint8_t IntVal;
} Byte3;
union
{
struct
{
unsigned DayOfWeek : 3;
unsigned Reserved : 5;
} Fields;
uint8_t IntVal;
} Byte4;
union
{
struct
{
unsigned Day : 4;
unsigned TenDay : 2;
unsigned Reserved : 2;
} Fields;
uint8_t IntVal;
} Byte5;
union
{
struct
{
unsigned Month : 4;
unsigned TenMonth : 1;
unsigned Reserved : 3;
} Fields;
uint8_t IntVal;
} Byte6;
union
{
struct
{
unsigned Year : 4;
unsigned TenYear : 4;
} Fields;
uint8_t IntVal;
} Byte7;
} DS1307_DateTimeRegs_t;
/* Macros: */
/** TWI address of the DS1307 device on the bus. */
#define DS1307_ADDRESS 0xD0
/* Function Prototypes: */
void RTC_Init(void);
void RTC_Tick500ms(void);
bool RTC_SetTimeDate(const TimeDate_t* NewTimeDate);
bool RTC_GetTimeDate(TimeDate_t* const TimeDate);
#endif

View file

@ -0,0 +1,344 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* SCSI command processing routines, for SCSI commands issued by the host. Mass Storage
* devices use a thin "Bulk-Only Transport" protocol for issuing commands and status information,
* which wrap around standard SCSI device commands for controlling the actual storage medium.
*/
#define INCLUDE_FROM_SCSI_C
#include "SCSI.h"
/** Structure to hold the SCSI response data to a SCSI INQUIRY command. This gives information about the device's
* features and capabilities.
*/
static const SCSI_Inquiry_Response_t InquiryData =
{
.DeviceType = DEVICE_TYPE_BLOCK,
.PeripheralQualifier = 0,
.Removable = true,
.Version = 0,
.ResponseDataFormat = 2,
.NormACA = false,
.TrmTsk = false,
.AERC = false,
.AdditionalLength = 0x1F,
.SoftReset = false,
.CmdQue = false,
.Linked = false,
.Sync = false,
.WideBus16Bit = false,
.WideBus32Bit = false,
.RelAddr = false,
.VendorID = "LUFA",
.ProductID = "Dataflash Disk",
.RevisionID = {'0','.','0','0'},
};
/** Structure to hold the sense data for the last issued SCSI command, which is returned to the host after a SCSI REQUEST SENSE
* command is issued. This gives information on exactly why the last command failed to complete.
*/
static SCSI_Request_Sense_Response_t SenseData =
{
.ResponseCode = 0x70,
.AdditionalLength = 0x0A,
};
/** Main routine to process the SCSI command located in the Command Block Wrapper read from the host. This dispatches
* to the appropriate SCSI command handling routine if the issued command is supported by the device, else it returns
* a command failure due to a ILLEGAL REQUEST.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise
*/
bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
bool CommandSuccess = false;
/* Run the appropriate SCSI command hander function based on the passed command */
switch (MSInterfaceInfo->State.CommandBlock.SCSICommandData[0])
{
case SCSI_CMD_INQUIRY:
CommandSuccess = SCSI_Command_Inquiry(MSInterfaceInfo);
break;
case SCSI_CMD_REQUEST_SENSE:
CommandSuccess = SCSI_Command_Request_Sense(MSInterfaceInfo);
break;
case SCSI_CMD_READ_CAPACITY_10:
CommandSuccess = SCSI_Command_Read_Capacity_10(MSInterfaceInfo);
break;
case SCSI_CMD_SEND_DIAGNOSTIC:
CommandSuccess = SCSI_Command_Send_Diagnostic(MSInterfaceInfo);
break;
case SCSI_CMD_WRITE_10:
CommandSuccess = SCSI_Command_ReadWrite_10(MSInterfaceInfo, DATA_WRITE);
break;
case SCSI_CMD_READ_10:
CommandSuccess = SCSI_Command_ReadWrite_10(MSInterfaceInfo, DATA_READ);
break;
case SCSI_CMD_MODE_SENSE_6:
CommandSuccess = SCSI_Command_ModeSense_6(MSInterfaceInfo);
break;
case SCSI_CMD_START_STOP_UNIT:
case SCSI_CMD_TEST_UNIT_READY:
case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
case SCSI_CMD_VERIFY_10:
/* These commands should just succeed, no handling required */
CommandSuccess = true;
MSInterfaceInfo->State.CommandBlock.DataTransferLength = 0;
break;
default:
/* Update the SENSE key to reflect the invalid command */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_COMMAND,
SCSI_ASENSEQ_NO_QUALIFIER);
break;
}
/* Check if command was successfully processed */
if (CommandSuccess)
{
SCSI_SET_SENSE(SCSI_SENSE_KEY_GOOD,
SCSI_ASENSE_NO_ADDITIONAL_INFORMATION,
SCSI_ASENSEQ_NO_QUALIFIER);
return true;
}
return false;
}
/** Command processing for an issued SCSI INQUIRY command. This command returns information about the device's features
* and capabilities to the host.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_Inquiry(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
uint16_t AllocationLength = SwapEndian_16(*(uint16_t*)&MSInterfaceInfo->State.CommandBlock.SCSICommandData[3]);
uint16_t BytesTransferred = MIN(AllocationLength, sizeof(InquiryData));
/* Only the standard INQUIRY data is supported, check if any optional INQUIRY bits set */
if ((MSInterfaceInfo->State.CommandBlock.SCSICommandData[1] & ((1 << 0) | (1 << 1))) ||
MSInterfaceInfo->State.CommandBlock.SCSICommandData[2])
{
/* Optional but unsupported bits set - update the SENSE key and fail the request */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_FIELD_IN_CDB,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
Endpoint_Write_Stream_LE(&InquiryData, BytesTransferred, NULL);
/* Pad out remaining bytes with 0x00 */
Endpoint_Null_Stream((AllocationLength - BytesTransferred), NULL);
/* Finalize the stream transfer to send the last packet */
Endpoint_ClearIN();
/* Succeed the command and update the bytes transferred counter */
MSInterfaceInfo->State.CommandBlock.DataTransferLength -= BytesTransferred;
return true;
}
/** Command processing for an issued SCSI REQUEST SENSE command. This command returns information about the last issued command,
* including the error code and additional error information so that the host can determine why a command failed to complete.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_Request_Sense(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
uint8_t AllocationLength = MSInterfaceInfo->State.CommandBlock.SCSICommandData[4];
uint8_t BytesTransferred = MIN(AllocationLength, sizeof(SenseData));
Endpoint_Write_Stream_LE(&SenseData, BytesTransferred, NULL);
Endpoint_Null_Stream((AllocationLength - BytesTransferred), NULL);
Endpoint_ClearIN();
/* Succeed the command and update the bytes transferred counter */
MSInterfaceInfo->State.CommandBlock.DataTransferLength -= BytesTransferred;
return true;
}
/** Command processing for an issued SCSI READ CAPACITY (10) command. This command returns information about the device's capacity
* on the selected Logical Unit (drive), as a number of OS-sized blocks.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_Read_Capacity_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
uint32_t LastBlockAddressInLUN = (VIRTUAL_MEMORY_BLOCKS - 1);
uint32_t MediaBlockSize = VIRTUAL_MEMORY_BLOCK_SIZE;
Endpoint_Write_Stream_BE(&LastBlockAddressInLUN, sizeof(LastBlockAddressInLUN), NULL);
Endpoint_Write_Stream_BE(&MediaBlockSize, sizeof(MediaBlockSize), NULL);
Endpoint_ClearIN();
/* Succeed the command and update the bytes transferred counter */
MSInterfaceInfo->State.CommandBlock.DataTransferLength -= 8;
return true;
}
/** Command processing for an issued SCSI SEND DIAGNOSTIC command. This command performs a quick check of the Dataflash ICs on the
* board, and indicates if they are present and functioning correctly. Only the Self-Test portion of the diagnostic command is
* supported.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_Send_Diagnostic(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
/* Check to see if the SELF TEST bit is not set */
if (!(MSInterfaceInfo->State.CommandBlock.SCSICommandData[1] & (1 << 2)))
{
/* Only self-test supported - update SENSE key and fail the command */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_FIELD_IN_CDB,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Check to see if all attached Dataflash ICs are functional */
if (!(DataflashManager_CheckDataflashOperation()))
{
/* Update SENSE key with a hardware error condition and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_HARDWARE_ERROR,
SCSI_ASENSE_NO_ADDITIONAL_INFORMATION,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Succeed the command and update the bytes transferred counter */
MSInterfaceInfo->State.CommandBlock.DataTransferLength = 0;
return true;
}
/** Command processing for an issued SCSI READ (10) or WRITE (10) command. This command reads in the block start address
* and total number of blocks to process, then calls the appropriate low-level Dataflash routine to handle the actual
* reading and writing of the data.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
* \param[in] IsDataRead Indicates if the command is a READ (10) command or WRITE (10) command (DATA_READ or DATA_WRITE)
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_ReadWrite_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const bool IsDataRead)
{
uint32_t BlockAddress;
uint16_t TotalBlocks;
/* Check if the disk is write protected or not */
if ((IsDataRead == DATA_WRITE) && DISK_READ_ONLY)
{
/* Block address is invalid, update SENSE key and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_DATA_PROTECT,
SCSI_ASENSE_WRITE_PROTECTED,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Load in the 32-bit block address (SCSI uses big-endian, so have to reverse the byte order) */
BlockAddress = SwapEndian_32(*(uint32_t*)&MSInterfaceInfo->State.CommandBlock.SCSICommandData[2]);
/* Load in the 16-bit total blocks (SCSI uses big-endian, so have to reverse the byte order) */
TotalBlocks = SwapEndian_16(*(uint16_t*)&MSInterfaceInfo->State.CommandBlock.SCSICommandData[7]);
/* Check if the block address is outside the maximum allowable value for the LUN */
if (BlockAddress >= VIRTUAL_MEMORY_BLOCKS)
{
/* Block address is invalid, update SENSE key and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Determine if the packet is a READ (10) or WRITE (10) command, call appropriate function */
if (IsDataRead == DATA_READ)
DataflashManager_ReadBlocks(MSInterfaceInfo, BlockAddress, TotalBlocks);
else
DataflashManager_WriteBlocks(MSInterfaceInfo, BlockAddress, TotalBlocks);
/* Update the bytes transferred counter and succeed the command */
MSInterfaceInfo->State.CommandBlock.DataTransferLength -= ((uint32_t)TotalBlocks * VIRTUAL_MEMORY_BLOCK_SIZE);
return true;
}
/** Command processing for an issued SCSI MODE SENSE (6) command. This command returns various informational pages about
* the SCSI device, as well as the device's Write Protect status.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean \c true if the command completed successfully, \c false otherwise.
*/
static bool SCSI_Command_ModeSense_6(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
/* Send an empty header response with the Write Protect flag status */
Endpoint_Write_8(0x00);
Endpoint_Write_8(0x00);
Endpoint_Write_8(DISK_READ_ONLY ? 0x80 : 0x00);
Endpoint_Write_8(0x00);
Endpoint_ClearIN();
/* Update the bytes transferred counter and succeed the command */
MSInterfaceInfo->State.CommandBlock.DataTransferLength -= 4;
return true;
}

View file

@ -0,0 +1,89 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for SCSI.c.
*/
#ifndef _SCSI_H_
#define _SCSI_H_
/* Includes: */
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <LUFA/Drivers/USB/USB.h>
#include "../TempDataLogger.h"
#include "../Descriptors.h"
#include "DataflashManager.h"
#include "Config/AppConfig.h"
/* Macros: */
/** Macro to set the current SCSI sense data to the given key, additional sense code and additional sense qualifier. This
* is for convenience, as it allows for all three sense values (returned upon request to the host to give information about
* the last command failure) in a quick and easy manner.
*
* \param[in] Key New SCSI sense key to set the sense code to
* \param[in] Acode New SCSI additional sense key to set the additional sense code to
* \param[in] Aqual New SCSI additional sense key qualifier to set the additional sense qualifier code to
*/
#define SCSI_SET_SENSE(Key, Acode, Aqual) do { SenseData.SenseKey = (Key); \
SenseData.AdditionalSenseCode = (Acode); \
SenseData.AdditionalSenseQualifier = (Aqual); } while (0)
/** Macro for the \ref SCSI_Command_ReadWrite_10() function, to indicate that data is to be read from the storage medium. */
#define DATA_READ true
/** Macro for the \ref SCSI_Command_ReadWrite_10() function, to indicate that data is to be written to the storage medium. */
#define DATA_WRITE false
/** Value for the DeviceType entry in the SCSI_Inquiry_Response_t enum, indicating a Block Media device. */
#define DEVICE_TYPE_BLOCK 0x00
/** Value for the DeviceType entry in the SCSI_Inquiry_Response_t enum, indicating a CD-ROM device. */
#define DEVICE_TYPE_CDROM 0x05
/* Function Prototypes: */
bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
#if defined(INCLUDE_FROM_SCSI_C)
static bool SCSI_Command_Inquiry(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
static bool SCSI_Command_Request_Sense(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
static bool SCSI_Command_Read_Capacity_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
static bool SCSI_Command_Send_Diagnostic(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
static bool SCSI_Command_ReadWrite_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const bool IsDataRead);
static bool SCSI_Command_ModeSense_6(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
#endif
#endif

View file

@ -0,0 +1,331 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the TemperatureDataLogger project. This file contains the main tasks of
* the project and is responsible for the initial application hardware configuration.
*/
#include "TempDataLogger.h"
/** LUFA Mass Storage Class driver interface configuration and state information. This structure is
* passed to all Mass Storage Class driver functions, so that multiple instances of the same class
* within a device can be differentiated from one another.
*/
USB_ClassInfo_MS_Device_t Disk_MS_Interface =
{
.Config =
{
.InterfaceNumber = INTERFACE_ID_MassStorage,
.DataINEndpoint =
{
.Address = MASS_STORAGE_IN_EPADDR,
.Size = MASS_STORAGE_IO_EPSIZE,
.Banks = 1,
},
.DataOUTEndpoint =
{
.Address = MASS_STORAGE_OUT_EPADDR,
.Size = MASS_STORAGE_IO_EPSIZE,
.Banks = 1,
},
.TotalLUNs = 1,
},
};
/** Buffer to hold the previously generated HID report, for comparison purposes inside the HID class driver. */
static uint8_t PrevHIDReportBuffer[GENERIC_REPORT_SIZE];
/** LUFA HID Class driver interface configuration and state information. This structure is
* passed to all HID Class driver functions, so that multiple instances of the same class
* within a device can be differentiated from one another.
*/
USB_ClassInfo_HID_Device_t Generic_HID_Interface =
{
.Config =
{
.InterfaceNumber = INTERFACE_ID_HID,
.ReportINEndpoint =
{
.Address = GENERIC_IN_EPADDR,
.Size = GENERIC_EPSIZE,
.Banks = 1,
},
.PrevReportINBuffer = PrevHIDReportBuffer,
.PrevReportINBufferSize = sizeof(PrevHIDReportBuffer),
},
};
/** Non-volatile Logging Interval value in EEPROM, stored as a number of 500ms ticks */
static uint8_t EEMEM LoggingInterval500MS_EEPROM = DEFAULT_LOG_INTERVAL;
/** SRAM Logging Interval value fetched from EEPROM, stored as a number of 500ms ticks */
static uint8_t LoggingInterval500MS_SRAM;
/** Total number of 500ms logging ticks elapsed since the last log value was recorded */
static uint16_t CurrentLoggingTicks;
/** FAT Fs structure to hold the internal state of the FAT driver for the Dataflash contents. */
static FATFS DiskFATState;
/** FAT Fs structure to hold a FAT file handle for the log data write destination. */
static FIL TempLogFile;
/** ISR to handle the 500ms ticks for sampling and data logging */
ISR(TIMER1_COMPA_vect, ISR_BLOCK)
{
/* Signal a 500ms tick has elapsed to the RTC */
RTC_Tick500ms();
/* Check to see if the logging interval has expired */
if (++CurrentLoggingTicks < LoggingInterval500MS_SRAM)
return;
/* Reset log tick counter to prepare for next logging interval */
CurrentLoggingTicks = 0;
uint8_t LEDMask = LEDs_GetLEDs();
LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
/* Only log when not connected to a USB host */
if (USB_DeviceState == DEVICE_STATE_Unattached)
{
TimeDate_t CurrentTimeDate;
RTC_GetTimeDate(&CurrentTimeDate);
char LineBuffer[100];
uint16_t BytesWritten;
BytesWritten = sprintf(LineBuffer, "%02d/%02d/20%02d, %02d:%02d:%02d, %d Degrees\r\n",
CurrentTimeDate.Day, CurrentTimeDate.Month, CurrentTimeDate.Year,
CurrentTimeDate.Hour, CurrentTimeDate.Minute, CurrentTimeDate.Second,
Temperature_GetTemperature());
f_write(&TempLogFile, LineBuffer, BytesWritten, &BytesWritten);
f_sync(&TempLogFile);
}
LEDs_SetAllLEDs(LEDMask);
}
/** Main program entry point. This routine contains the overall program flow, including initial
* setup of all components and the main program loop.
*/
int main(void)
{
SetupHardware();
/* Fetch logging interval from EEPROM */
LoggingInterval500MS_SRAM = eeprom_read_byte(&LoggingInterval500MS_EEPROM);
/* Check if the logging interval is invalid (0xFF) indicating that the EEPROM is blank */
if (LoggingInterval500MS_SRAM == 0xFF)
LoggingInterval500MS_SRAM = DEFAULT_LOG_INTERVAL;
/* Mount and open the log file on the Dataflash FAT partition */
OpenLogFile();
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
GlobalInterruptEnable();
for (;;)
{
MS_Device_USBTask(&Disk_MS_Interface);
HID_Device_USBTask(&Generic_HID_Interface);
USB_USBTask();
}
}
/** Opens the log file on the Dataflash's FAT formatted partition according to the current date */
void OpenLogFile(void)
{
char LogFileName[12];
/* Get the current date for the filename as "DDMMYY.csv" */
TimeDate_t CurrentTimeDate;
RTC_GetTimeDate(&CurrentTimeDate);
sprintf(LogFileName, "%02d%02d%02d.csv", CurrentTimeDate.Day, CurrentTimeDate.Month, CurrentTimeDate.Year);
/* Mount the storage device, open the file */
f_mount(0, &DiskFATState);
f_open(&TempLogFile, LogFileName, FA_OPEN_ALWAYS | FA_WRITE);
f_lseek(&TempLogFile, TempLogFile.fsize);
}
/** Closes the open data log file on the Dataflash's FAT formatted partition */
void CloseLogFile(void)
{
/* Sync any data waiting to be written, unmount the storage device */
f_sync(&TempLogFile);
f_close(&TempLogFile);
}
/** Configures the board hardware and chip peripherals for the demo's functionality. */
void SetupHardware(void)
{
#if (ARCH == ARCH_AVR8)
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
#endif
/* Hardware Initialization */
LEDs_Init();
ADC_Init(ADC_FREE_RUNNING | ADC_PRESCALE_128);
Temperature_Init();
Dataflash_Init();
USB_Init();
TWI_Init(TWI_BIT_PRESCALE_4, TWI_BITLENGTH_FROM_FREQ(4, 50000));
RTC_Init();
/* 500ms logging interval timer configuration */
OCR1A = (((F_CPU / 256) / 2) - 1);
TCCR1B = (1 << WGM12) | (1 << CS12);
TIMSK1 = (1 << OCIE1A);
/* Check if the Dataflash is working, abort if not */
if (!(DataflashManager_CheckDataflashOperation()))
{
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
for(;;);
}
/* Clear Dataflash sector protections, if enabled */
DataflashManager_ResetDataflashProtections();
}
/** Event handler for the library USB Connection event. */
void EVENT_USB_Device_Connect(void)
{
LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
/* Close the log file so that the host has exclusive file system access */
CloseLogFile();
}
/** Event handler for the library USB Disconnection event. */
void EVENT_USB_Device_Disconnect(void)
{
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
/* Mount and open the log file on the Dataflash FAT partition */
OpenLogFile();
}
/** Event handler for the library USB Configuration Changed event. */
void EVENT_USB_Device_ConfigurationChanged(void)
{
bool ConfigSuccess = true;
ConfigSuccess &= HID_Device_ConfigureEndpoints(&Generic_HID_Interface);
ConfigSuccess &= MS_Device_ConfigureEndpoints(&Disk_MS_Interface);
LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR);
}
/** Event handler for the library USB Control Request reception event. */
void EVENT_USB_Device_ControlRequest(void)
{
MS_Device_ProcessControlRequest(&Disk_MS_Interface);
HID_Device_ProcessControlRequest(&Generic_HID_Interface);
}
/** Mass Storage class driver callback function the reception of SCSI commands from the host, which must be processed.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface configuration structure being referenced
*/
bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
bool CommandSuccess;
LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
CommandSuccess = SCSI_DecodeSCSICommand(MSInterfaceInfo);
LEDs_SetAllLEDs(LEDMASK_USB_READY);
return CommandSuccess;
}
/** HID class driver callback function for the creation of HID reports to the host.
*
* \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced
* \param[in,out] ReportID Report ID requested by the host if non-zero, otherwise callback should set to the generated report ID
* \param[in] ReportType Type of the report to create, either HID_REPORT_ITEM_In or HID_REPORT_ITEM_Feature
* \param[out] ReportData Pointer to a buffer where the created report should be stored
* \param[out] ReportSize Number of bytes written in the report (or zero if no report is to be sent)
*
* \return Boolean \c true to force the sending of the report, \c false to let the library determine if it needs to be sent
*/
bool CALLBACK_HID_Device_CreateHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
uint8_t* const ReportID,
const uint8_t ReportType,
void* ReportData,
uint16_t* const ReportSize)
{
Device_Report_t* ReportParams = (Device_Report_t*)ReportData;
RTC_GetTimeDate(&ReportParams->TimeDate);
ReportParams->LogInterval500MS = LoggingInterval500MS_SRAM;
*ReportSize = sizeof(Device_Report_t);
return true;
}
/** HID class driver callback function for the processing of HID reports from the host.
*
* \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced
* \param[in] ReportID Report ID of the received report from the host
* \param[in] ReportType The type of report that the host has sent, either HID_REPORT_ITEM_Out or HID_REPORT_ITEM_Feature
* \param[in] ReportData Pointer to a buffer where the received report has been stored
* \param[in] ReportSize Size in bytes of the received HID report
*/
void CALLBACK_HID_Device_ProcessHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
const uint8_t ReportID,
const uint8_t ReportType,
const void* ReportData,
const uint16_t ReportSize)
{
Device_Report_t* ReportParams = (Device_Report_t*)ReportData;
RTC_SetTimeDate(&ReportParams->TimeDate);
/* If the logging interval has changed from its current value, write it to EEPROM */
if (LoggingInterval500MS_SRAM != ReportParams->LogInterval500MS)
{
LoggingInterval500MS_SRAM = ReportParams->LogInterval500MS;
eeprom_update_byte(&LoggingInterval500MS_EEPROM, LoggingInterval500MS_SRAM);
}
}

View file

@ -0,0 +1,112 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for TempDataLogger.c.
*/
#ifndef _TEMP_DATALOGGER_H_
#define _TEMP_DATALOGGER_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "Descriptors.h"
#include "Lib/SCSI.h"
#include "Lib/DataflashManager.h"
#include "Lib/FATFs/ff.h"
#include "Lib/RTC.h"
#include "Config/AppConfig.h"
#include <LUFA/Drivers/Board/LEDs.h>
#include <LUFA/Drivers/Board/Temperature.h>
#include <LUFA/Drivers/Peripheral/ADC.h>
#include <LUFA/Drivers/USB/USB.h>
#include <LUFA/Platform/Platform.h>
/* Macros: */
/** LED mask for the library LED driver, to indicate that the USB interface is not ready. */
#define LEDMASK_USB_NOTREADY LEDS_LED1
/** LED mask for the library LED driver, to indicate that the USB interface is enumerating. */
#define LEDMASK_USB_ENUMERATING (LEDS_LED2 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is ready. */
#define LEDMASK_USB_READY (LEDS_LED2 | LEDS_LED4)
/** LED mask for the library LED driver, to indicate that an error has occurred in the USB interface. */
#define LEDMASK_USB_ERROR (LEDS_LED1 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is busy. */
#define LEDMASK_USB_BUSY LEDS_LED2
/** Default log interval when the EEPROM is blank, in 500ms ticks. */
#define DEFAULT_LOG_INTERVAL 10
/** Indicates if the disk is write protected or not. */
#define DISK_READ_ONLY false
/* Type Defines: */
typedef struct
{
TimeDate_t TimeDate;
uint8_t LogInterval500MS;
} Device_Report_t;
/* Function Prototypes: */
void SetupHardware(void);
void OpenLogFile(void);
void CloseLogFile(void);
void EVENT_USB_Device_Connect(void);
void EVENT_USB_Device_Disconnect(void);
void EVENT_USB_Device_ConfigurationChanged(void);
void EVENT_USB_Device_ControlRequest(void);
bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
bool CALLBACK_HID_Device_CreateHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
uint8_t* const ReportID,
const uint8_t ReportType,
void* ReportData,
uint16_t* const ReportSize);
void CALLBACK_HID_Device_ProcessHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
const uint8_t ReportID,
const uint8_t ReportType,
const void* ReportData,
const uint16_t ReportSize);
#endif

View file

@ -0,0 +1,166 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

View file

@ -0,0 +1,675 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View file

@ -0,0 +1,181 @@
namespace Project1HostApp
{
partial class frmDataloggerSettings
{
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.IContainer components = null;
/// <summary>
/// Clean up any resources being used.
/// </summary>
/// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
protected override void Dispose(bool disposing)
{
if (disposing && (components != null))
{
components.Dispose();
}
base.Dispose(disposing);
}
#region Windows Form Designer generated code
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
this.btnSetValues = new System.Windows.Forms.Button();
this.dtpTime = new System.Windows.Forms.DateTimePicker();
this.lblTime = new System.Windows.Forms.Label();
this.lblLoggingInterval = new System.Windows.Forms.Label();
this.nudLogInterval = new System.Windows.Forms.NumericUpDown();
this.lblSeconds = new System.Windows.Forms.Label();
this.btnGetValues = new System.Windows.Forms.Button();
this.lblDate = new System.Windows.Forms.Label();
this.dtpDate = new System.Windows.Forms.DateTimePicker();
((System.ComponentModel.ISupportInitialize)(this.nudLogInterval)).BeginInit();
this.SuspendLayout();
//
// btnSetValues
//
this.btnSetValues.Location = new System.Drawing.Point(168, 136);
this.btnSetValues.Name = "btnSetValues";
this.btnSetValues.Size = new System.Drawing.Size(90, 35);
this.btnSetValues.TabIndex = 0;
this.btnSetValues.Text = "Set Values";
this.btnSetValues.UseVisualStyleBackColor = true;
this.btnSetValues.Click += new System.EventHandler(this.btnSetValues_Click);
//
// dtpTime
//
this.dtpTime.CustomFormat = "";
this.dtpTime.Format = System.Windows.Forms.DateTimePickerFormat.Time;
this.dtpTime.Location = new System.Drawing.Point(148, 61);
this.dtpTime.Name = "dtpTime";
this.dtpTime.ShowUpDown = true;
this.dtpTime.Size = new System.Drawing.Size(110, 20);
this.dtpTime.TabIndex = 1;
//
// lblTime
//
this.lblTime.AutoSize = true;
this.lblTime.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.lblTime.Location = new System.Drawing.Point(51, 67);
this.lblTime.Name = "lblTime";
this.lblTime.Size = new System.Drawing.Size(82, 13);
this.lblTime.TabIndex = 2;
this.lblTime.Text = "Device Time:";
//
// lblLoggingInterval
//
this.lblLoggingInterval.AutoSize = true;
this.lblLoggingInterval.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.lblLoggingInterval.Location = new System.Drawing.Point(30, 101);
this.lblLoggingInterval.Name = "lblLoggingInterval";
this.lblLoggingInterval.Size = new System.Drawing.Size(103, 13);
this.lblLoggingInterval.TabIndex = 3;
this.lblLoggingInterval.Text = "Logging Interval:";
//
// nudLogInterval
//
this.nudLogInterval.Location = new System.Drawing.Point(148, 94);
this.nudLogInterval.Maximum = new decimal(new int[] {
60,
0,
0,
0});
this.nudLogInterval.Minimum = new decimal(new int[] {
1,
0,
0,
0});
this.nudLogInterval.Name = "nudLogInterval";
this.nudLogInterval.Size = new System.Drawing.Size(51, 20);
this.nudLogInterval.TabIndex = 5;
this.nudLogInterval.Value = new decimal(new int[] {
5,
0,
0,
0});
//
// lblSeconds
//
this.lblSeconds.AutoSize = true;
this.lblSeconds.Location = new System.Drawing.Point(209, 101);
this.lblSeconds.Name = "lblSeconds";
this.lblSeconds.Size = new System.Drawing.Size(49, 13);
this.lblSeconds.TabIndex = 6;
this.lblSeconds.Text = "Seconds";
//
// btnGetValues
//
this.btnGetValues.Location = new System.Drawing.Point(30, 136);
this.btnGetValues.Name = "btnGetValues";
this.btnGetValues.Size = new System.Drawing.Size(90, 35);
this.btnGetValues.TabIndex = 7;
this.btnGetValues.Text = "Get Values";
this.btnGetValues.UseVisualStyleBackColor = true;
this.btnGetValues.Click += new System.EventHandler(this.btnGetValues_Click);
//
// lblDate
//
this.lblDate.AutoSize = true;
this.lblDate.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.lblDate.Location = new System.Drawing.Point(51, 33);
this.lblDate.Name = "lblDate";
this.lblDate.Size = new System.Drawing.Size(82, 13);
this.lblDate.TabIndex = 8;
this.lblDate.Text = "Device Date:";
//
// dtpDate
//
this.dtpDate.CustomFormat = "dd/MM/yyyy";
this.dtpDate.Format = System.Windows.Forms.DateTimePickerFormat.Custom;
this.dtpDate.Location = new System.Drawing.Point(148, 27);
this.dtpDate.Name = "dtpDate";
this.dtpDate.Size = new System.Drawing.Size(110, 20);
this.dtpDate.TabIndex = 9;
//
// frmDataloggerSettings
//
this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(300, 197);
this.Controls.Add(this.dtpDate);
this.Controls.Add(this.lblDate);
this.Controls.Add(this.btnGetValues);
this.Controls.Add(this.lblSeconds);
this.Controls.Add(this.nudLogInterval);
this.Controls.Add(this.lblLoggingInterval);
this.Controls.Add(this.lblTime);
this.Controls.Add(this.dtpTime);
this.Controls.Add(this.btnSetValues);
this.MaximizeBox = false;
this.MinimizeBox = false;
this.Name = "frmDataloggerSettings";
this.Text = "Datalogger";
this.Load += new System.EventHandler(this.frmDataloggerSettings_Load);
((System.ComponentModel.ISupportInitialize)(this.nudLogInterval)).EndInit();
this.ResumeLayout(false);
this.PerformLayout();
}
#endregion
private System.Windows.Forms.Button btnSetValues;
private System.Windows.Forms.DateTimePicker dtpTime;
private System.Windows.Forms.Label lblTime;
private System.Windows.Forms.Label lblLoggingInterval;
private System.Windows.Forms.NumericUpDown nudLogInterval;
private System.Windows.Forms.Label lblSeconds;
private System.Windows.Forms.Button btnGetValues;
private System.Windows.Forms.Label lblDate;
private System.Windows.Forms.DateTimePicker dtpDate;
}
}

View file

@ -0,0 +1,179 @@
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Hid;
namespace Project1HostApp
{
public partial class frmDataloggerSettings : Form
{
private const int DEVICE_VID = 0x03EB;
private const int DEVICE_PID = 0x2063;
private struct Device_Report_t
{
public Byte Day;
public Byte Month;
public Byte Year;
public Byte Hour;
public Byte Minute;
public Byte Second;
public Byte LogInterval500MS;
public Byte[] ToReport()
{
Byte[] Report = new Byte[7];
Report[0] = this.Hour;
Report[1] = this.Minute;
Report[2] = this.Second;
Report[3] = this.Day;
Report[4] = this.Month;
Report[5] = this.Year;
Report[6] = this.LogInterval500MS;
return Report;
}
public void FromReport(Byte[] Report)
{
this.Hour = Report[0];
this.Minute = Report[1];
this.Second = Report[2];
this.Day = Report[3];
this.Month = Report[4];
this.Year = Report[5];
this.LogInterval500MS = Report[6];
}
};
private IDevice GetDeviceConnection()
{
IDevice[] ConnectedDevices = DeviceFactory.Enumerate(DEVICE_VID, DEVICE_PID);
IDevice ConnectionHandle = null;
if (ConnectedDevices.Count() > 0)
ConnectionHandle = ConnectedDevices[0];
else
return null;
// Fix report handle under Windows
if (ConnectionHandle is Hid.Win32.Win32DeviceSet)
{
((Hid.Win32.Win32DeviceSet)ConnectionHandle).AddDevice(0x00,
((Hid.Win32.Win32DeviceSet)ConnectionHandle).UnallocatedDevices[0]);
}
return ConnectionHandle;
}
public frmDataloggerSettings()
{
InitializeComponent();
}
private void btnSetValues_Click(object sender, EventArgs e)
{
IDevice ConnectionHandle = GetDeviceConnection();
if (ConnectionHandle == null)
{
MessageBox.Show("Error: Cannot connect to Datalogger device.");
return;
}
Device_Report_t DeviceReport = new Device_Report_t();
DeviceReport.Day = (byte)dtpDate.Value.Day;
DeviceReport.Month = (byte)dtpDate.Value.Month;
DeviceReport.Year = (byte)((dtpDate.Value.Year < 2000) ? 0 : (dtpDate.Value.Year - 2000));
DeviceReport.Hour = (byte)dtpTime.Value.Hour;
DeviceReport.Minute = (byte)dtpTime.Value.Minute;
DeviceReport.Second = (byte)dtpTime.Value.Second;
DeviceReport.LogInterval500MS = (byte)(nudLogInterval.Value * 2);
try
{
ConnectionHandle.Write(0x00, DeviceReport.ToReport());
MessageBox.Show("Device parameters updated successfully.");
}
catch (Exception ex)
{
MessageBox.Show("Error: " + ex.Message);
}
}
private void btnGetValues_Click(object sender, EventArgs e)
{
IDevice ConnectionHandle = GetDeviceConnection();
if (ConnectionHandle == null)
{
MessageBox.Show("Error: Cannot connect to Datalogger device.");
return;
}
Device_Report_t DeviceReport = new Device_Report_t();
try
{
Byte[] Report = new Byte[7];
ConnectionHandle.Read(0x00, Report);
DeviceReport.FromReport(Report);
String msgText = "Device parameters retrieved successfully.";
try
{
dtpDate.Value = new DateTime(
(2000 + DeviceReport.Year),
DeviceReport.Month,
DeviceReport.Day);
dtpTime.Value = new DateTime(
DateTime.Now.Year, DateTime.Now.Month, DateTime.Now.Day,
DeviceReport.Hour,
DeviceReport.Minute,
DeviceReport.Second);
}
catch (Exception ex)
{
msgText = "Problem reading device:\n" +
ex.Message +
"\nY:" + DeviceReport.Year.ToString() +
" M:" + DeviceReport.Month.ToString() +
" D:" + DeviceReport.Day.ToString() +
"\n\nUsing current date and time.";
dtpDate.Value = DateTime.Now;
dtpTime.Value = DateTime.Now;
}
try
{
nudLogInterval.Value = (DeviceReport.LogInterval500MS / 2);
}
catch (Exception ex)
{
nudLogInterval.Value = nudLogInterval.Minimum;
}
MessageBox.Show(msgText);
}
catch (Exception ex)
{
MessageBox.Show("Error: " + ex.Message);
}
}
private void frmDataloggerSettings_Load(object sender, EventArgs e)
{
}
}
}

View file

@ -0,0 +1,120 @@
<?xml version="1.0" encoding="utf-8"?>
<root>
<!--
Microsoft ResX Schema
Version 2.0
The primary goals of this format is to allow a simple XML format
that is mostly human readable. The generation and parsing of the
various data types are done through the TypeConverter classes
associated with the data types.
Example:
... ado.net/XML headers & schema ...
<resheader name="resmimetype">text/microsoft-resx</resheader>
<resheader name="version">2.0</resheader>
<resheader name="reader">System.Resources.ResXResourceReader, System.Windows.Forms, ...</resheader>
<resheader name="writer">System.Resources.ResXResourceWriter, System.Windows.Forms, ...</resheader>
<data name="Name1"><value>this is my long string</value><comment>this is a comment</comment></data>
<data name="Color1" type="System.Drawing.Color, System.Drawing">Blue</data>
<data name="Bitmap1" mimetype="application/x-microsoft.net.object.binary.base64">
<value>[base64 mime encoded serialized .NET Framework object]</value>
</data>
<data name="Icon1" type="System.Drawing.Icon, System.Drawing" mimetype="application/x-microsoft.net.object.bytearray.base64">
<value>[base64 mime encoded string representing a byte array form of the .NET Framework object]</value>
<comment>This is a comment</comment>
</data>
There are any number of "resheader" rows that contain simple
name/value pairs.
Each data row contains a name, and value. The row also contains a
type or mimetype. Type corresponds to a .NET class that support
text/value conversion through the TypeConverter architecture.
Classes that don't support this are serialized and stored with the
mimetype set.
The mimetype is used for serialized objects, and tells the
ResXResourceReader how to depersist the object. This is currently not
extensible. For a given mimetype the value must be set accordingly:
Note - application/x-microsoft.net.object.binary.base64 is the format
that the ResXResourceWriter will generate, however the reader can
read any of the formats listed below.
mimetype: application/x-microsoft.net.object.binary.base64
value : The object must be serialized with
: System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
: and then encoded with base64 encoding.
mimetype: application/x-microsoft.net.object.soap.base64
value : The object must be serialized with
: System.Runtime.Serialization.Formatters.Soap.SoapFormatter
: and then encoded with base64 encoding.
mimetype: application/x-microsoft.net.object.bytearray.base64
value : The object must be serialized into a byte array
: using a System.ComponentModel.TypeConverter
: and then encoded with base64 encoding.
-->
<xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
<xsd:element name="root" msdata:IsDataSet="true">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="metadata">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="name" use="required" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="mimetype" type="xsd:string" />
<xsd:attribute ref="xml:space" />
</xsd:complexType>
</xsd:element>
<xsd:element name="assembly">
<xsd:complexType>
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="name" type="xsd:string" />
</xsd:complexType>
</xsd:element>
<xsd:element name="data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
<xsd:element name="comment" type="xsd:string" minOccurs="0" msdata:Ordinal="2" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" msdata:Ordinal="1" />
<xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
<xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
<xsd:attribute ref="xml:space" />
</xsd:complexType>
</xsd:element>
<xsd:element name="resheader">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>
<resheader name="resmimetype">
<value>text/microsoft-resx</value>
</resheader>
<resheader name="version">
<value>2.0</value>
</resheader>
<resheader name="reader">
<value>System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
<resheader name="writer">
<value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
</root>

View file

@ -0,0 +1,21 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
namespace Project1HostApp
{
static class Program
{
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new frmDataloggerSettings());
}
}
}

View file

@ -0,0 +1,36 @@
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("TempDataLoggerHostApp")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Dean Camera")]
[assembly: AssemblyProduct("Temp Datalogger HostApp")]
[assembly: AssemblyCopyright("Copyright © Dean Camera 2011")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]
// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("f41d67c7-13b2-4710-9e0f-f78e7f2bf2e9")]
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

View file

@ -0,0 +1,63 @@
//------------------------------------------------------------------------------
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.239
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------
namespace TemperatureLoggerHostApp.Properties {
using System;
/// <summary>
/// A strongly-typed resource class, for looking up localized strings, etc.
/// </summary>
// This class was auto-generated by the StronglyTypedResourceBuilder
// class via a tool like ResGen or Visual Studio.
// To add or remove a member, edit your .ResX file then rerun ResGen
// with the /str option, or rebuild your VS project.
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")]
[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
internal class Resources {
private static global::System.Resources.ResourceManager resourceMan;
private static global::System.Globalization.CultureInfo resourceCulture;
[global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
internal Resources() {
}
/// <summary>
/// Returns the cached ResourceManager instance used by this class.
/// </summary>
[global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
internal static global::System.Resources.ResourceManager ResourceManager {
get {
if (object.ReferenceEquals(resourceMan, null)) {
global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("TemperatureLoggerHostApp.Properties.Resources", typeof(Resources).Assembly);
resourceMan = temp;
}
return resourceMan;
}
}
/// <summary>
/// Overrides the current thread's CurrentUICulture property for all
/// resource lookups using this strongly typed resource class.
/// </summary>
[global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
internal static global::System.Globalization.CultureInfo Culture {
get {
return resourceCulture;
}
set {
resourceCulture = value;
}
}
}
}

View file

@ -0,0 +1,117 @@
<?xml version="1.0" encoding="utf-8"?>
<root>
<!--
Microsoft ResX Schema
Version 2.0
The primary goals of this format is to allow a simple XML format
that is mostly human readable. The generation and parsing of the
various data types are done through the TypeConverter classes
associated with the data types.
Example:
... ado.net/XML headers & schema ...
<resheader name="resmimetype">text/microsoft-resx</resheader>
<resheader name="version">2.0</resheader>
<resheader name="reader">System.Resources.ResXResourceReader, System.Windows.Forms, ...</resheader>
<resheader name="writer">System.Resources.ResXResourceWriter, System.Windows.Forms, ...</resheader>
<data name="Name1"><value>this is my long string</value><comment>this is a comment</comment></data>
<data name="Color1" type="System.Drawing.Color, System.Drawing">Blue</data>
<data name="Bitmap1" mimetype="application/x-microsoft.net.object.binary.base64">
<value>[base64 mime encoded serialized .NET Framework object]</value>
</data>
<data name="Icon1" type="System.Drawing.Icon, System.Drawing" mimetype="application/x-microsoft.net.object.bytearray.base64">
<value>[base64 mime encoded string representing a byte array form of the .NET Framework object]</value>
<comment>This is a comment</comment>
</data>
There are any number of "resheader" rows that contain simple
name/value pairs.
Each data row contains a name, and value. The row also contains a
type or mimetype. Type corresponds to a .NET class that support
text/value conversion through the TypeConverter architecture.
Classes that don't support this are serialized and stored with the
mimetype set.
The mimetype is used for serialized objects, and tells the
ResXResourceReader how to depersist the object. This is currently not
extensible. For a given mimetype the value must be set accordingly:
Note - application/x-microsoft.net.object.binary.base64 is the format
that the ResXResourceWriter will generate, however the reader can
read any of the formats listed below.
mimetype: application/x-microsoft.net.object.binary.base64
value : The object must be serialized with
: System.Serialization.Formatters.Binary.BinaryFormatter
: and then encoded with base64 encoding.
mimetype: application/x-microsoft.net.object.soap.base64
value : The object must be serialized with
: System.Runtime.Serialization.Formatters.Soap.SoapFormatter
: and then encoded with base64 encoding.
mimetype: application/x-microsoft.net.object.bytearray.base64
value : The object must be serialized into a byte array
: using a System.ComponentModel.TypeConverter
: and then encoded with base64 encoding.
-->
<xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xsd:element name="root" msdata:IsDataSet="true">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="metadata">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="mimetype" type="xsd:string" />
</xsd:complexType>
</xsd:element>
<xsd:element name="assembly">
<xsd:complexType>
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="name" type="xsd:string" />
</xsd:complexType>
</xsd:element>
<xsd:element name="data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
<xsd:element name="comment" type="xsd:string" minOccurs="0" msdata:Ordinal="2" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" msdata:Ordinal="1" />
<xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
<xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
</xsd:complexType>
</xsd:element>
<xsd:element name="resheader">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>
<resheader name="resmimetype">
<value>text/microsoft-resx</value>
</resheader>
<resheader name="version">
<value>2.0</value>
</resheader>
<resheader name="reader">
<value>System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
<resheader name="writer">
<value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
</root>

View file

@ -0,0 +1,26 @@
//------------------------------------------------------------------------------
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.239
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------
namespace TemperatureLoggerHostApp.Properties {
[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "10.0.0.0")]
internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase {
private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings())));
public static Settings Default {
get {
return defaultInstance;
}
}
}
}

View file

@ -0,0 +1,7 @@
<?xml version='1.0' encoding='utf-8'?>
<SettingsFile xmlns="http://schemas.microsoft.com/VisualStudio/2004/01/settings" CurrentProfile="(Default)">
<Profiles>
<Profile Name="(Default)" />
</Profiles>
<Settings />
</SettingsFile>

View file

@ -0,0 +1,24 @@
http://en.sourceforge.jp/projects/sfnet_libhidnet/
This library has been tested on Windows Vista 32bit, Windows Vista 64bit,
Windows XP 32bit and Debian (Lenny) AMD64 but should work on any version of
Windows that can run the .NET framework 2.0 and any other operating system
that has both hiddev and Mono.
Any additions must be tested and work on Windows and Linux, on both 32 and
64 bit. Windows 64 bit testing is particularly important as it is often
neglected.
Hid.Linux.dll was compiled under Linux with Mono (mcs) and uses no generics.
Hid.Win32.dll and Hid.Net.dll were compiled under Windows with the .NET
Framework v2.0.50727 but are also tested to compile with Mono (gmcs).
A good starting point when using this library is Hid.DeviceFactory's Enumerate
methods.
LogitechMX5000.cs is a simple example of how the library can be used. Other
examples on common devices are welcomed.

View file

@ -0,0 +1,99 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
<ProductVersion>9.0.21022</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{A2D66069-8CF9-4104-828C-49A73D7DB5D1}</ProjectGuid>
<OutputType>WinExe</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>TemperatureLoggerHostApp</RootNamespace>
<AssemblyName>TemperatureLoggerHostApp</AssemblyName>
<TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
<FileAlignment>512</FileAlignment>
<FileUpgradeFlags>
</FileUpgradeFlags>
<OldToolsVersion>3.5</OldToolsVersion>
<UpgradeBackupLocation />
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<ItemGroup>
<Reference Include="Hid.Net, Version=1.0.0.0, Culture=neutral, processorArchitecture=MSIL">
<SpecificVersion>False</SpecificVersion>
<HintPath>.\Hid.Net.dll</HintPath>
</Reference>
<Reference Include="System" />
<Reference Include="System.Core">
<RequiredTargetFramework>3.5</RequiredTargetFramework>
</Reference>
<Reference Include="System.Xml.Linq">
<RequiredTargetFramework>3.5</RequiredTargetFramework>
</Reference>
<Reference Include="System.Data.DataSetExtensions">
<RequiredTargetFramework>3.5</RequiredTargetFramework>
</Reference>
<Reference Include="System.Data" />
<Reference Include="System.Deployment" />
<Reference Include="System.Drawing" />
<Reference Include="System.Windows.Forms" />
<Reference Include="System.Xml" />
</ItemGroup>
<ItemGroup>
<Compile Include="DataLoggerSettings.cs">
<SubType>Form</SubType>
</Compile>
<Compile Include="DataLoggerSettings.Designer.cs">
<DependentUpon>DataLoggerSettings.cs</DependentUpon>
</Compile>
<Compile Include="Program.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<EmbeddedResource Include="DataLoggerSettings.resx">
<DependentUpon>DataLoggerSettings.cs</DependentUpon>
<SubType>Designer</SubType>
</EmbeddedResource>
<EmbeddedResource Include="Properties\Resources.resx">
<Generator>ResXFileCodeGenerator</Generator>
<LastGenOutput>Resources.Designer.cs</LastGenOutput>
<SubType>Designer</SubType>
</EmbeddedResource>
<Compile Include="Properties\Resources.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Resources.resx</DependentUpon>
<DesignTime>True</DesignTime>
</Compile>
<None Include="Properties\Settings.settings">
<Generator>SettingsSingleFileGenerator</Generator>
<LastGenOutput>Settings.Designer.cs</LastGenOutput>
</None>
<Compile Include="Properties\Settings.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Settings.settings</DependentUpon>
<DesignTimeSharedInput>True</DesignTimeSharedInput>
</Compile>
</ItemGroup>
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<!-- To modify your build process, add your task inside one of the targets below and uncomment it.
Other similar extension points exist, see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-->
</Project>

View file

@ -0,0 +1,99 @@
"""
LUFA Library
Copyright (C) Dean Camera, 2014.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
"""
"""
Front-end configuration app for the TempDataLogger project. This script
configures the logger to the current system time and date, with a user
defined logging interval.
The logging interval should be specified in milliseconds and is rounded to
a multiple of 500ms.
Usage:
python temp_log_config.py <Log_Interval>
Example:
python temp_log_config.py 500
Requires the pywinusb library (https://pypi.python.org/pypi/pywinusb/).
"""
import sys
from datetime import datetime
import pywinusb.hid as hid
# Generic HID device VID, PID and report payload length (length is increased
# by one to account for the Report ID byte that must be pre-pended)
device_vid = 0x03EB
device_pid = 0x2063
report_length = 1 + 7
def get_hid_device_handle():
hid_device_filter = hid.HidDeviceFilter(vendor_id=device_vid,
product_id=device_pid)
valid_hid_devices = hid_device_filter.get_devices()
if len(valid_hid_devices) is 0:
return None
else:
return valid_hid_devices[0]
def configure_temp_log_device(device, time_date, log_interval_500ms):
# Report data for the demo is the report ID (always zero)
report_data = [0]
# Followed by the time/date data
report_data.extend([time_date.hour, time_date.minute,
time_date.second, time_date.day,
time_date.month, time_date.year - 2000])
# Lastly the log interval in 500ms units of time
report_data.extend([log_interval_500ms])
# Zero-extend the array to the length the report should be
report_data.extend([0] * (report_length - len(report_data)))
# Send the generated report to the device
device.send_output_report(report_data)
def main(time_date, log_interval_500ms):
hid_device = get_hid_device_handle()
if hid_device is None:
print("No valid HID device found.")
sys.exit(1)
try:
hid_device.open()
print("Connected to device 0x%04X/0x%04X - %s [%s]" %
(hid_device.vendor_id, hid_device.product_id,
hid_device.product_name, hid_device.vendor_name))
configure_temp_log_device(hid_device, time_date, log_interval_500ms)
print("Time/Date is now set to %s" % time_date)
print("Log interval is now set to every %0.1fs" % (log_interval_500ms * (500.0 / 1000.0)))
finally:
hid_device.close()
if __name__ == '__main__':
time_date = datetime.now()
log_interval_500ms = (int(sys.argv[1]) / 500) if len(sys.argv) > 1 else 2
# Clamp the log interval to the allowable range
log_interval_500ms = max(log_interval_500ms, 0x01)
log_interval_500ms = min(log_interval_500ms, 0xFF)
main(time_date, log_interval_500ms)

View file

@ -0,0 +1,86 @@
/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \mainpage Temperature Datalogger Project
*
* \section Sec_Compat Demo Compatibility:
*
* The following list indicates what microcontrollers are compatible with this demo.
*
* \li Series 7 USB AVRs (AT90USBxxx7)
* \li Series 6 USB AVRs (AT90USBxxx6)
* \li Series 4 USB AVRs (ATMEGAxxU4) - <i>those with >16KB of FLASH memory only</i>
*
* \section Sec_Info USB Information:
*
* The following table gives a rundown of the USB utilization of this demo.
*
* <table>
* <tr>
* <td><b>USB Mode:</b></td>
* <td>Device</td>
* </tr>
* <tr>
* <td><b>USB Classes:</b></td>
* <td>Mass Storage Device \n
* Human Interface Device</td>
* </tr>
* <tr>
* <td><b>USB Subclasses:</b></td>
* <td>Bulk-Only Transport \n
* Keyboard Subclass</td>
* </tr>
* <tr>
* <td><b>Relevant Standards:</b></td>
* <td>USBIF Mass Storage Standard \n
* USB Bulk-Only Transport Standard \n
* SCSI Primary Commands Specification \n
* SCSI Block Commands Specification \n
* USBIF HID Specification, USBIF HID Usage Tables</td>
* </tr>
* <tr>
* <td><b>Supported USB Speeds:</b></td>
* <td>Full Speed Mode</td>
* </tr>
* </table>
*
* \section Sec_Description Project Description:
*
* Temperature Data Logger project. This project is a very basic USB data logger for the current temperature as reported by
* the board's temperature sensor, writing the temperature to a file stored on the board's Dataflash in a FAT filesystem
* each time a specified interval elapses. When inserted into a PC, the datalogger will appear as a standard USB Mass Storage
* device with a single text file, which contains the logged data. Files are named according to the current date when the
* logging commences.
*
* A DS1307 or compatible RTC IC is designed to be attached to the AVR's TWI bus, for the management of timestamps on the
* sampled data. This project will not function correctly if the RTC chip is omitted unless the DUMMY_RTC compile time token
* is specified - see \ref Sec_Options.
*
* Due to the host's need for exclusive access to the file system, the device will not log samples while connected to a host.
* For the logger to store data, the Dataflash must first be formatted by the host so that it contains a valid FAT file system.
*
* This project uses the FatFS library from ELM Chan (http://elm-chan.org/fsw/ff/00index_e.html) and the .NET HID device library
* LibHIDNet (http://sourceforge.net/projects/libhidnet/).
*
* \section Sec_Options Project Options
*
* The following defines can be found in this demo, which can control the demo behaviour when defined, or changed in value.
*
* <table>
* <tr>
* <th><b>Define Name:</b></th>
* <th><b>Location:</b></th>
* <th><b>Description:</b></th>
* </tr>
* <tr>
* <td>DUMMY_RTC</td>
* <td>AppConfig.h</td>
* <td>When a DS1307 RTC chip is not fitted, this token can be defined to make the demo use a dummy software RTC using the system
* clock. This is less accurate and does not store the set time and date into non-volatile memory.</td>
* </tr>
* </table>
*/

View file

@ -0,0 +1,72 @@
<asf xmlversion="1.0">
<project caption="Temperature Datalogger" id="lufa.projects.temp_datalogger.avr8">
<require idref="lufa.projects.temp_datalogger"/>
<require idref="lufa.boards.dummy.avr8"/>
<generator value="as5_8"/>
<device-support value="at90usb1287"/>
<config name="lufa.drivers.board.name" value="usbkey"/>
<build type="define" name="F_CPU" value="8000000UL"/>
<build type="define" name="F_USB" value="8000000UL"/>
</project>
<module type="application" id="lufa.projects.temp_datalogger" caption="Temperature Datalogger">
<info type="description" value="summary">
Temperature Datalogger project.
</info>
<info type="gui-flag" value="move-to-root"/>
<info type="keyword" value="Technology">
<keyword value="Class Driver APIs"/>
<keyword value="USB Device"/>
<keyword value="HID Class"/>
<keyword value="Mass Storage Class"/>
</info>
<device-support-alias value="lufa_avr8"/>
<device-support-alias value="lufa_xmega"/>
<device-support-alias value="lufa_uc3"/>
<build type="distribute" subtype="user-file" value="doxyfile"/>
<build type="distribute" subtype="user-file" value="TemperatureDataLogger.txt"/>
<build type="distribute" subtype="directory" value="TempLogHostApp"/>
<build type="distribute" subtype="directory" value="TempLogHostApp_Python"/>
<build type="c-source" value="TempDataLogger.c"/>
<build type="c-source" value="Descriptors.c"/>
<build type="header-file" value="TempDataLogger.h"/>
<build type="header-file" value="Descriptors.h"/>
<build type="c-source" value="Lib/DataflashManager.c"/>
<build type="header-file" value="Lib/DataflashManager.h"/>
<build type="c-source" value="Lib/RTC.c"/>
<build type="header-file" value="Lib/RTC.h"/>
<build type="c-source" value="Lib/SCSI.c"/>
<build type="header-file" value="Lib/SCSI.h"/>
<build type="include-path" value="Lib/FATFs/"/>
<build type="c-source" value="Lib/FATFs/ff.c"/>
<build type="header-file" value="Lib/FATFs/ff.h"/>
<build type="c-source" value="Lib/FATFs/diskio.c"/>
<build type="header-file" value="Lib/FATFs/diskio.h"/>
<build type="header-file" value="Lib/FATFs/ffconf.h"/>
<build type="header-file" value="Lib/FATFs/integer.h"/>
<build type="module-config" subtype="path" value="Config"/>
<build type="module-config" subtype="required-header-file" value="AppConfig.h"/>
<build type="header-file" value="Config/AppConfig.h"/>
<build type="header-file" value="Config/LUFAConfig.h"/>
<require idref="lufa.common"/>
<require idref="lufa.platform"/>
<require idref="lufa.drivers.usb"/>
<require idref="lufa.drivers.board"/>
<require idref="lufa.drivers.board.leds"/>
<require idref="lufa.drivers.board.temperature"/>
<require idref="lufa.drivers.board.dataflash"/>
<require idref="lufa.drivers.peripheral.adc"/>
<require idref="lufa.drivers.peripheral.twi"/>
</module>
</asf>

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,39 @@
#
# LUFA Library
# Copyright (C) Dean Camera, 2014.
#
# dean [at] fourwalledcubicle [dot] com
# www.lufa-lib.org
#
# --------------------------------------
# LUFA Project Makefile.
# --------------------------------------
# Run "make help" for target help.
MCU = at90usb1287
ARCH = AVR8
BOARD = USBKEY
F_CPU = 8000000
F_USB = $(F_CPU)
OPTIMIZATION = s
TARGET = TempDataLogger
SRC = $(TARGET).c Descriptors.c Lib/DataflashManager.c Lib/RTC.c Lib/SCSI.c Lib/FATFs/diskio.c Lib/FATFs/ff.c \
$(LUFA_SRC_USB) $(LUFA_SRC_USBCLASS) $(LUFA_SRC_SERIAL) $(LUFA_SRC_TWI) $(LUFA_SRC_TEMPERATURE)
LUFA_PATH = ../../LUFA
CC_FLAGS = -DUSE_LUFA_CONFIG_HEADER -IConfig/
LD_FLAGS =
# Default target
all:
# Include LUFA build script makefiles
include $(LUFA_PATH)/Build/lufa_core.mk
include $(LUFA_PATH)/Build/lufa_sources.mk
include $(LUFA_PATH)/Build/lufa_build.mk
include $(LUFA_PATH)/Build/lufa_cppcheck.mk
include $(LUFA_PATH)/Build/lufa_doxygen.mk
include $(LUFA_PATH)/Build/lufa_dfu.mk
include $(LUFA_PATH)/Build/lufa_hid.mk
include $(LUFA_PATH)/Build/lufa_avrdude.mk
include $(LUFA_PATH)/Build/lufa_atprogram.mk