1
0
Fork 0

Vitepress conversion of docs. (#23795)

This commit is contained in:
Nick Brassel 2024-05-30 12:00:41 +10:00 committed by GitHub
parent 395766657f
commit 6ef9717288
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
357 changed files with 3611 additions and 24208 deletions

View file

@ -1,10 +1,10 @@
# UART Driver :id=uart-driver
# UART Driver {#uart-driver}
The UART drivers used in QMK have a set of common functions to allow portability between MCUs.
Currently, this driver does not support enabling hardware flow control (the `RTS` and `CTS` pins) if available, but may do so in future.
## Usage :id=usage
## Usage {#usage}
In most cases, the UART driver code is automatically included if you are using a feature or driver which requires it.
@ -16,7 +16,7 @@ UART_DRIVER_REQUIRED = yes
You can then call the UART API by including `uart.h` in your code.
## AVR Configuration :id=avr-configuration
## AVR Configuration {#avr-configuration}
No special setup is required - just connect the `RX` and `TX` pins of your UART device to the opposite pins on the MCU:
@ -28,7 +28,7 @@ No special setup is required - just connect the `RX` and `TX` pins of your UART
|ATmega32A |`D1`|`D0`|*n/a*|*n/a*|
|ATmega328/P |`D1`|`D0`|*n/a*|*n/a*|
## ChibiOS/ARM Configuration :id=arm-configuration
## ChibiOS/ARM Configuration {#arm-configuration}
You'll need to determine which pins can be used for UART -- as an example, STM32 parts generally have multiple UART peripherals, labeled USART1, USART2, USART3 etc.
@ -53,45 +53,45 @@ Configuration-wise, you'll need to set up the peripheral as per your MCU's datas
| `#define UART_RTS_PIN` | The pin to use for RTS | `A12` |
| `#define UART_RTS_PAL_MODE` | The alternate function mode for RTS | `7` |
## API :id=api
## API {#api}
### `void uart_init(uint32_t baud)` :id=api-uart-init
### `void uart_init(uint32_t baud)` {#api-uart-init}
Initialize the UART driver. This function must be called only once, before any of the below functions can be called.
#### Arguments :id=api-uart-init-arguments
#### Arguments {#api-uart-init-arguments}
- `uint32_t baud`
The baud rate to transmit and receive at. This may depend on the device you are communicating with. Common values are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.
---
### `void uart_write(uint8_t data)` :id=api-uart-write
### `void uart_write(uint8_t data)` {#api-uart-write}
Transmit a single byte.
#### Arguments :id=api-uart-write-arguments
#### Arguments {#api-uart-write-arguments}
- `uint8_t data`
The byte to write.
---
### `uint8_t uart_read(void)` :id=api-uart-read
### `uint8_t uart_read(void)` {#api-uart-read}
Receive a single byte.
#### Return Value :id=api-uart-read-return
#### Return Value {#api-uart-read-return}
The byte read from the receive buffer. This function will block if the buffer is empty (ie. no data to read).
---
### `void uart_transmit(const uint8_t *data, uint16_t length)` :id=api-uart-transmit
### `void uart_transmit(const uint8_t *data, uint16_t length)` {#api-uart-transmit}
Transmit multiple bytes.
#### Arguments :id=api-uart-transmit-arguments
#### Arguments {#api-uart-transmit-arguments}
- `const uint8_t *data`
A pointer to the data to write from.
@ -100,11 +100,11 @@ Transmit multiple bytes.
---
### `void uart_receive(char *data, uint16_t length)` :id=api-uart-receive
### `void uart_receive(char *data, uint16_t length)` {#api-uart-receive}
Receive multiple bytes.
#### Arguments :id=api-uart-receive-arguments
#### Arguments {#api-uart-receive-arguments}
- `uint8_t *data`
A pointer to the buffer to read into.
@ -113,10 +113,10 @@ Receive multiple bytes.
---
### `bool uart_available(void)` :id=api-uart-available
### `bool uart_available(void)` {#api-uart-available}
Return whether the receive buffer contains data. Call this function to determine if `uart_read()` will return data immediately.
#### Return Value :id=api-uart-available-return
#### Return Value {#api-uart-available-return}
`true` if the receive buffer length is non-zero.