1
0
Fork 0

Add encoder abstraction. (#21548)

This commit is contained in:
Nick Brassel 2024-02-18 21:17:15 +11:00 committed by GitHub
parent 2eb9ff8efd
commit 9d9cdaaa2d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
50 changed files with 863 additions and 653 deletions

View file

@ -1,82 +1,111 @@
/*
* Copyright 2018 Jack Humbert <jack.humb@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "encoder.h"
#include "keyboard.h"
#include <string.h>
#include "action.h"
#include "keycodes.h"
#include "encoder.h"
#include "wait.h"
#ifdef SPLIT_KEYBOARD
# include "split_util.h"
#endif
// for memcpy
#include <string.h>
#ifndef ENCODER_MAP_KEY_DELAY
# include "action.h"
# define ENCODER_MAP_KEY_DELAY TAP_CODE_DELAY
#endif
#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
# define ENCODER_RESOLUTION 4
#endif
#if !defined(ENCODERS_PAD_A) || !defined(ENCODERS_PAD_B)
# error "No encoder pads defined by ENCODERS_PAD_A and ENCODERS_PAD_B"
#endif
extern volatile bool isLeftHand;
static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A;
static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B;
#ifdef ENCODER_RESOLUTIONS
static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS;
#endif
#ifndef ENCODER_DIRECTION_FLIP
# define ENCODER_CLOCKWISE true
# define ENCODER_COUNTER_CLOCKWISE false
#else
# define ENCODER_CLOCKWISE false
# define ENCODER_COUNTER_CLOCKWISE true
#endif
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
static uint8_t encoder_state[NUM_ENCODERS] = {0};
static int8_t encoder_pulses[NUM_ENCODERS] = {0};
// encoder counts
static uint8_t thisCount;
#ifdef SPLIT_KEYBOARD
// encoder offsets for each hand
static uint8_t thisHand, thatHand;
// encoder counts for each hand
static uint8_t thatCount;
#endif
static uint8_t encoder_value[NUM_ENCODERS] = {0};
__attribute__((weak)) void encoder_wait_pullup_charge(void) {
wait_us(100);
__attribute__((weak)) bool should_process_encoder(void) {
return is_keyboard_master();
}
static encoder_events_t encoder_events;
void encoder_init(void) {
memset(&encoder_events, 0, sizeof(encoder_events));
encoder_driver_init();
}
static bool encoder_handle_queue(void) {
bool changed = false;
while (encoder_events.tail != encoder_events.head) {
encoder_event_t event = encoder_events.queue[encoder_events.tail];
encoder_events.tail = (encoder_events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
#ifdef ENCODER_MAP_ENABLE
// The delays below cater for Windows and its wonderful requirements.
action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, true) : MAKE_ENCODER_CCW_EVENT(event.index, true));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, false) : MAKE_ENCODER_CCW_EVENT(event.index, false));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
#else // ENCODER_MAP_ENABLE
encoder_update_kb(event.index, event.clockwise ? true : false);
#endif // ENCODER_MAP_ENABLE
changed = true;
}
return changed;
}
bool encoder_task(void) {
bool changed = false;
#ifdef SPLIT_KEYBOARD
// Attempt to process existing encoder events in case split handling has already enqueued events
if (should_process_encoder()) {
changed |= encoder_handle_queue();
}
#endif // SPLIT_KEYBOARD
// Let the encoder driver produce events
encoder_driver_task();
// Process any events that were enqueued
if (should_process_encoder()) {
changed |= encoder_handle_queue();
}
return changed;
}
bool encoder_queue_event(uint8_t index, bool clockwise) {
// Drop out if we're full
if ((encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS == encoder_events.tail) {
return false;
}
// Append the event
encoder_event_t new_event = {.index = index, .clockwise = clockwise ? 1 : 0};
encoder_events.queue[encoder_events.head] = new_event;
// Increment the head index
encoder_events.head = (encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS;
return true;
}
void encoder_retrieve_events(encoder_events_t *events) {
memcpy(events, &encoder_events, sizeof(encoder_events));
}
#ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index) {
encoder_events.tail = tail_index;
}
void encoder_handle_slave_events(encoder_events_t *events) {
while (events->tail != events->head) {
encoder_event_t event = events->queue[events->tail];
events->tail = (events->tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
encoder_queue_event(event.index, event.clockwise ? true : false);
}
}
#endif // SPLIT_KEYBOARD
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) {
return true;
}
@ -106,192 +135,3 @@ __attribute__((weak)) bool encoder_update_kb(uint8_t index, bool clockwise) {
#endif // ENCODER_TESTS
return res;
}
__attribute__((weak)) bool should_process_encoder(void) {
return is_keyboard_master();
}
void encoder_init(void) {
#ifdef SPLIT_KEYBOARD
thisHand = isLeftHand ? 0 : NUM_ENCODERS_LEFT;
thatHand = NUM_ENCODERS_LEFT - thisHand;
thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT;
thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT;
#else // SPLIT_KEYBOARD
thisCount = NUM_ENCODERS;
#endif
#ifdef ENCODER_TESTS
// Annoying that we have to clear out values during initialisation here, but
// because all the arrays are static locals, rerunning tests in the same
// executable doesn't reset any of these. Kinda crappy having test-only code
// here, but it's the simplest solution.
memset(encoder_value, 0, sizeof(encoder_value));
memset(encoder_state, 0, sizeof(encoder_state));
memset(encoder_pulses, 0, sizeof(encoder_pulses));
static const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A;
static const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_left[i];
encoders_pad_b[i] = encoders_pad_b_left[i];
}
#endif
#if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Re-initialise the pads if it's the right-hand side
if (!isLeftHand) {
static const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT;
static const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_right[i];
encoders_pad_b[i] = encoders_pad_b_right[i];
}
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Encoder resolutions is handled purely master-side, so concatenate the two arrays
#if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
# if defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT;
# else // defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS;
# endif // defined(ENCODER_RESOLUTIONS_RIGHT)
for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) {
encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i];
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
for (uint8_t i = 0; i < thisCount; i++) {
gpio_set_pin_input_high(encoders_pad_a[i]);
gpio_set_pin_input_high(encoders_pad_b[i]);
}
encoder_wait_pullup_charge();
for (uint8_t i = 0; i < thisCount; i++) {
encoder_state[i] = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
}
}
#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
// The delays below cater for Windows and its wonderful requirements.
action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, true) : MAKE_ENCODER_CCW_EVENT(index, true));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, false) : MAKE_ENCODER_CCW_EVENT(index, false));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
}
#endif // ENCODER_MAP_ENABLE
static bool encoder_update(uint8_t index, uint8_t state) {
bool changed = false;
uint8_t i = index;
#ifdef ENCODER_RESOLUTIONS
const uint8_t resolution = encoder_resolutions[i];
#else
const uint8_t resolution = ENCODER_RESOLUTION;
#endif
#ifdef SPLIT_KEYBOARD
index += thisHand;
#endif
encoder_pulses[i] += encoder_LUT[state & 0xF];
#ifdef ENCODER_DEFAULT_POS
if ((encoder_pulses[i] >= resolution) || (encoder_pulses[i] <= -resolution) || ((state & 0x3) == ENCODER_DEFAULT_POS)) {
if (encoder_pulses[i] >= 1) {
#else
if (encoder_pulses[i] >= resolution) {
#endif
encoder_value[index]++;
changed = true;
#ifdef SPLIT_KEYBOARD
if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
}
#ifdef ENCODER_DEFAULT_POS
if (encoder_pulses[i] <= -1) {
#else
if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
#endif
encoder_value[index]--;
changed = true;
#ifdef SPLIT_KEYBOARD
if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
}
encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS
encoder_pulses[i] = 0;
}
#endif
return changed;
}
bool encoder_read(void) {
bool changed = false;
for (uint8_t i = 0; i < thisCount; i++) {
uint8_t new_status = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
if ((encoder_state[i] & 0x3) != new_status) {
encoder_state[i] <<= 2;
encoder_state[i] |= new_status;
changed |= encoder_update(i, encoder_state[i]);
}
}
return changed;
}
#ifdef SPLIT_KEYBOARD
void last_encoder_activity_trigger(void);
void encoder_state_raw(uint8_t *slave_state) {
memcpy(slave_state, &encoder_value[thisHand], sizeof(uint8_t) * thisCount);
}
void encoder_update_raw(uint8_t *slave_state) {
bool changed = false;
for (uint8_t i = 0; i < thatCount; i++) { // Note inverted logic -- we want the opposite side
const uint8_t index = i + thatHand;
int8_t delta = slave_state[i] - encoder_value[index];
while (delta > 0) {
delta--;
encoder_value[index]++;
changed = true;
# ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
# else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
# endif // ENCODER_MAP_ENABLE
}
while (delta < 0) {
delta++;
encoder_value[index]--;
changed = true;
# ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_CLOCKWISE);
# else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_CLOCKWISE);
# endif // ENCODER_MAP_ENABLE
}
}
// Update the last encoder input time -- handled external to encoder_read() when we're running a split
if (changed) last_encoder_activity_trigger();
}
#endif

View file

@ -22,45 +22,88 @@
#include "gpio.h"
#include "util.h"
#ifdef ENCODER_ENABLE
__attribute__((weak)) bool should_process_encoder(void);
void encoder_init(void);
bool encoder_read(void);
bool encoder_task(void);
bool encoder_queue_event(uint8_t index, bool clockwise);
bool encoder_update_kb(uint8_t index, bool clockwise);
bool encoder_update_user(uint8_t index, bool clockwise);
#ifdef SPLIT_KEYBOARD
# ifdef SPLIT_KEYBOARD
void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);
# if defined(ENCODERS_PAD_A_RIGHT)
# ifndef NUM_ENCODERS_LEFT
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# ifndef NUM_ENCODERS_RIGHT
# define NUM_ENCODERS_RIGHT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A_RIGHT))
# endif
# else
# ifndef NUM_ENCODERS_LEFT
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# ifndef NUM_ENCODERS_RIGHT
# define NUM_ENCODERS_RIGHT NUM_ENCODERS_LEFT
# endif
# endif
# ifndef NUM_ENCODERS
# define NUM_ENCODERS (NUM_ENCODERS_LEFT + NUM_ENCODERS_RIGHT)
# endif
# if defined(ENCODERS_PAD_A_RIGHT)
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# define NUM_ENCODERS_RIGHT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A_RIGHT))
# else
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# define NUM_ENCODERS_RIGHT NUM_ENCODERS_LEFT
# endif
# define NUM_ENCODERS (NUM_ENCODERS_LEFT + NUM_ENCODERS_RIGHT)
# else // SPLIT_KEYBOARD
#else // SPLIT_KEYBOARD
# ifndef NUM_ENCODERS
# define NUM_ENCODERS ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# define NUM_ENCODERS_LEFT NUM_ENCODERS
# define NUM_ENCODERS_RIGHT 0
# define NUM_ENCODERS ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# define NUM_ENCODERS_LEFT NUM_ENCODERS
# define NUM_ENCODERS_RIGHT 0
# endif // SPLIT_KEYBOARD
#endif // SPLIT_KEYBOARD
# ifndef NUM_ENCODERS
# define NUM_ENCODERS 0
# define NUM_ENCODERS_LEFT 0
# define NUM_ENCODERS_RIGHT 0
# endif // NUM_ENCODERS
#ifndef NUM_ENCODERS
# define NUM_ENCODERS 0
# define NUM_ENCODERS_LEFT 0
# define NUM_ENCODERS_RIGHT 0
#endif // NUM_ENCODERS
# define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)
#define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)
# ifndef MAX_QUEUED_ENCODER_EVENTS
# define MAX_QUEUED_ENCODER_EVENTS MAX(4, ((NUM_ENCODERS_MAX_PER_SIDE) + 1))
# endif // MAX_QUEUED_ENCODER_EVENTS
#ifdef ENCODER_MAP_ENABLE
# define NUM_DIRECTIONS 2
# define ENCODER_CCW_CW(ccw, cw) \
{ (cw), (ccw) }
typedef struct encoder_event_t {
uint8_t index : 7;
uint8_t clockwise : 1;
} encoder_event_t;
typedef struct encoder_events_t {
uint8_t head;
uint8_t tail;
encoder_event_t queue[MAX_QUEUED_ENCODER_EVENTS];
} encoder_events_t;
// Get the current queued events
void encoder_retrieve_events(encoder_events_t *events);
# ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index);
void encoder_handle_slave_events(encoder_events_t *events);
# endif // SPLIT_KEYBOARD
# ifdef ENCODER_MAP_ENABLE
# define NUM_DIRECTIONS 2
# define ENCODER_CCW_CW(ccw, cw) \
{ (cw), (ccw) }
extern const uint16_t encoder_map[][NUM_ENCODERS][NUM_DIRECTIONS];
#endif // ENCODER_MAP_ENABLE
# endif // ENCODER_MAP_ENABLE
// "Custom encoder lite" support
void encoder_driver_init(void);
void encoder_driver_task(void);
#endif // ENCODER_ENABLE

View file

@ -0,0 +1,6 @@
// Copyright 2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
// Override the one in quantum/util because it doesn't like working on x64 builds.
#define ARRAY_SIZE(array) (sizeof((array)) / sizeof((array)[0]))

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -41,7 +41,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderTest : public ::testing::Test {};

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftEqRight : public ::testing::Test {
@ -63,6 +70,7 @@ class EncoderSplitTestLeftEqRight : public ::testing::Test {
};
TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
isMaster = true;
isLeftHand = true;
encoder_init();
EXPECT_EQ(pinIsInputHigh[0], true);
@ -77,6 +85,7 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
}
TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
isMaster = true;
isLeftHand = false;
encoder_init();
EXPECT_EQ(pinIsInputHigh[0], false);
@ -90,7 +99,8 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -102,9 +112,19 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -113,23 +133,60 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftEqRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 2);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 3);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftGreaterThanRight : public ::testing::Test {
@ -94,7 +101,8 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -106,9 +114,19 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -117,23 +135,60 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0xFF);
EXPECT_EQ(slave_state[1], 0);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 4);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftLessThanRight : public ::testing::Test {
@ -94,7 +101,8 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -106,9 +114,19 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -117,23 +135,60 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 2);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 4);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestNoLeft : public ::testing::Test {
@ -82,19 +89,8 @@ TEST_F(EncoderSplitTestNoLeft, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeft) {
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -103,23 +99,38 @@ TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 1);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestNoLeft, TestMultipleEncodersRightReceived) {
isLeftHand = true;
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 1);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestNoRight : public ::testing::Test {
@ -82,37 +89,48 @@ TEST_F(EncoderSplitTestNoRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
EXPECT_EQ(updates_array_idx, 1); // one updates received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 1);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSent) {
isLeftHand = false;
encoder_init();
uint8_t slave_state[32] = {0xAA, 0xAA};
encoder_state_raw(slave_state);
EXPECT_EQ(slave_state[0], 0xAA);
EXPECT_EQ(slave_state[1], 0xAA);
}
TEST_F(EncoderSplitTestNoRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {1, 0xFF}; // These values would trigger updates if there were encoders on the other side
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 0); // no updates received -- no right-hand encoders
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -50,7 +50,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestRole : public ::testing::Test {
@ -87,9 +87,6 @@ TEST_F(EncoderSplitTestRole, TestPrimaryRight) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(num_updates, 1); // one update received
}
@ -116,8 +113,5 @@ TEST_F(EncoderSplitTestRole, TestNotPrimaryRight) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(num_updates, 0); // zero updates received
}

View file

@ -36,7 +36,3 @@ bool setPin(pin_t pin, bool val) {
}
void last_encoder_activity_trigger(void) {}
__attribute__((weak)) bool is_keyboard_master(void) {
return true;
}

View file

@ -22,9 +22,6 @@
#define SPLIT_KEYBOARD
typedef uint8_t pin_t;
void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);
extern bool pins[];
extern bool pinIsInputHigh[];

View file

@ -3,6 +3,7 @@ encoder_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock.h
encoder_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests.cpp \
$(QUANTUM_PATH)/encoder.c
@ -13,6 +14,7 @@ encoder_split_left_eq_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_eq_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_eq_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -23,6 +25,7 @@ encoder_split_left_gt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_gt_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_gt_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -33,6 +36,7 @@ encoder_split_left_lt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_lt_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_lt_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -43,6 +47,7 @@ encoder_split_no_left_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_
encoder_split_no_left_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_left.cpp \
$(QUANTUM_PATH)/encoder.c
@ -53,6 +58,7 @@ encoder_split_no_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split
encoder_split_no_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -63,6 +69,7 @@ encoder_split_role_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_rol
encoder_split_role_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_role.cpp \
$(QUANTUM_PATH)/encoder.c

View file

@ -689,7 +689,7 @@ void keyboard_task(void) {
#endif
#ifdef ENCODER_ENABLE
if (encoder_read()) {
if (encoder_task()) {
last_encoder_activity_trigger();
activity_has_occurred = true;
}

View file

@ -31,6 +31,7 @@ enum serial_transaction_id {
#ifdef ENCODER_ENABLE
GET_ENCODERS_CHECKSUM,
GET_ENCODERS_DATA,
PUT_ENCODER_TAIL,
#endif // ENCODER_ENABLE
#ifndef DISABLE_SYNC_TIMER

View file

@ -234,21 +234,28 @@ static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_ro
#ifdef ENCODER_ENABLE
static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
uint8_t temp_state[NUM_ENCODERS_MAX_PER_SIDE];
static uint32_t last_update = 0;
encoder_events_t temp_events;
bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
if (okay) encoder_update_raw(temp_state);
bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, &temp_events, &split_shmem->encoders.events, sizeof(temp_events));
if (okay) {
encoder_handle_slave_events(&split_shmem->encoders.events);
transport_write(PUT_ENCODER_TAIL, &split_shmem->encoders.events.tail, sizeof(split_shmem->encoders.events.tail));
split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}
return okay;
}
static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
uint8_t encoder_state[NUM_ENCODERS_MAX_PER_SIDE];
encoder_state_raw(encoder_state);
// Always prepare the encoder state for read.
memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
encoder_retrieve_events(&split_shmem->encoders.events);
// Now update the checksum given that the encoders has been written to
split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}
static void encoder_handlers_slave_reset(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
uint8_t tail_index = *(uint8_t *)initiator2target_buffer;
encoder_set_tail_index(tail_index);
}
// clang-format off
@ -256,7 +263,8 @@ static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t sl
# define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(encoder)
# define TRANSACTIONS_ENCODERS_REGISTRATIONS \
[GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
[GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.state),
[GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.events), \
[PUT_ENCODER_TAIL] = trans_initiator2target_initializer_cb(encoders.events.tail, encoder_handlers_slave_reset),
// clang-format on
#else // ENCODER_ENABLE

View file

@ -65,8 +65,8 @@ typedef struct _split_master_matrix_sync_t {
#ifdef ENCODER_ENABLE
typedef struct _split_slave_encoder_sync_t {
uint8_t checksum;
uint8_t state[NUM_ENCODERS_MAX_PER_SIDE];
uint8_t checksum;
encoder_events_t events;
} split_slave_encoder_sync_t;
#endif // ENCODER_ENABLE