1
0
Fork 0

Relocate backlight drivers (#21444)

This commit is contained in:
Ryan 2023-07-08 23:13:10 +10:00 committed by GitHub
parent 636093f75d
commit cb2331713c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
41 changed files with 17 additions and 164 deletions

View file

@ -0,0 +1,173 @@
#include "backlight.h"
#include "gpio.h"
#include "wait.h"
#include <hal.h>
// Maximum duty cycle limit
#ifndef BACKLIGHT_LIMIT_VAL
# define BACKLIGHT_LIMIT_VAL 255
#endif
#ifndef BACKLIGHT_PAL_MODE
# if defined(USE_GPIOV1)
# define BACKLIGHT_PAL_MODE PAL_MODE_ALTERNATE_PUSHPULL
# else
// GPIOV2 && GPIOV3
# define BACKLIGHT_PAL_MODE 2
# endif
#endif
// GENERIC
#ifndef BACKLIGHT_PWM_DRIVER
# define BACKLIGHT_PWM_DRIVER PWMD4
#endif
#ifndef BACKLIGHT_PWM_CHANNEL
# define BACKLIGHT_PWM_CHANNEL 3
#endif
// Support for pins which are on TIM1_CH1N - requires STM32_PWM_USE_ADVANCED
#ifdef BACKLIGHT_PWM_COMPLEMENTARY_OUTPUT
# if BACKLIGHT_ON_STATE == 1
# define PWM_OUTPUT_MODE PWM_COMPLEMENTARY_OUTPUT_ACTIVE_LOW;
# else
# define PWM_OUTPUT_MODE PWM_COMPLEMENTARY_OUTPUT_ACTIVE_HIGH;
# endif
#else
# if BACKLIGHT_ON_STATE == 1
# define PWM_OUTPUT_MODE PWM_OUTPUT_ACTIVE_HIGH;
# else
# define PWM_OUTPUT_MODE PWM_OUTPUT_ACTIVE_LOW;
# endif
#endif
#ifndef BACKLIGHT_PWM_COUNTER_FREQUENCY
# define BACKLIGHT_PWM_COUNTER_FREQUENCY 0xFFFF
#endif
#ifndef BACKLIGHT_PWM_PERIOD
# define BACKLIGHT_PWM_PERIOD 256
#endif
static PWMConfig pwmCFG = {
.frequency = BACKLIGHT_PWM_COUNTER_FREQUENCY, /* PWM clock frequency */
.period = BACKLIGHT_PWM_PERIOD, /* PWM period in counter ticks. e.g. clock frequency is 10KHz, period is 256 ticks then t_period is 25.6ms */
};
#ifdef BACKLIGHT_BREATHING
static virtual_timer_t breathing_vt;
#endif
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
if (v <= 5243) // if below 8% of max
return v / 9; // same as dividing by 900%
else {
uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y >> 8;
if (y > 0xFFFFUL) { // prevent overflow
return 0xFFFFU;
} else {
return (uint16_t)y;
}
}
}
static uint32_t rescale_limit_val(uint32_t val) {
// rescale the supplied backlight value to be in terms of the value limit
return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256;
}
void backlight_init_ports(void) {
#ifdef USE_GPIOV1
palSetPadMode(PAL_PORT(BACKLIGHT_PIN), PAL_PAD(BACKLIGHT_PIN), BACKLIGHT_PAL_MODE);
#else
palSetPadMode(PAL_PORT(BACKLIGHT_PIN), PAL_PAD(BACKLIGHT_PIN), PAL_MODE_ALTERNATE(BACKLIGHT_PAL_MODE));
#endif
pwmCFG.channels[BACKLIGHT_PWM_CHANNEL - 1].mode = PWM_OUTPUT_MODE;
pwmStart(&BACKLIGHT_PWM_DRIVER, &pwmCFG);
backlight_set(get_backlight_level());
#ifdef BACKLIGHT_BREATHING
chVTObjectInit(&breathing_vt);
if (is_backlight_breathing()) {
breathing_enable();
}
#endif
}
void backlight_set(uint8_t level) {
if (level > BACKLIGHT_LEVELS) {
level = BACKLIGHT_LEVELS;
}
if (level == 0) {
// Turn backlight off
pwmDisableChannel(&BACKLIGHT_PWM_DRIVER, BACKLIGHT_PWM_CHANNEL - 1);
} else {
// Turn backlight on
uint32_t duty = (uint32_t)(cie_lightness(rescale_limit_val(0xFFFF * (uint32_t)level / BACKLIGHT_LEVELS)));
pwmEnableChannel(&BACKLIGHT_PWM_DRIVER, BACKLIGHT_PWM_CHANNEL - 1, PWM_FRACTION_TO_WIDTH(&BACKLIGHT_PWM_DRIVER, 0xFFFF, duty));
}
}
void backlight_task(void) {}
#ifdef BACKLIGHT_BREATHING
# define BREATHING_STEPS 128
/* To generate breathing curve in python:
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
*/
static const uint8_t breathing_table[BREATHING_STEPS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static void breathing_callback(virtual_timer_t *vtp, void *p);
bool is_breathing(void) {
return chVTIsArmed(&breathing_vt);
}
void breathing_enable(void) {
/* Update frequency is 256Hz -> 3906us intervals */
chVTSetContinuous(&breathing_vt, TIME_US2I(3906), breathing_callback, NULL);
}
void breathing_disable(void) {
chVTReset(&breathing_vt);
// Restore backlight level
backlight_set(get_backlight_level());
}
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
return v / BACKLIGHT_LEVELS * get_backlight_level();
}
static void breathing_callback(virtual_timer_t *vtp, void *p) {
uint8_t breathing_period = get_breathing_period();
uint16_t interval = (uint16_t)breathing_period * 256 / BREATHING_STEPS;
// resetting after one period to prevent ugly reset at overflow.
static uint16_t breathing_counter = 0;
breathing_counter = (breathing_counter + 1) % (breathing_period * 256);
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
uint32_t duty = cie_lightness(rescale_limit_val(scale_backlight(breathing_table[index] * 256)));
chSysLockFromISR();
pwmEnableChannelI(&BACKLIGHT_PWM_DRIVER, BACKLIGHT_PWM_CHANNEL - 1, PWM_FRACTION_TO_WIDTH(&BACKLIGHT_PWM_DRIVER, 0xFFFF, duty));
chSysUnlockFromISR();
}
// TODO: integrate generic pulse solution
void breathing_pulse(void) {
backlight_set(is_backlight_enabled() ? 0 : BACKLIGHT_LEVELS);
wait_ms(10);
backlight_set(is_backlight_enabled() ? get_backlight_level() : 0);
}
#endif

View file

@ -0,0 +1,178 @@
#include "backlight.h"
#include "backlight_driver_common.h"
#include "wait.h"
#ifndef BACKLIGHT_GPT_DRIVER
# define BACKLIGHT_GPT_DRIVER GPTD15
#endif
// Platform specific implementations
static void backlight_timer_configure(bool enable);
static void backlight_timer_set_duty(uint16_t duty);
static uint16_t backlight_timer_get_duty(void);
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
if (v <= 5243) // if below 8% of max
return v / 9; // same as dividing by 900%
else {
uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y >> 8;
if (y > 0xFFFFUL) // prevent overflow
return 0xFFFFU;
else
return (uint16_t)y;
}
}
void backlight_init_ports(void) {
backlight_pins_init();
backlight_set(get_backlight_level());
#ifdef BACKLIGHT_BREATHING
if (is_backlight_breathing()) {
breathing_enable();
}
#endif
}
void backlight_set(uint8_t level) {
if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS;
backlight_pins_off();
backlight_timer_set_duty(cie_lightness(0xFFFFU / BACKLIGHT_LEVELS * level));
backlight_timer_configure(level != 0);
}
static void backlight_timer_top(void) {
#ifdef BACKLIGHT_BREATHING
if (is_breathing()) {
breathing_task();
}
#endif
if (backlight_timer_get_duty() > 256) {
backlight_pins_on();
}
}
static void backlight_timer_cmp(void) {
backlight_pins_off();
}
void backlight_task(void) {}
#ifdef BACKLIGHT_BREATHING
# define BREATHING_STEPS 128
static bool breathing = false;
static uint16_t breathing_counter = 0;
/* To generate breathing curve in python:
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
*/
static const uint8_t breathing_table[BREATHING_STEPS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
return v / BACKLIGHT_LEVELS * get_backlight_level();
}
void breathing_task(void) {
uint8_t breathing_period = get_breathing_period();
uint16_t interval = (uint16_t)breathing_period * 256 / BREATHING_STEPS;
// resetting after one period to prevent ugly reset at overflow.
breathing_counter = (breathing_counter + 1) % (breathing_period * 256);
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
// printf("index:%u\n", index);
backlight_timer_set_duty(cie_lightness(scale_backlight((uint16_t)breathing_table[index] * 256)));
}
bool is_breathing(void) {
return breathing;
}
void breathing_enable(void) {
breathing_counter = 0;
breathing = true;
}
void breathing_disable(void) {
breathing = false;
}
void breathing_pulse(void) {
backlight_set(is_backlight_enabled() ? 0 : BACKLIGHT_LEVELS);
wait_ms(10);
backlight_set(is_backlight_enabled() ? get_backlight_level() : 0);
}
#endif
#ifdef PROTOCOL_CHIBIOS
// On Platforms where timers fire every tick and have no capture/top events
// - fake event in the normal timer callback
uint16_t s_duty = 0;
static void timerCallback(void) {
/* Software PWM
* timer:1111 1111 1111 1111
* \______/| \_______/____ count(0-255)
* \ \______________ unused(1)
* \__________________ index of step table(0-127)
*/
// this works for cca 65536 irqs/sec
static union {
uint16_t raw;
struct {
uint16_t count : 8;
uint8_t dummy : 1;
uint8_t index : 7;
} pwm;
} timer = {.raw = 0};
timer.raw++;
if (timer.pwm.count == 0) {
// LED on
backlight_timer_top();
} else if (timer.pwm.count == (s_duty / 256)) {
// LED off
backlight_timer_cmp();
}
}
static void backlight_timer_set_duty(uint16_t duty) {
s_duty = duty;
}
static uint16_t backlight_timer_get_duty(void) {
return s_duty;
}
// ChibiOS - Map GPT timer onto Software PWM
static void gptTimerCallback(GPTDriver *gptp) {
(void)gptp;
timerCallback();
}
static void backlight_timer_configure(bool enable) {
static const GPTConfig gptcfg = {1000000, gptTimerCallback, 0, 0};
static bool s_init = false;
if (!s_init) {
gptStart(&BACKLIGHT_GPT_DRIVER, &gptcfg);
s_init = true;
}
if (enable) {
gptStartContinuous(&BACKLIGHT_GPT_DRIVER, gptcfg.frequency / 0xFFFF);
} else {
gptStopTimer(&BACKLIGHT_GPT_DRIVER);
}
}
#endif