1
0
Fork 0

DO NOT USE Merge branch 'master' into debounce_refactor

Merged, however now there are two debounce.h and debounce.c to mess around with and coalesce.
# Conflicts:
#	quantum/matrix.c
This commit is contained in:
Alex Ong 2019-01-26 12:13:19 +11:00
commit c9ba618654
1320 changed files with 28828 additions and 13437 deletions

View file

@ -653,7 +653,7 @@ void process_action(keyrecord_t *record, action_t action)
#ifndef NO_ACTION_TAPPING
#ifdef RETRO_TAPPING
if (!is_tap_key(record->event.key)) {
if (!is_tap_action(action)) {
retro_tapping_counter = 0;
} else {
if (event.pressed) {
@ -929,7 +929,15 @@ void clear_keyboard_but_mods_and_keys()
bool is_tap_key(keypos_t key)
{
action_t action = layer_switch_get_action(key);
return is_tap_action(action);
}
/** \brief Utilities for actions. (FIXME: Needs better description)
*
* FIXME: Needs documentation.
*/
bool is_tap_action(action_t action)
{
switch (action.kind.id) {
case ACT_LMODS_TAP:
case ACT_RMODS_TAP:

View file

@ -97,6 +97,7 @@ void clear_keyboard_but_mods(void);
void clear_keyboard_but_mods_and_keys(void);
void layer_switch(uint8_t new_layer);
bool is_tap_key(keypos_t key);
bool is_tap_action(action_t action);
#ifndef NO_ACTION_TAPPING
void process_record_tap_hint(keyrecord_t *record);

View file

@ -17,82 +17,76 @@ uint32_t default_layer_state = 0;
/** \brief Default Layer State Set At user Level
*
* FIXME: Needs docs
* Run user code on default layer state change
*/
__attribute__((weak))
uint32_t default_layer_state_set_user(uint32_t state) {
return state;
return state;
}
/** \brief Default Layer State Set At Keyboard Level
*
* FIXME: Needs docs
* Run keyboard code on default layer state change
*/
__attribute__((weak))
uint32_t default_layer_state_set_kb(uint32_t state) {
return default_layer_state_set_user(state);
return default_layer_state_set_user(state);
}
/** \brief Default Layer State Set
*
* FIXME: Needs docs
* Static function to set the default layer state, prints debug info and clears keys
*/
static void default_layer_state_set(uint32_t state)
{
state = default_layer_state_set_kb(state);
debug("default_layer_state: ");
default_layer_debug(); debug(" to ");
default_layer_state = state;
default_layer_debug(); debug("\n");
static void default_layer_state_set(uint32_t state) {
state = default_layer_state_set_kb(state);
debug("default_layer_state: ");
default_layer_debug(); debug(" to ");
default_layer_state = state;
default_layer_debug(); debug("\n");
#ifdef STRICT_LAYER_RELEASE
clear_keyboard_but_mods(); // To avoid stuck keys
clear_keyboard_but_mods(); // To avoid stuck keys
#else
clear_keyboard_but_mods_and_keys(); // Don't reset held keys
clear_keyboard_but_mods_and_keys(); // Don't reset held keys
#endif
}
/** \brief Default Layer Print
*
* FIXME: Needs docs
* Print out the hex value of the 32-bit default layer state, as well as the value of the highest bit.
*/
void default_layer_debug(void)
{
dprintf("%08lX(%u)", default_layer_state, biton32(default_layer_state));
void default_layer_debug(void) {
dprintf("%08lX(%u)", default_layer_state, biton32(default_layer_state));
}
/** \brief Default Layer Set
*
* FIXME: Needs docs
* Sets the default layer state.
*/
void default_layer_set(uint32_t state)
{
default_layer_state_set(state);
void default_layer_set(uint32_t state) {
default_layer_state_set(state);
}
#ifndef NO_ACTION_LAYER
/** \brief Default Layer Or
*
* FIXME: Needs docs
* Turns on the default layer based on matching bits between specifed layer and existing layer state
*/
void default_layer_or(uint32_t state)
{
default_layer_state_set(default_layer_state | state);
void default_layer_or(uint32_t state) {
default_layer_state_set(default_layer_state | state);
}
/** \brief Default Layer And
*
* FIXME: Needs docs
* Turns on default layer based on matching enabled bits between specifed layer and existing layer state
*/
void default_layer_and(uint32_t state)
{
default_layer_state_set(default_layer_state & state);
void default_layer_and(uint32_t state) {
default_layer_state_set(default_layer_state & state);
}
/** \brief Default Layer Xor
*
* FIXME: Needs docs
* Turns on default layer based on non-matching bits between specifed layer and existing layer state
*/
void default_layer_xor(uint32_t state)
{
default_layer_state_set(default_layer_state ^ state);
void default_layer_xor(uint32_t state) {
default_layer_state_set(default_layer_state ^ state);
}
#endif
@ -104,170 +98,168 @@ uint32_t layer_state = 0;
/** \brief Layer state set user
*
* FIXME: Needs docs
* Runs user code on layer state change
*/
__attribute__((weak))
uint32_t layer_state_set_user(uint32_t state) {
return state;
return state;
}
/** \brief Layer state set keyboard
*
* FIXME: Needs docs
* Runs keyboard code on layer state change
*/
__attribute__((weak))
uint32_t layer_state_set_kb(uint32_t state) {
return layer_state_set_user(state);
return layer_state_set_user(state);
}
/** \brief Layer state set
*
* FIXME: Needs docs
* Sets the layer to match the specifed state (a bitmask)
*/
void layer_state_set(uint32_t state)
{
state = layer_state_set_kb(state);
dprint("layer_state: ");
layer_debug(); dprint(" to ");
layer_state = state;
layer_debug(); dprintln();
void layer_state_set(uint32_t state) {
state = layer_state_set_kb(state);
dprint("layer_state: ");
layer_debug(); dprint(" to ");
layer_state = state;
layer_debug(); dprintln();
#ifdef STRICT_LAYER_RELEASE
clear_keyboard_but_mods(); // To avoid stuck keys
clear_keyboard_but_mods(); // To avoid stuck keys
#else
clear_keyboard_but_mods_and_keys(); // Don't reset held keys
clear_keyboard_but_mods_and_keys(); // Don't reset held keys
#endif
}
/** \brief Layer clear
*
* FIXME: Needs docs
* Turn off all layers
*/
void layer_clear(void)
{
layer_state_set(0);
void layer_clear(void) {
layer_state_set(0);
}
/** \brief Layer state is
*
* FIXME: Needs docs
* Return whether the given state is on (it might still be shadowed by a higher state, though)
*/
bool layer_state_is(uint8_t layer)
{
return layer_state_cmp(layer_state, layer);
bool layer_state_is(uint8_t layer) {
return layer_state_cmp(layer_state, layer);
}
/** \brief Layer state compare
*
* FIXME: Needs docs
* Used for comparing layers {mostly used for unit testing}
*/
bool layer_state_cmp(uint32_t cmp_layer_state, uint8_t layer) {
if (!cmp_layer_state) { return layer == 0; }
return (cmp_layer_state & (1UL<<layer)) != 0;
if (!cmp_layer_state) { return layer == 0; }
return (cmp_layer_state & (1UL<<layer)) != 0;
}
/** \brief Layer move
*
* FIXME: Needs docs
* Turns on the given layer and turn off all other layers
*/
void layer_move(uint8_t layer)
{
layer_state_set(1UL<<layer);
void layer_move(uint8_t layer) {
layer_state_set(1UL<<layer);
}
/** \brief Layer on
*
* FIXME: Needs docs
* Turns on given layer
*/
void layer_on(uint8_t layer)
{
layer_state_set(layer_state | (1UL<<layer));
void layer_on(uint8_t layer) {
layer_state_set(layer_state | (1UL<<layer));
}
/** \brief Layer off
*
* FIXME: Needs docs
* Turns off given layer
*/
void layer_off(uint8_t layer)
{
layer_state_set(layer_state & ~(1UL<<layer));
void layer_off(uint8_t layer) {
layer_state_set(layer_state & ~(1UL<<layer));
}
/** \brief Layer invert
*
* FIXME: Needs docs
* Toggle the given layer (set it if it's unset, or unset it if it's set)
*/
void layer_invert(uint8_t layer)
{
layer_state_set(layer_state ^ (1UL<<layer));
void layer_invert(uint8_t layer) {
layer_state_set(layer_state ^ (1UL<<layer));
}
/** \brief Layer or
*
* FIXME: Needs docs
* Turns on layers based on matching bits between specifed layer and existing layer state
*/
void layer_or(uint32_t state)
{
layer_state_set(layer_state | state);
void layer_or(uint32_t state) {
layer_state_set(layer_state | state);
}
/** \brief Layer and
*
* FIXME: Needs docs
* Turns on layers based on matching enabled bits between specifed layer and existing layer state
*/
void layer_and(uint32_t state)
{
layer_state_set(layer_state & state);
void layer_and(uint32_t state) {
layer_state_set(layer_state & state);
}
/** \brief Layer xor
*
* FIXME: Needs docs
* Turns on layers based on non-matching bits between specifed layer and existing layer state
*/
void layer_xor(uint32_t state)
{
layer_state_set(layer_state ^ state);
void layer_xor(uint32_t state) {
layer_state_set(layer_state ^ state);
}
/** \brief Layer debug printing
*
* FIXME: Needs docs
* Print out the hex value of the 32-bit layer state, as well as the value of the highest bit.
*/
void layer_debug(void)
{
dprintf("%08lX(%u)", layer_state, biton32(layer_state));
void layer_debug(void) {
dprintf("%08lX(%u)", layer_state, biton32(layer_state));
}
#endif
#if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
/** \brief source layer cache
*/
uint8_t source_layers_cache[(MATRIX_ROWS * MATRIX_COLS + 7) / 8][MAX_LAYER_BITS] = {{0}};
void update_source_layers_cache(keypos_t key, uint8_t layer)
{
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
/** \brief update source layers cache
*
* Updates the cached keys when changing layers
*/
void update_source_layers_cache(keypos_t key, uint8_t layer) {
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
source_layers_cache[storage_row][bit_number] ^=
(-((layer & (1U << bit_number)) != 0)
^ source_layers_cache[storage_row][bit_number])
& (1U << storage_bit);
}
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
source_layers_cache[storage_row][bit_number] ^=
(-((layer & (1U << bit_number)) != 0)
^ source_layers_cache[storage_row][bit_number])
& (1U << storage_bit);
}
}
uint8_t read_source_layers_cache(keypos_t key)
{
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
uint8_t layer = 0;
/** \brief read source layers cache
*
* reads the cached keys stored when the layer was changed
*/
uint8_t read_source_layers_cache(keypos_t key) {
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
uint8_t layer = 0;
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
layer |=
((source_layers_cache[storage_row][bit_number]
& (1U << storage_bit)) != 0)
<< bit_number;
}
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
layer |=
((source_layers_cache[storage_row][bit_number]
& (1U << storage_bit)) != 0)
<< bit_number;
}
return layer;
return layer;
}
#endif
@ -278,61 +270,58 @@ uint8_t read_source_layers_cache(keypos_t key)
* when the layer is switched after the down event but before the up
* event as they may get stuck otherwise.
*/
action_t store_or_get_action(bool pressed, keypos_t key)
{
action_t store_or_get_action(bool pressed, keypos_t key) {
#if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
if (disable_action_cache) {
return layer_switch_get_action(key);
}
uint8_t layer;
if (pressed) {
layer = layer_switch_get_layer(key);
update_source_layers_cache(key, layer);
}
else {
layer = read_source_layers_cache(key);
}
return action_for_key(layer, key);
#else
if (disable_action_cache) {
return layer_switch_get_action(key);
#endif
}
}
uint8_t layer;
/** \brief Layer switch get layer
*
* FIXME: Needs docs
*/
int8_t layer_switch_get_layer(keypos_t key)
{
#ifndef NO_ACTION_LAYER
action_t action;
action.code = ACTION_TRANSPARENT;
uint32_t layers = layer_state | default_layer_state;
/* check top layer first */
for (int8_t i = 31; i >= 0; i--) {
if (layers & (1UL<<i)) {
action = action_for_key(i, key);
if (action.code != ACTION_TRANSPARENT) {
return i;
}
}
}
/* fall back to layer 0 */
return 0;
if (pressed) {
layer = layer_switch_get_layer(key);
update_source_layers_cache(key, layer);
}
else {
layer = read_source_layers_cache(key);
}
return action_for_key(layer, key);
#else
return biton32(default_layer_state);
return layer_switch_get_action(key);
#endif
}
/** \brief Layer switch get layer
*
* Gets the layer based on key info
*/
int8_t layer_switch_get_layer(keypos_t key) {
#ifndef NO_ACTION_LAYER
action_t action;
action.code = ACTION_TRANSPARENT;
uint32_t layers = layer_state | default_layer_state;
/* check top layer first */
for (int8_t i = 31; i >= 0; i--) {
if (layers & (1UL<<i)) {
action = action_for_key(i, key);
if (action.code != ACTION_TRANSPARENT) {
return i;
}
}
}
/* fall back to layer 0 */
return 0;
#else
return biton32(default_layer_state);
#endif
}
/** \brief Layer switch get layer
*
* FIXME: Needs docs
* Gets action code based on key position
*/
action_t layer_switch_get_action(keypos_t key)
{
return action_for_key(layer_switch_get_layer(key), key);
action_t layer_switch_get_action(keypos_t key) {
return action_for_key(layer_switch_get_layer(key), key);
}

View file

@ -54,7 +54,7 @@ int8_t get_oneshot_locked_mods(void) { return oneshot_locked_mods; }
void set_oneshot_locked_mods(int8_t mods) { oneshot_locked_mods = mods; }
void clear_oneshot_locked_mods(void) { oneshot_locked_mods = 0; }
#if (defined(ONESHOT_TIMEOUT) && (ONESHOT_TIMEOUT > 0))
static int16_t oneshot_time = 0;
static uint16_t oneshot_time = 0;
bool has_oneshot_mods_timed_out(void) {
return TIMER_DIFF_16(timer_read(), oneshot_time) >= ONESHOT_TIMEOUT;
}
@ -79,7 +79,7 @@ inline uint8_t get_oneshot_layer(void) { return oneshot_layer_data >> 3; }
inline uint8_t get_oneshot_layer_state(void) { return oneshot_layer_data & 0b111; }
#if (defined(ONESHOT_TIMEOUT) && (ONESHOT_TIMEOUT > 0))
static int16_t oneshot_layer_time = 0;
static uint16_t oneshot_layer_time = 0;
inline bool has_oneshot_layer_timed_out() {
return TIMER_DIFF_16(timer_read(), oneshot_layer_time) >= ONESHOT_TIMEOUT &&
!(get_oneshot_layer_state() & ONESHOT_TOGGLED);

View file

@ -9,7 +9,7 @@ void set_time(uint64_t tset)
void timer_init(void)
{
ms_clk = 0;
timer_clear();
}
uint16_t timer_read(void)
@ -37,23 +37,7 @@ uint32_t timer_elapsed32(uint32_t tlast)
return TIMER_DIFF_32(timer_read32(), tlast);
}
uint32_t timer_elapsed64(uint32_t tlast)
{
uint64_t tnow = timer_read64();
return (tnow >= tlast ? tnow - tlast : UINT64_MAX - tlast + tnow);
}
void timer_clear(void)
{
ms_clk = 0;
}
void wait_ms(uint64_t msec)
{
CLK_delay_ms(msec);
}
void wait_us(uint16_t usec)
{
CLK_delay_us(usec);
set_time(0);
}

View file

@ -10,664 +10,206 @@
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* This files are free to use from https://github.com/rogerclarkmelbourne/Arduino_STM32 and
* https://github.com/leaflabs/libmaple
* This files are free to use from http://engsta.com/stm32-flash-memory-eeprom-emulator/ by
* Artur F.
*
* Modifications for QMK and STM32F303 by Yiancar
*/
#include <stdio.h>
#include <string.h>
#include "eeprom_stm32.h"
/*****************************************************************************
* Allows to use the internal flash to store non volatile data. To initialize
* the functionality use the EEPROM_Init() function. Be sure that by reprogramming
* of the controller just affected pages will be deleted. In other case the non
* volatile data will be lost.
******************************************************************************/
FLASH_Status EE_ErasePage(uint32_t);
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Functions -----------------------------------------------------------------*/
uint16_t EE_CheckPage(uint32_t, uint16_t);
uint16_t EE_CheckErasePage(uint32_t, uint16_t);
uint16_t EE_Format(void);
uint32_t EE_FindValidPage(void);
uint16_t EE_GetVariablesCount(uint32_t, uint16_t);
uint16_t EE_PageTransfer(uint32_t, uint32_t, uint16_t);
uint16_t EE_VerifyPageFullWriteVariable(uint16_t, uint16_t);
uint8_t DataBuf[FEE_PAGE_SIZE];
/*****************************************************************************
* Delete Flash Space used for user Data, deletes the whole space between
* RW_PAGE_BASE_ADDRESS and the last uC Flash Page
******************************************************************************/
uint16_t EEPROM_Init(void) {
// unlock flash
FLASH_Unlock();
uint32_t PageBase0 = EEPROM_PAGE0_BASE;
uint32_t PageBase1 = EEPROM_PAGE1_BASE;
uint32_t PageSize = EEPROM_PAGE_SIZE;
uint16_t Status = EEPROM_NOT_INIT;
// Clear Flags
//FLASH_ClearFlag(FLASH_SR_EOP|FLASH_SR_PGERR|FLASH_SR_WRPERR);
// See http://www.st.com/web/en/resource/technical/document/application_note/CD00165693.pdf
/**
* @brief Check page for blank
* @param page base address
* @retval Success or error
* EEPROM_BAD_FLASH: page not empty after erase
* EEPROM_OK: page blank
*/
uint16_t EE_CheckPage(uint32_t pageBase, uint16_t status)
{
uint32_t pageEnd = pageBase + (uint32_t)PageSize;
// Page Status not EEPROM_ERASED and not a "state"
if ((*(__IO uint16_t*)pageBase) != EEPROM_ERASED && (*(__IO uint16_t*)pageBase) != status)
return EEPROM_BAD_FLASH;
for(pageBase += 4; pageBase < pageEnd; pageBase += 4)
if ((*(__IO uint32_t*)pageBase) != 0xFFFFFFFF) // Verify if slot is empty
return EEPROM_BAD_FLASH;
return EEPROM_OK;
return FEE_DENSITY_BYTES;
}
/*****************************************************************************
* Erase the whole reserved Flash Space used for user Data
******************************************************************************/
void EEPROM_Erase (void) {
/**
* @brief Erase page with increment erase counter (page + 2)
* @param page base address
* @retval Success or error
* FLASH_COMPLETE: success erase
* - Flash error code: on write Flash error
*/
FLASH_Status EE_ErasePage(uint32_t pageBase)
{
FLASH_Status FlashStatus;
uint16_t data = (*(__IO uint16_t*)(pageBase));
if ((data == EEPROM_ERASED) || (data == EEPROM_VALID_PAGE) || (data == EEPROM_RECEIVE_DATA))
data = (*(__IO uint16_t*)(pageBase + 2)) + 1;
else
data = 0;
int page_num = 0;
FlashStatus = FLASH_ErasePage(pageBase);
if (FlashStatus == FLASH_COMPLETE)
FlashStatus = FLASH_ProgramHalfWord(pageBase + 2, data);
// delete all pages from specified start page to the last page
do {
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
page_num++;
} while (page_num < FEE_DENSITY_PAGES);
}
/*****************************************************************************
* Writes once data byte to flash on specified address. If a byte is already
* written, the whole page must be copied to a buffer, the byte changed and
* the manipulated buffer written after PageErase.
*******************************************************************************/
uint16_t EEPROM_WriteDataByte (uint16_t Address, uint8_t DataByte) {
FLASH_Status FlashStatus = FLASH_COMPLETE;
uint32_t page;
int i;
// exit if desired address is above the limit (e.G. under 2048 Bytes for 4 pages)
if (Address > FEE_DENSITY_BYTES) {
return 0;
}
// calculate which page is affected (Pagenum1/Pagenum2...PagenumN)
page = (FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)) & 0x00000FFF;
if (page % FEE_PAGE_SIZE) page = page + FEE_PAGE_SIZE;
page = (page / FEE_PAGE_SIZE) - 1;
// if current data is 0xFF, the byte is empty, just overwrite with the new one
if ((*(__IO uint16_t*)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) {
FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte));
}
else {
// Copy Page to a buffer
memcpy(DataBuf, (uint8_t*)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page
// check if new data is differ to current data, return if not, proceed if yes
if (DataByte == *(__IO uint8_t*)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) {
return 0;
}
// manipulate desired data byte in temp data array if new byte is differ to the current
DataBuf[FEE_ADDR_OFFSET(Address)] = DataByte;
//Erase Page
FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + page);
// Write new data (whole page) to flash if data has beed changed
for(i = 0; i < (FEE_PAGE_SIZE / 2); i++) {
if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) {
FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]));
}
}
}
return FlashStatus;
}
/*****************************************************************************
* Read once data byte from a specified address.
*******************************************************************************/
uint8_t EEPROM_ReadDataByte (uint16_t Address) {
/**
* @brief Check page for blank and erase it
* @param page base address
* @retval Success or error
* - Flash error code: on write Flash error
* - EEPROM_BAD_FLASH: page not empty after erase
* - EEPROM_OK: page blank
*/
uint16_t EE_CheckErasePage(uint32_t pageBase, uint16_t status)
{
uint16_t FlashStatus;
if (EE_CheckPage(pageBase, status) != EEPROM_OK)
{
FlashStatus = EE_ErasePage(pageBase);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
return EE_CheckPage(pageBase, status);
}
return EEPROM_OK;
uint8_t DataByte = 0xFF;
// Get Byte from specified address
DataByte = (*(__IO uint8_t*)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)));
return DataByte;
}
/**
* @brief Find valid Page for write or read operation
* @param Page0: Page0 base address
* Page1: Page1 base address
* @retval Valid page address (PAGE0 or PAGE1) or NULL in case of no valid page was found
*/
uint32_t EE_FindValidPage(void)
{
uint16_t status0 = (*(__IO uint16_t*)PageBase0); // Get Page0 actual status
uint16_t status1 = (*(__IO uint16_t*)PageBase1); // Get Page1 actual status
if (status0 == EEPROM_VALID_PAGE && status1 == EEPROM_ERASED)
return PageBase0;
if (status1 == EEPROM_VALID_PAGE && status0 == EEPROM_ERASED)
return PageBase1;
return 0;
}
/**
* @brief Calculate unique variables in EEPROM
* @param start: address of first slot to check (page + 4)
* @param end: page end address
* @param address: 16 bit virtual address of the variable to excluse (or 0XFFFF)
* @retval count of variables
*/
uint16_t EE_GetVariablesCount(uint32_t pageBase, uint16_t skipAddress)
{
uint16_t varAddress, nextAddress;
uint32_t idx;
uint32_t pageEnd = pageBase + (uint32_t)PageSize;
uint16_t count = 0;
for (pageBase += 6; pageBase < pageEnd; pageBase += 4)
{
varAddress = (*(__IO uint16_t*)pageBase);
if (varAddress == 0xFFFF || varAddress == skipAddress)
continue;
count++;
for(idx = pageBase + 4; idx < pageEnd; idx += 4)
{
nextAddress = (*(__IO uint16_t*)idx);
if (nextAddress == varAddress)
{
count--;
break;
}
}
}
return count;
}
/**
* @brief Transfers last updated variables data from the full Page to an empty one.
* @param newPage: new page base address
* @param oldPage: old page base address
* @param SkipAddress: 16 bit virtual address of the variable (or 0xFFFF)
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - EEPROM_OUT_SIZE: if valid new page is full
* - Flash error code: on write Flash error
*/
uint16_t EE_PageTransfer(uint32_t newPage, uint32_t oldPage, uint16_t SkipAddress)
{
uint32_t oldEnd, newEnd;
uint32_t oldIdx, newIdx, idx;
uint16_t address, data, found;
FLASH_Status FlashStatus;
// Transfer process: transfer variables from old to the new active page
newEnd = newPage + ((uint32_t)PageSize);
// Find first free element in new page
for (newIdx = newPage + 4; newIdx < newEnd; newIdx += 4)
if ((*(__IO uint32_t*)newIdx) == 0xFFFFFFFF) // Verify if element
break; // contents are 0xFFFFFFFF
if (newIdx >= newEnd)
return EEPROM_OUT_SIZE;
oldEnd = oldPage + 4;
oldIdx = oldPage + (uint32_t)(PageSize - 2);
for (; oldIdx > oldEnd; oldIdx -= 4)
{
address = *(__IO uint16_t*)oldIdx;
if (address == 0xFFFF || address == SkipAddress)
continue; // it's means that power off after write data
found = 0;
for (idx = newPage + 6; idx < newIdx; idx += 4)
if ((*(__IO uint16_t*)(idx)) == address)
{
found = 1;
break;
}
if (found)
continue;
if (newIdx < newEnd)
{
data = (*(__IO uint16_t*)(oldIdx - 2));
FlashStatus = FLASH_ProgramHalfWord(newIdx, data);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
FlashStatus = FLASH_ProgramHalfWord(newIdx + 2, address);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
newIdx += 4;
}
else
return EEPROM_OUT_SIZE;
}
// Erase the old Page: Set old Page status to EEPROM_EEPROM_ERASED status
data = EE_CheckErasePage(oldPage, EEPROM_ERASED);
if (data != EEPROM_OK)
return data;
// Set new Page status
FlashStatus = FLASH_ProgramHalfWord(newPage, EEPROM_VALID_PAGE);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
return EEPROM_OK;
}
/**
* @brief Verify if active page is full and Writes variable in EEPROM.
* @param Address: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - EEPROM_PAGE_FULL: if valid page is full (need page transfer)
* - EEPROM_NO_VALID_PAGE: if no valid page was found
* - EEPROM_OUT_SIZE: if EEPROM size exceeded
* - Flash error code: on write Flash error
*/
uint16_t EE_VerifyPageFullWriteVariable(uint16_t Address, uint16_t Data)
{
FLASH_Status FlashStatus;
uint32_t idx, pageBase, pageEnd, newPage;
uint16_t count;
// Get valid Page for write operation
pageBase = EE_FindValidPage();
if (pageBase == 0)
return EEPROM_NO_VALID_PAGE;
// Get the valid Page end Address
pageEnd = pageBase + PageSize; // Set end of page
for (idx = pageEnd - 2; idx > pageBase; idx -= 4)
{
if ((*(__IO uint16_t*)idx) == Address) // Find last value for address
{
count = (*(__IO uint16_t*)(idx - 2)); // Read last data
if (count == Data)
return EEPROM_OK;
if (count == 0xFFFF)
{
FlashStatus = FLASH_ProgramHalfWord(idx - 2, Data); // Set variable data
if (FlashStatus == FLASH_COMPLETE)
return EEPROM_OK;
}
break;
}
}
// Check each active page address starting from begining
for (idx = pageBase + 4; idx < pageEnd; idx += 4)
if ((*(__IO uint32_t*)idx) == 0xFFFFFFFF) // Verify if element
{ // contents are 0xFFFFFFFF
FlashStatus = FLASH_ProgramHalfWord(idx, Data); // Set variable data
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
FlashStatus = FLASH_ProgramHalfWord(idx + 2, Address); // Set variable virtual address
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
return EEPROM_OK;
}
// Empty slot not found, need page transfer
// Calculate unique variables in page
count = EE_GetVariablesCount(pageBase, Address) + 1;
if (count >= (PageSize / 4 - 1))
return EEPROM_OUT_SIZE;
if (pageBase == PageBase1)
newPage = PageBase0; // New page address where variable will be moved to
else
newPage = PageBase1;
// Set the new Page status to RECEIVE_DATA status
FlashStatus = FLASH_ProgramHalfWord(newPage, EEPROM_RECEIVE_DATA);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
// Write the variable passed as parameter in the new active page
FlashStatus = FLASH_ProgramHalfWord(newPage + 4, Data);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
FlashStatus = FLASH_ProgramHalfWord(newPage + 6, Address);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
return EE_PageTransfer(newPage, pageBase, Address);
}
/*EEPROMClass::EEPROMClass(void)
{
PageBase0 = EEPROM_PAGE0_BASE;
PageBase1 = EEPROM_PAGE1_BASE;
PageSize = EEPROM_PAGE_SIZE;
Status = EEPROM_NOT_INIT;
}*/
/*
uint16_t EEPROM_init(uint32_t pageBase0, uint32_t pageBase1, uint32_t pageSize)
{
PageBase0 = pageBase0;
PageBase1 = pageBase1;
PageSize = pageSize;
return EEPROM_init();
}*/
uint16_t EEPROM_init(void)
{
uint16_t status0 = 6, status1 = 6;
FLASH_Status FlashStatus;
FLASH_Unlock();
Status = EEPROM_NO_VALID_PAGE;
status0 = (*(__IO uint16_t *)PageBase0);
status1 = (*(__IO uint16_t *)PageBase1);
switch (status0)
{
/*
Page0 Page1
----- -----
EEPROM_ERASED EEPROM_VALID_PAGE Page1 valid, Page0 erased
EEPROM_RECEIVE_DATA Page1 need set to valid, Page0 erased
EEPROM_ERASED make EE_Format
any Error: EEPROM_NO_VALID_PAGE
*/
case EEPROM_ERASED:
if (status1 == EEPROM_VALID_PAGE) // Page0 erased, Page1 valid
Status = EE_CheckErasePage(PageBase0, EEPROM_ERASED);
else if (status1 == EEPROM_RECEIVE_DATA) // Page0 erased, Page1 receive
{
FlashStatus = FLASH_ProgramHalfWord(PageBase1, EEPROM_VALID_PAGE);
if (FlashStatus != FLASH_COMPLETE)
Status = FlashStatus;
else
Status = EE_CheckErasePage(PageBase0, EEPROM_ERASED);
}
else if (status1 == EEPROM_ERASED) // Both in erased state so format EEPROM
Status = EEPROM_format();
break;
/*
Page0 Page1
----- -----
EEPROM_RECEIVE_DATA EEPROM_VALID_PAGE Transfer Page1 to Page0
EEPROM_ERASED Page0 need set to valid, Page1 erased
any EEPROM_NO_VALID_PAGE
*/
case EEPROM_RECEIVE_DATA:
if (status1 == EEPROM_VALID_PAGE) // Page0 receive, Page1 valid
Status = EE_PageTransfer(PageBase0, PageBase1, 0xFFFF);
else if (status1 == EEPROM_ERASED) // Page0 receive, Page1 erased
{
Status = EE_CheckErasePage(PageBase1, EEPROM_ERASED);
if (Status == EEPROM_OK)
{
FlashStatus = FLASH_ProgramHalfWord(PageBase0, EEPROM_VALID_PAGE);
if (FlashStatus != FLASH_COMPLETE)
Status = FlashStatus;
else
Status = EEPROM_OK;
}
}
break;
/*
Page0 Page1
----- -----
EEPROM_VALID_PAGE EEPROM_VALID_PAGE Error: EEPROM_NO_VALID_PAGE
EEPROM_RECEIVE_DATA Transfer Page0 to Page1
any Page0 valid, Page1 erased
*/
case EEPROM_VALID_PAGE:
if (status1 == EEPROM_VALID_PAGE) // Both pages valid
Status = EEPROM_NO_VALID_PAGE;
else if (status1 == EEPROM_RECEIVE_DATA)
Status = EE_PageTransfer(PageBase1, PageBase0, 0xFFFF);
else
Status = EE_CheckErasePage(PageBase1, EEPROM_ERASED);
break;
/*
Page0 Page1
----- -----
any EEPROM_VALID_PAGE Page1 valid, Page0 erased
EEPROM_RECEIVE_DATA Page1 valid, Page0 erased
any EEPROM_NO_VALID_PAGE
*/
default:
if (status1 == EEPROM_VALID_PAGE)
Status = EE_CheckErasePage(PageBase0, EEPROM_ERASED); // Check/Erase Page0
else if (status1 == EEPROM_RECEIVE_DATA)
{
FlashStatus = FLASH_ProgramHalfWord(PageBase1, EEPROM_VALID_PAGE);
if (FlashStatus != FLASH_COMPLETE)
Status = FlashStatus;
else
Status = EE_CheckErasePage(PageBase0, EEPROM_ERASED);
}
break;
}
return Status;
}
/**
* @brief Erases PAGE0 and PAGE1 and writes EEPROM_VALID_PAGE / 0 header to PAGE0
* @param PAGE0 and PAGE1 base addresses
* @retval Status of the last operation (Flash write or erase) done during EEPROM formating
*/
uint16_t EEPROM_format(void)
{
uint16_t status;
FLASH_Status FlashStatus;
FLASH_Unlock();
// Erase Page0
status = EE_CheckErasePage(PageBase0, EEPROM_VALID_PAGE);
if (status != EEPROM_OK)
return status;
if ((*(__IO uint16_t*)PageBase0) == EEPROM_ERASED)
{
// Set Page0 as valid page: Write VALID_PAGE at Page0 base address
FlashStatus = FLASH_ProgramHalfWord(PageBase0, EEPROM_VALID_PAGE);
if (FlashStatus != FLASH_COMPLETE)
return FlashStatus;
}
// Erase Page1
return EE_CheckErasePage(PageBase1, EEPROM_ERASED);
}
/**
* @brief Returns the erase counter for current page
* @param Data: Global variable contains the read variable value
* @retval Success or error status:
* - EEPROM_OK: if erases counter return.
* - EEPROM_NO_VALID_PAGE: if no valid page was found.
*/
uint16_t EEPROM_erases(uint16_t *Erases)
{
uint32_t pageBase;
if (Status != EEPROM_OK)
if (EEPROM_init() != EEPROM_OK)
return Status;
// Get active Page for read operation
pageBase = EE_FindValidPage();
if (pageBase == 0)
return EEPROM_NO_VALID_PAGE;
*Erases = (*(__IO uint16_t*)pageBase+2);
return EEPROM_OK;
}
/**
* @brief Returns the last stored variable data, if found,
* which correspond to the passed virtual address
* @param Address: Variable virtual address
* @retval Data for variable or EEPROM_DEFAULT_DATA, if any errors
*/
/*
uint16_t EEPROM_read (uint16_t Address)
{
uint16_t data;
EEPROM_read(Address, &data);
return data;
}*/
/**
* @brief Returns the last stored variable data, if found,
* which correspond to the passed virtual address
* @param Address: Variable virtual address
* @param Data: Pointer to data variable
* @retval Success or error status:
* - EEPROM_OK: if variable was found
* - EEPROM_BAD_ADDRESS: if the variable was not found
* - EEPROM_NO_VALID_PAGE: if no valid page was found.
*/
uint16_t EEPROM_read(uint16_t Address, uint16_t *Data)
{
uint32_t pageBase, pageEnd;
// Set default data (empty EEPROM)
*Data = EEPROM_DEFAULT_DATA;
if (Status == EEPROM_NOT_INIT)
if (EEPROM_init() != EEPROM_OK)
return Status;
// Get active Page for read operation
pageBase = EE_FindValidPage();
if (pageBase == 0)
return EEPROM_NO_VALID_PAGE;
// Get the valid Page end Address
pageEnd = pageBase + ((uint32_t)(PageSize - 2));
// Check each active page address starting from end
for (pageBase += 6; pageEnd >= pageBase; pageEnd -= 4)
if ((*(__IO uint16_t*)pageEnd) == Address) // Compare the read address with the virtual address
{
*Data = (*(__IO uint16_t*)(pageEnd - 2)); // Get content of Address-2 which is variable value
return EEPROM_OK;
}
// Return ReadStatus value: (0: variable exist, 1: variable doesn't exist)
return EEPROM_BAD_ADDRESS;
}
/**
* @brief Writes/upadtes variable data in EEPROM.
* @param VirtAddress: Variable virtual address
* @param Data: 16 bit data to be written
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - EEPROM_BAD_ADDRESS: if address = 0xFFFF
* - EEPROM_PAGE_FULL: if valid page is full
* - EEPROM_NO_VALID_PAGE: if no valid page was found
* - EEPROM_OUT_SIZE: if no empty EEPROM variables
* - Flash error code: on write Flash error
*/
uint16_t EEPROM_write(uint16_t Address, uint16_t Data)
{
if (Status == EEPROM_NOT_INIT)
if (EEPROM_init() != EEPROM_OK)
return Status;
if (Address == 0xFFFF)
return EEPROM_BAD_ADDRESS;
// Write the variable virtual address and value in the EEPROM
uint16_t status = EE_VerifyPageFullWriteVariable(Address, Data);
return status;
}
/**
* @brief Writes/upadtes variable data in EEPROM.
The value is written only if differs from the one already saved at the same address.
* @param VirtAddress: Variable virtual address
* @param Data: 16 bit data to be written
* @retval Success or error status:
* - EEPROM_SAME_VALUE: If new Data matches existing EEPROM Data
* - FLASH_COMPLETE: on success
* - EEPROM_BAD_ADDRESS: if address = 0xFFFF
* - EEPROM_PAGE_FULL: if valid page is full
* - EEPROM_NO_VALID_PAGE: if no valid page was found
* - EEPROM_OUT_SIZE: if no empty EEPROM variables
* - Flash error code: on write Flash error
*/
uint16_t EEPROM_update(uint16_t Address, uint16_t Data)
{
uint16_t temp;
EEPROM_read(Address, &temp);
if (temp == Data)
return EEPROM_SAME_VALUE;
else
return EEPROM_write(Address, Data);
}
/**
* @brief Return number of variable
* @retval Number of variables
*/
uint16_t EEPROM_count(uint16_t *Count)
{
if (Status == EEPROM_NOT_INIT)
if (EEPROM_init() != EEPROM_OK)
return Status;
// Get valid Page for write operation
uint32_t pageBase = EE_FindValidPage();
if (pageBase == 0)
return EEPROM_NO_VALID_PAGE; // No valid page, return max. numbers
*Count = EE_GetVariablesCount(pageBase, 0xFFFF);
return EEPROM_OK;
}
uint16_t EEPROM_maxcount(void)
{
return ((PageSize / 4)-1);
}
/*****************************************************************************
* Wrap library in AVR style functions.
*******************************************************************************/
uint8_t eeprom_read_byte (const uint8_t *Address)
{
const uint16_t p = (const uint32_t) Address;
uint16_t temp;
EEPROM_read(p, &temp);
return (uint8_t) temp;
return EEPROM_ReadDataByte(p);
}
void eeprom_write_byte (uint8_t *Address, uint8_t Value)
{
uint16_t p = (uint32_t) Address;
EEPROM_write(p, (uint16_t) Value);
EEPROM_WriteDataByte(p, Value);
}
void eeprom_update_byte (uint8_t *Address, uint8_t Value)
{
uint16_t p = (uint32_t) Address;
EEPROM_update(p, (uint16_t) Value);
EEPROM_WriteDataByte(p, Value);
}
uint16_t eeprom_read_word (const uint16_t *Address)
{
const uint16_t p = (const uint32_t) Address;
uint16_t temp;
EEPROM_read(p, &temp);
return temp;
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p+1) << 8);
}
void eeprom_write_word (uint16_t *Address, uint16_t Value)
{
uint16_t p = (uint32_t) Address;
EEPROM_write(p, Value);
EEPROM_WriteDataByte(p, (uint8_t) Value);
EEPROM_WriteDataByte(p + 1, (uint8_t) (Value >> 8));
}
void eeprom_update_word (uint16_t *Address, uint16_t Value)
{
uint16_t p = (uint32_t) Address;
EEPROM_update(p, Value);
EEPROM_WriteDataByte(p, (uint8_t) Value);
EEPROM_WriteDataByte(p + 1, (uint8_t) (Value >> 8));
}
uint32_t eeprom_read_dword (const uint32_t *Address)
{
const uint16_t p = (const uint32_t) Address;
uint16_t temp1, temp2;
EEPROM_read(p, &temp1);
EEPROM_read(p + 1, &temp2);
return temp1 | (temp2 << 16);
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p+1) << 8)
| (EEPROM_ReadDataByte(p+2) << 16) | (EEPROM_ReadDataByte(p+3) << 24);
}
void eeprom_write_dword (uint32_t *Address, uint32_t Value)
{
uint16_t temp = (uint16_t) Value;
uint16_t p = (uint32_t) Address;
EEPROM_write(p, temp);
temp = (uint16_t) (Value >> 16);
EEPROM_write(p + 1, temp);
uint16_t p = (const uint32_t) Address;
EEPROM_WriteDataByte(p, (uint8_t) Value);
EEPROM_WriteDataByte(p+1, (uint8_t) (Value >> 8));
EEPROM_WriteDataByte(p+2, (uint8_t) (Value >> 16));
EEPROM_WriteDataByte(p+3, (uint8_t) (Value >> 24));
}
void eeprom_update_dword (uint32_t *Address, uint32_t Value)
{
uint16_t temp = (uint16_t) Value;
uint16_t p = (uint32_t) Address;
EEPROM_update(p, temp);
temp = (uint16_t) (Value >> 16);
EEPROM_update(p + 1, temp);
uint16_t p = (const uint32_t) Address;
EEPROM_WriteDataByte(p, (uint8_t) Value);
EEPROM_WriteDataByte(p+1, (uint8_t) (Value >> 8));
EEPROM_WriteDataByte(p+2, (uint8_t) (Value >> 16));
EEPROM_WriteDataByte(p+3, (uint8_t) (Value >> 24));
}
void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
const uint8_t *p = (const uint8_t *)addr;
uint8_t *dest = (uint8_t *)buf;
while (len--) {
*dest++ = eeprom_read_byte(p++);
}
}
void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
uint8_t *p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}
void eeprom_update_block(const void *buf, void *addr, uint32_t len) {
uint8_t *p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}

View file

@ -10,15 +10,17 @@
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* This files are free to use from https://github.com/rogerclarkmelbourne/Arduino_STM32 and
* https://github.com/leaflabs/libmaple
* This files are free to use from http://engsta.com/stm32-flash-memory-eeprom-emulator/ by
* Artur F.
*
* Modifications for QMK and STM32F303 by Yiancar
*
* This library assumes 8-bit data locations. To add a new MCU, please provide the flash
* page size and the total flash size in Kb. The number of available pages must be a multiple
* of 2. Only half of the pages account for the total EEPROM size.
* This library also assumes that the pages are not used by the firmware.
*/
// This file must be modified if the MCU is not defined below.
// This library also assumes that the pages are not used by the firmware.
#ifndef __EEPROM_H
#define __EEPROM_H
@ -38,9 +40,11 @@
#ifndef EEPROM_PAGE_SIZE
#if defined (MCU_STM32F103RB)
#define EEPROM_PAGE_SIZE (uint16_t)0x400 /* Page size = 1KByte */
#define FEE_PAGE_SIZE (uint16_t)0x400 // Page size = 1KByte
#define FEE_DENSITY_PAGES 2 // How many pages are used
#elif defined (MCU_STM32F103ZE) || defined (MCU_STM32F103RE) || defined (MCU_STM32F103RD) || defined (MCU_STM32F303CC)
#define EEPROM_PAGE_SIZE (uint16_t)0x800 /* Page size = 2KByte */
#define FEE_PAGE_SIZE (uint16_t)0x800 // Page size = 2KByte
#define FEE_DENSITY_PAGES 4 // How many pages are used
#else
#error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
#endif
@ -48,48 +52,30 @@
#ifndef EEPROM_START_ADDRESS
#if defined (MCU_STM32F103RB)
#define EEPROM_START_ADDRESS ((uint32_t)(0x8000000 + 128 * 1024 - 2 * EEPROM_PAGE_SIZE))
#define FEE_MCU_FLASH_SIZE 128 // Size in Kb
#elif defined (MCU_STM32F103ZE) || defined (MCU_STM32F103RE)
#define EEPROM_START_ADDRESS ((uint32_t)(0x8000000 + 512 * 1024 - 2 * EEPROM_PAGE_SIZE))
#define FEE_MCU_FLASH_SIZE 512 // Size in Kb
#elif defined (MCU_STM32F103RD)
#define EEPROM_START_ADDRESS ((uint32_t)(0x8000000 + 384 * 1024 - 2 * EEPROM_PAGE_SIZE))
#define FEE_MCU_FLASH_SIZE 384 // Size in Kb
#elif defined (MCU_STM32F303CC)
#define EEPROM_START_ADDRESS ((uint32_t)(0x8000000 + 256 * 1024 - 2 * EEPROM_PAGE_SIZE))
#define FEE_MCU_FLASH_SIZE 256 // Size in Kb
#else
#error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
#endif
#endif
/* Pages 0 and 1 base and end addresses */
#define EEPROM_PAGE0_BASE ((uint32_t)(EEPROM_START_ADDRESS + 0x000))
#define EEPROM_PAGE1_BASE ((uint32_t)(EEPROM_START_ADDRESS + EEPROM_PAGE_SIZE))
// DONT CHANGE
// Choose location for the first EEPROM Page address on the top of flash
#define FEE_PAGE_BASE_ADDRESS ((uint32_t)(0x8000000 + FEE_MCU_FLASH_SIZE * 1024 - FEE_DENSITY_PAGES * FEE_PAGE_SIZE))
#define FEE_DENSITY_BYTES ((FEE_PAGE_SIZE / 2) * FEE_DENSITY_PAGES - 1)
#define FEE_LAST_PAGE_ADDRESS (FEE_PAGE_BASE_ADDRESS + (FEE_PAGE_SIZE * FEE_DENSITY_PAGES))
#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
#define FEE_ADDR_OFFSET(Address)(Address * 2) // 1Byte per Word will be saved to preserve Flash
/* Page status definitions */
#define EEPROM_ERASED ((uint16_t)0xFFFF) /* PAGE is empty */
#define EEPROM_RECEIVE_DATA ((uint16_t)0xEEEE) /* PAGE is marked to receive data */
#define EEPROM_VALID_PAGE ((uint16_t)0x0000) /* PAGE containing valid data */
/* Page full define */
enum uint16_t
{
EEPROM_OK = ((uint16_t)0x0000),
EEPROM_OUT_SIZE = ((uint16_t)0x0081),
EEPROM_BAD_ADDRESS = ((uint16_t)0x0082),
EEPROM_BAD_FLASH = ((uint16_t)0x0083),
EEPROM_NOT_INIT = ((uint16_t)0x0084),
EEPROM_SAME_VALUE = ((uint16_t)0x0085),
EEPROM_NO_VALID_PAGE = ((uint16_t)0x00AB)
};
#define EEPROM_DEFAULT_DATA 0xFFFF
uint16_t EEPROM_init(void);
uint16_t EEPROM_format(void);
uint16_t EEPROM_erases(uint16_t *);
uint16_t EEPROM_read (uint16_t address, uint16_t *data);
uint16_t EEPROM_write(uint16_t address, uint16_t data);
uint16_t EEPROM_update(uint16_t address, uint16_t data);
uint16_t EEPROM_count(uint16_t *);
uint16_t EEPROM_maxcount(void);
// Use this function to initialize the functionality
uint16_t EEPROM_Init(void);
void EEPROM_Erase (void);
uint16_t EEPROM_WriteDataByte (uint16_t Address, uint8_t DataByte);
uint8_t EEPROM_ReadDataByte (uint16_t Address);
#endif /* __EEPROM_H */

View file

@ -186,3 +186,18 @@ void FLASH_Lock(void)
/* Set the Lock Bit to lock the FPEC and the FCR */
FLASH->CR |= FLASH_CR_LOCK;
}
/**
* @brief Clears the FLASH's pending flags.
* @param FLASH_FLAG: specifies the FLASH flags to clear.
* This parameter can be any combination of the following values:
* @arg FLASH_FLAG_PGERR: FLASH Programming error flag flag
* @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag
* @arg FLASH_FLAG_EOP: FLASH End of Programming flag
* @retval None
*/
void FLASH_ClearFlag(uint32_t FLASH_FLAG)
{
/* Clear the flags */
FLASH->SR = FLASH_FLAG;
}

View file

@ -45,6 +45,7 @@ FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);
void FLASH_Unlock(void);
void FLASH_Lock(void);
void FLASH_ClearFlag(uint32_t FLASH_FLAG);
#ifdef __cplusplus
}

View file

@ -33,7 +33,7 @@ void eeconfig_init_kb(void) {
*/
void eeconfig_init_quantum(void) {
#ifdef STM32_EEPROM_ENABLE
EEPROM_format();
EEPROM_Erase();
#endif
eeprom_update_word(EECONFIG_MAGIC, EECONFIG_MAGIC_NUMBER);
eeprom_update_byte(EECONFIG_DEBUG, 0);
@ -74,7 +74,7 @@ void eeconfig_enable(void)
void eeconfig_disable(void)
{
#ifdef STM32_EEPROM_ENABLE
EEPROM_format();
EEPROM_Erase();
#endif
eeprom_update_word(EECONFIG_MAGIC, EECONFIG_MAGIC_NUMBER_OFF);
}

View file

@ -25,8 +25,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define EECONFIG_MAGIC_NUMBER (uint16_t)0xFEED
#define EECONFIG_MAGIC_NUMBER_OFF (uint16_t)0xFFFF
/* eeprom parameteter address */
#if !defined(STM32_EEPROM_ENABLE)
/* EEPROM parameter address */
#define EECONFIG_MAGIC (uint16_t *)0
#define EECONFIG_DEBUG (uint8_t *)2
#define EECONFIG_DEFAULT_LAYER (uint8_t *)3
@ -42,24 +41,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define EECONFIG_KEYBOARD (uint32_t *)15
#define EECONFIG_USER (uint32_t *)19
#else
/* STM32F3 uses 16byte block. Reconfigure memory map */
#define EECONFIG_MAGIC (uint16_t *)0
#define EECONFIG_DEBUG (uint8_t *)1
#define EECONFIG_DEFAULT_LAYER (uint8_t *)2
#define EECONFIG_KEYMAP (uint8_t *)3
#define EECONFIG_MOUSEKEY_ACCEL (uint8_t *)4
#define EECONFIG_BACKLIGHT (uint8_t *)5
#define EECONFIG_AUDIO (uint8_t *)6
#define EECONFIG_RGBLIGHT (uint32_t *)7
#define EECONFIG_UNICODEMODE (uint8_t *)9
#define EECONFIG_STENOMODE (uint8_t *)10
// EEHANDS for two handed boards
#define EECONFIG_HANDEDNESS (uint8_t *)11
#define EECONFIG_KEYBOARD (uint32_t *)12
#define EECONFIG_USER (uint32_t *)14
#endif
/* debug bit */
#define EECONFIG_DEBUG_ENABLE (1<<0)
#define EECONFIG_DEBUG_MATRIX (1<<1)

View file

@ -20,5 +20,4 @@ void eeprom_update_dword (uint32_t *__p, uint32_t __value);
void eeprom_update_block (const void *__src, void *__dst, uint32_t __n);
#endif
#endif /* TMK_CORE_COMMON_EEPROM_H_ */

View file

@ -15,14 +15,18 @@ You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HOST_H
#define HOST_H
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "report.h"
#include "host_driver.h"
#define IS_LED_ON(leds, led_name) ( (leds) & (1 << (led_name)))
#define IS_LED_OFF(leds, led_name) (~(leds) & (1 << (led_name)))
#define IS_HOST_LED_ON(led_name) IS_LED_ON(host_keyboard_leds(), led_name)
#define IS_HOST_LED_OFF(led_name) IS_LED_OFF(host_keyboard_leds(), led_name)
#ifdef __cplusplus
extern "C" {
@ -31,7 +35,6 @@ extern "C" {
extern uint8_t keyboard_idle;
extern uint8_t keyboard_protocol;
/* host driver */
void host_set_driver(host_driver_t *driver);
host_driver_t *host_get_driver(void);
@ -49,5 +52,3 @@ uint16_t host_last_consumer_report(void);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -67,6 +67,8 @@ void keyboard_init(void);
void keyboard_task(void);
/* it runs when host LED status is updated */
void keyboard_set_leds(uint8_t leds);
/* it runs whenever code has to behave differently on a slave */
bool is_keyboard_master(void);
#ifdef __cplusplus
}

View file

@ -46,6 +46,22 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define MOD_BIT(code) (1 << MOD_INDEX(code))
#define MOD_INDEX(code) ((code) & 0x07)
#define MOD_MASK_CTRL (MOD_BIT(KC_LCTRL) | MOD_BIT(KC_RCTRL))
#define MOD_MASK_SHIFT (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))
#define MOD_MASK_ALT (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))
#define MOD_MASK_GUI (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))
#define MOD_MASK_CS (MOD_MASK_CTRL | MOD_MASK_SHIFT)
#define MOD_MASK_CA (MOD_MASK_CTRL | MOD_MASK_ALT)
#define MOD_MASK_CG (MOD_MASK_CTRL | MOD_MASK_GUI)
#define MOD_MASK_SA (MOD_MASK_SHIFT | MOD_MASK_ALT)
#define MOD_MASK_SG (MOD_MASK_SHIFT | MOD_MASK_GUI)
#define MOD_MASK_AG (MOD_MASK_ALT | MOD_MASK_GUI)
#define MOD_MASK_CSA (MOD_MASK_CTRL | MOD_MASK_SHIFT | MOD_MASK_ALT)
#define MOD_MASK_CSG (MOD_MASK_CTRL | MOD_MASK_SHIFT | MOD_MASK_GUI)
#define MOD_MASK_CAG (MOD_MASK_CTRL | MOD_MASK_ALT | MOD_MASK_GUI)
#define MOD_MASK_SAG (MOD_MASK_SHIFT | MOD_MASK_ALT | MOD_MASK_GUI)
#define MOD_MASK_CSAG (MOD_MASK_CTRL | MOD_MASK_SHIFT | MOD_MASK_ALT | MOD_MASK_GUI)
#define FN_BIT(code) (1 << FN_INDEX(code))
#define FN_INDEX(code) ((code) - KC_FN0)
#define FN_MIN KC_FN0
@ -174,6 +190,10 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define KC_BRIU KC_BRIGHTNESS_UP
#define KC_BRID KC_BRIGHTNESS_DOWN
/* System Specific */
#define KC_BRMU KC_PAUSE
#define KC_BRMD KC_SCROLLLOCK
/* Mouse Keys */
#define KC_MS_U KC_MS_UP
#define KC_MS_D KC_MS_DOWN

View file

@ -5,9 +5,9 @@
# include <avr/pgmspace.h>
#else
# define PROGMEM
# define pgm_read_byte(p) *((unsigned char*)p)
# define pgm_read_word(p) *((uint16_t*)p)
# define pgm_read_dword(p) *((uint32_t*)p)
# define pgm_read_byte(p) *((unsigned char*)(p))
# define pgm_read_word(p) *((uint16_t*)(p))
# define pgm_read_dword(p) *((uint32_t*)(p))
#endif
#endif

View file

@ -48,8 +48,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define TRANSPORT_STOP 0x00B7
#define TRANSPORT_STOP_EJECT 0x00CC
#define TRANSPORT_PLAY_PAUSE 0x00CD
#define BRIGHTNESSUP 0x006F
#define BRIGHTNESSDOWN 0x0070
#define BRIGHTNESS_UP 0x006F
#define BRIGHTNESS_DOWN 0x0070
/* application launch */
#define AL_CC_CONFIG 0x0183
#define AL_EMAIL 0x018A
@ -192,8 +192,8 @@ typedef struct {
(key == KC_WWW_FORWARD ? AC_FORWARD : \
(key == KC_WWW_STOP ? AC_STOP : \
(key == KC_WWW_REFRESH ? AC_REFRESH : \
(key == KC_BRIGHTNESS_UP ? BRIGHTNESSUP : \
(key == KC_BRIGHTNESS_DOWN ? BRIGHTNESSDOWN : \
(key == KC_BRIGHTNESS_UP ? BRIGHTNESS_UP : \
(key == KC_BRIGHTNESS_DOWN ? BRIGHTNESS_DOWN : \
(key == KC_WWW_FAVORITES ? AC_BOOKMARKS : 0)))))))))))))))))))))))
uint8_t has_anykey(report_keyboard_t* keyboard_report);

View file

@ -15,6 +15,10 @@ extern "C" {
# include "ch.h"
# define wait_ms(ms) chThdSleepMilliseconds(ms)
# define wait_us(us) chThdSleepMicroseconds(us)
#elif defined PROTOCOL_ARM_ATSAM
# include "clks.h"
# define wait_ms(ms) CLK_delay_ms(ms)
# define wait_us(us) CLK_delay_us(us)
#elif defined(__arm__)
# include "wait_api.h"
#else // Unit tests

View file

@ -21,8 +21,10 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "samd51j18a.h"
#include "md_bootloader.h"
#include "timer.h"
#include "d51_util.h"
#include "clks.h"
#include "wait.h"
#include "adc.h"
#include "i2c_master.h"
#include "spi.h"

View file

@ -21,8 +21,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
volatile clk_t system_clks;
volatile uint64_t ms_clk;
volatile uint8_t us_delay_done;
uint32_t usec_delay_mult;
#define USEC_DELAY_LOOP_CYCLES 3 //Sum of instruction cycles in us delay loop
const uint32_t sercom_apbbase[] = {(uint32_t)SERCOM0,(uint32_t)SERCOM1,(uint32_t)SERCOM2,(uint32_t)SERCOM3,(uint32_t)SERCOM4,(uint32_t)SERCOM5};
const uint8_t sercom_pchan[] = {7, 8, 23, 24, 34, 35};
@ -73,6 +73,9 @@ void CLK_oscctrl_init(void)
system_clks.freq_gclk[0] = system_clks.freq_dpll[0];
usec_delay_mult = system_clks.freq_gclk[0] / (USEC_DELAY_LOOP_CYCLES * 1000000);
if (usec_delay_mult < 1) usec_delay_mult = 1; //Never allow a multiplier of zero
DBGC(DC_CLK_OSC_INIT_COMPLETE);
}
@ -158,23 +161,11 @@ void TC4_Handler()
}
}
void TC5_Handler()
{
if (TC5->COUNT16.INTFLAG.bit.MC0)
{
TC5->COUNT16.INTFLAG.reg = TC_INTENCLR_MC0;
us_delay_done = 1;
TC5->COUNT16.CTRLA.bit.ENABLE = 0;
while (TC5->COUNT16.SYNCBUSY.bit.ENABLE) {}
}
}
uint32_t CLK_enable_timebase(void)
{
Gclk *pgclk = GCLK;
Mclk *pmclk = MCLK;
Tc *ptc4 = TC4;
Tc *ptc5 = TC5;
Tc *ptc0 = TC0;
Evsys *pevsys = EVSYS;
@ -189,11 +180,6 @@ uint32_t CLK_enable_timebase(void)
pgclk->PCHCTRL[TC4_GCLK_ID].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[TC4_GCLK_ID].bit.CHEN = 1;
//unmask TC5 sourcegclk2 to TC5
pmclk->APBCMASK.bit.TC5_ = 1;
pgclk->PCHCTRL[TC5_GCLK_ID].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[TC5_GCLK_ID].bit.CHEN = 1;
//configure TC4
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_BEGIN);
ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
@ -220,30 +206,6 @@ uint32_t CLK_enable_timebase(void)
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_COMPLETE);
//configure TC5
DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_BEGIN);
ptc5->COUNT16.CTRLA.bit.ENABLE = 0;
while (ptc5->COUNT16.SYNCBUSY.bit.ENABLE) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_SYNC_DISABLE); }
ptc5->COUNT16.CTRLA.bit.SWRST = 1;
while (ptc5->COUNT16.SYNCBUSY.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_SYNC_SWRST_1); }
while (ptc5->COUNT16.CTRLA.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_SYNC_SWRST_2); }
//CTRLA defaults
//CTRLB as default, counting up
ptc5->COUNT16.CTRLBCLR.reg = 5;
while (ptc5->COUNT16.SYNCBUSY.bit.CTRLB) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_SYNC_CLTRB); }
//ptc5->COUNT16.DBGCTRL.bit.DBGRUN = 1;
//wave mode
ptc5->COUNT16.WAVE.bit.WAVEGEN = 1; //MFRQ match frequency mode, toggle each CC match
//generate event for next stage
ptc5->COUNT16.EVCTRL.bit.MCEO0 = 1;
NVIC_EnableIRQ(TC5_IRQn);
ptc5->COUNT16.INTENSET.bit.MC0 = 1;
DBGC(DC_CLK_ENABLE_TIMEBASE_TC5_COMPLETE);
//unmask TC0,1, sourcegclk2 to TC0,1
pmclk->APBAMASK.bit.TC0_ = 1;
pgclk->PCHCTRL[TC0_GCLK_ID].bit.GEN = GEN_TC45;
@ -289,37 +251,27 @@ uint32_t CLK_enable_timebase(void)
return 0;
}
uint32_t CLK_get_ms(void)
void CLK_delay_us(uint32_t usec)
{
return ms_clk;
}
void CLK_delay_us(uint16_t usec)
{
us_delay_done = 0;
if (TC5->COUNT16.CTRLA.bit.ENABLE)
{
TC5->COUNT16.CTRLA.bit.ENABLE = 0;
while (TC5->COUNT16.SYNCBUSY.bit.ENABLE) {}
}
if (usec < 10) usec = 0;
else usec -= 10;
TC5->COUNT16.CC[0].reg = usec;
while (TC5->COUNT16.SYNCBUSY.bit.CC0) {}
TC5->COUNT16.CTRLA.bit.ENABLE = 1;
while (TC5->COUNT16.SYNCBUSY.bit.ENABLE) {}
while (!us_delay_done) {}
asm (
"CBZ R0, return\n\t" //If usec == 0, branch to return label
);
asm (
"MULS R0, %0\n\t" //Multiply R0(usec) by usec_delay_mult and store in R0
".balign 16\n\t" //Ensure loop is aligned for fastest performance
"loop: SUBS R0, #1\n\t" //Subtract 1 from R0 and update flags (1 cycle)
"BNE loop\n\t" //Branch if non-zero to loop label (2 cycles) NOTE: USEC_DELAY_LOOP_CYCLES is the sum of loop cycles
"return:\n\t" //Return label
: //No output registers
: "r" (usec_delay_mult) //For %0
);
//Note: BX LR generated
}
void CLK_delay_ms(uint64_t msec)
{
msec += CLK_get_ms();
while (msec > CLK_get_ms()) {}
msec += timer_read64();
while (msec > timer_read64()) {}
}
void clk_enable_sercom_apbmask(int sercomn)

View file

@ -77,9 +77,8 @@ void CLK_oscctrl_init(void);
void CLK_reset_time(void);
uint32_t CLK_set_gclk_freq(uint8_t gclkn, uint32_t freq);
uint32_t CLK_enable_timebase(void);
uint32_t CLK_get_ms(void);
uint64_t CLK_get_us(void);
void CLK_delay_us(uint16_t usec);
uint64_t timer_read64(void);
void CLK_delay_us(uint32_t usec);
void CLK_delay_ms(uint64_t msec);
uint32_t CLK_set_spi_freq(uint8_t sercomn, uint32_t freq);

View file

@ -265,12 +265,12 @@ uint8_t I2C3733_Init_Control(void)
//USB state machine will enable driver when communication is ready
I2C3733_Control_Set(0);
CLK_delay_ms(1);
wait_ms(1);
sr_exp_data.bit.IRST = 0;
SR_EXP_WriteData();
CLK_delay_ms(1);
wait_ms(1);
DBGC(DC_I2C3733_INIT_CONTROL_COMPLETE);

View file

@ -18,6 +18,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "arm_atsam_protocol.h"
#include "tmk_core/common/led.h"
#include <string.h>
#include <math.h>
void SERCOM1_0_Handler( void )
{
@ -217,6 +218,7 @@ void disp_calc_extents(void)
disp.width = disp.right - disp.left;
disp.height = disp.top - disp.bottom;
disp.max_distance = sqrtf(powf(disp.width, 2) + powf(disp.height, 2));
}
void disp_pixel_setup(void)
@ -249,6 +251,7 @@ uint8_t led_animation_breathing;
uint8_t led_animation_breathe_cur;
uint8_t breathe_step;
uint8_t breathe_dir;
uint8_t led_animation_circular;
uint64_t led_next_run;
uint8_t led_animation_id;
@ -265,6 +268,7 @@ void led_matrix_run(void)
float go;
float bo;
float po;
uint8_t led_this_run = 0;
led_setup_t *f = (led_setup_t*)led_setups[led_animation_id];
@ -327,13 +331,18 @@ void led_matrix_run(void)
for (fcur = 0; fcur < fmax; fcur++)
{
if (led_animation_orientation)
{
po = led_cur->py;
if (led_animation_circular) {
po = sqrtf((powf(fabsf((disp.width / 2) - (led_cur->x - disp.left)), 2) + powf(fabsf((disp.height / 2) - (led_cur->y - disp.bottom)), 2))) / disp.max_distance * 100;
}
else
{
po = led_cur->px;
else {
if (led_animation_orientation)
{
po = led_cur->py;
}
else
{
po = led_cur->px;
}
}
float pomod;
@ -466,6 +475,7 @@ uint8_t led_matrix_init(void)
led_animation_breathe_cur = BREATHE_MIN_STEP;
breathe_step = 1;
breathe_dir = 1;
led_animation_circular = 0;
gcr_min_counter = 0;
v_5v_cat_hit = 0;
@ -494,11 +504,11 @@ void led_matrix_task(void)
if (led_enabled)
{
//If an update may run and frame processing has completed
if (CLK_get_ms() >= led_next_run && led_cur == lede)
if (timer_read64() >= led_next_run && led_cur == lede)
{
uint8_t drvid;
led_next_run = CLK_get_ms() + LED_UPDATE_RATE; //Set next frame update time
led_next_run = timer_read64() + LED_UPDATE_RATE; //Set next frame update time
//NOTE: GCR does not need to be timed with LED processing, but there is really no harm
if (gcr_actual != gcr_actual_last)

View file

@ -83,6 +83,7 @@ typedef struct led_disp_s {
float bottom;
float width;
float height;
float max_distance;
} led_disp_t;
uint8_t led_matrix_init(void);
@ -129,6 +130,7 @@ extern uint8_t led_animation_orientation;
extern uint8_t led_animation_breathing;
extern uint8_t led_animation_breathe_cur;
extern uint8_t breathe_dir;
extern uint8_t led_animation_circular;
extern const uint8_t led_setups_count;
extern void *led_setups[];

View file

@ -159,7 +159,7 @@ void send_consumer(uint16_t data)
void main_subtask_usb_state(void)
{
static uint32_t fsmstate_on_delay = 0; //Delay timer to be sure USB is actually operating before bringing up hardware
static uint64_t fsmstate_on_delay = 0; //Delay timer to be sure USB is actually operating before bringing up hardware
uint8_t fsmstate_now = USB->DEVICE.FSMSTATUS.reg; //Current state from hardware register
if (fsmstate_now == USB_FSMSTATUS_FSMSTATE_SUSPEND_Val) //If USB SUSPENDED
@ -188,9 +188,9 @@ void main_subtask_usb_state(void)
{
if (fsmstate_on_delay == 0) //If ON delay timer is cleared
{
fsmstate_on_delay = CLK_get_ms() + 250; //Set ON delay timer
fsmstate_on_delay = timer_read64() + 250; //Set ON delay timer
}
else if (CLK_get_ms() > fsmstate_on_delay) //Else if ON delay timer is active and timed out
else if (timer_read64() > fsmstate_on_delay) //Else if ON delay timer is active and timed out
{
suspend_wakeup_init(); //Run wakeup routine
g_usb_state = fsmstate_now; //Save current USB state
@ -214,9 +214,9 @@ void main_subtask_power_check(void)
{
static uint64_t next_5v_checkup = 0;
if (CLK_get_ms() > next_5v_checkup)
if (timer_read64() > next_5v_checkup)
{
next_5v_checkup = CLK_get_ms() + 5;
next_5v_checkup = timer_read64() + 5;
v_5v = adc_get(ADC_5V);
v_5v_avg = 0.9 * v_5v_avg + 0.1 * v_5v;
@ -229,9 +229,9 @@ void main_subtask_usb_extra_device(void)
{
static uint64_t next_usb_checkup = 0;
if (CLK_get_ms() > next_usb_checkup)
if (timer_read64() > next_usb_checkup)
{
next_usb_checkup = CLK_get_ms() + 10;
next_usb_checkup = timer_read64() + 10;
USB_HandleExtraDevice();
}
@ -325,9 +325,9 @@ int main(void)
keyboard_task();
#ifdef CONSOLE_ENABLE
if (CLK_get_ms() > next_print)
if (timer_read64() > next_print)
{
next_print = CLK_get_ms() + 250;
next_print = timer_read64() + 250;
//Add any debug information here that you want to see very often
//dprintf("5v=%u 5vu=%u dlow=%u dhi=%u gca=%u gcd=%u\r\n", v_5v, v_5v_avg, v_5v_avg - V5_LOW, v_5v_avg - V5_HIGH, gcr_actual, gcr_desired);
}

View file

@ -134,13 +134,15 @@
* heuristics and inline the function no matter how big it thinks it
* becomes.
*/
#if !defined(__always_inline)
#if defined(__CC_ARM)
# define __always_inline __forceinline
#elif (defined __GNUC__ && __GNUC__ <= 6)
#elif (defined __GNUC__)
# define __always_inline __attribute__((__always_inline__))
#elif (defined __ICCARM__)
# define __always_inline _Pragma("inline=forced")
#endif
#endif
/**
* \def __no_inline

View file

@ -1227,9 +1227,9 @@ uint32_t cdc_tx_send_time_next;
void CDC_send(void)
{
while (CLK_get_ms() < cdc_tx_send_time_next);
while (timer_read64() < cdc_tx_send_time_next);
udi_cdc_tx_send(0);
cdc_tx_send_time_next = CLK_get_ms() + CDC_SEND_INTERVAL;
cdc_tx_send_time_next = timer_read64() + CDC_SEND_INTERVAL;
}
uint32_t CDC_print(char *printbuf)
@ -1238,7 +1238,7 @@ uint32_t CDC_print(char *printbuf)
char *buf = printbuf;
char c;
if (CLK_get_ms() < 5000) return 0;
if (timer_read64() < 5000) return 0;
while ((c = *buf++) != 0 && !(count >= MAX_PRINT))
{
@ -1339,7 +1339,7 @@ void CDC_init(void)
inbuf.count = 0;
inbuf.lastcount = 0;
printbuf[0] = 0;
cdc_tx_send_time_next = CLK_get_ms() + CDC_SEND_INTERVAL;
cdc_tx_send_time_next = timer_read64() + CDC_SEND_INTERVAL;
}
#else //CDC line 62

View file

@ -64,7 +64,7 @@ void USB_write2422_block(void)
i2c0_transmit(USB2422_ADDR, dest, 34, 50000);
SERCOM0->I2CM.CTRLB.bit.CMD = 0x03;
while (SERCOM0->I2CM.SYNCBUSY.bit.SYSOP) { DBGC(DC_USB_WRITE2422_BLOCK_SYNC_SYSOP); }
CLK_delay_us(100);
wait_us(100);
}
DBGC(DC_USB_WRITE2422_BLOCK_COMPLETE);
@ -135,7 +135,7 @@ void USB2422_init(void)
sr_exp_data.bit.HUB_RESET_N = 1; //reset high
SR_EXP_WriteData();
CLK_delay_us(100);
wait_us(100);
#ifndef MD_BOOTLOADER
@ -154,10 +154,9 @@ void USB_reset(void)
//pulse reset for at least 1 usec
sr_exp_data.bit.HUB_RESET_N = 0; //reset low
SR_EXP_WriteData();
CLK_delay_us(1);
wait_us(2);
sr_exp_data.bit.HUB_RESET_N = 1; //reset high to run
SR_EXP_WriteData();
CLK_delay_us(1);
DBGC(DC_USB_RESET_COMPLETE);
}
@ -247,7 +246,7 @@ void USB_set_host_by_voltage(void)
SR_EXP_WriteData();
CLK_delay_ms(250);
wait_ms(250);
while ((v_5v = adc_get(ADC_5V)) < ADC_5V_START_LEVEL) { DBGC(DC_USB_SET_HOST_5V_LOW_WAITING); }
@ -313,11 +312,11 @@ uint8_t USB2422_Port_Detect_Init(void)
USB_set_host_by_voltage();
port_detect_retry_ms = CLK_get_ms() + PORT_DETECT_RETRY_INTERVAL;
port_detect_retry_ms = timer_read64() + PORT_DETECT_RETRY_INTERVAL;
while (!USB_active())
{
tmod = CLK_get_ms() % PORT_DETECT_RETRY_INTERVAL;
tmod = timer_read64() % PORT_DETECT_RETRY_INTERVAL;
if (v_con_1 > v_con_2) //Values updated from USB_set_host_by_voltage();
{
@ -333,7 +332,7 @@ uint8_t USB2422_Port_Detect_Init(void)
else { DBG_LED_OFF; }
}
if (CLK_get_ms() > port_detect_retry_ms)
if (timer_read64() > port_detect_retry_ms)
{
DBGC(DC_PORT_DETECT_INIT_FAILED);
return 0;

View file

@ -113,7 +113,7 @@ int main(void) {
chSysInit();
#ifdef STM32_EEPROM_ENABLE
EEPROM_init();
EEPROM_Init();
#endif
// TESTING

View file

@ -517,17 +517,16 @@ void EVENT_USB_Device_ControlRequest(void)
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
#ifdef KEYBOARD_SHARED_EP
uint8_t report_id = REPORT_ID_KEYBOARD;
if (keyboard_protocol) {
report_id = Endpoint_Read_8();
}
if (report_id == REPORT_ID_KEYBOARD || report_id == REPORT_ID_NKRO) {
if (Endpoint_BytesInEndpoint() == 2) {
uint8_t report_id = Endpoint_Read_8();
if (report_id == REPORT_ID_KEYBOARD || report_id == REPORT_ID_NKRO) {
keyboard_led_stats = Endpoint_Read_8();
}
} else {
keyboard_led_stats = Endpoint_Read_8();
}
#else
keyboard_led_stats = Endpoint_Read_8();
#endif
Endpoint_ClearOUT();
Endpoint_ClearStatusStage();