1
0
Fork 0

Format code according to conventions (#16322)

This commit is contained in:
QMK Bot 2022-02-12 10:29:31 -08:00 committed by GitHub
parent afcdd7079c
commit 63646e8906
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
345 changed files with 4916 additions and 3229 deletions

View file

@ -72,7 +72,7 @@ void enter_bootloader_mode_if_requested(void) {}
# define MAGIC_ADDR (unsigned long *)(SYMVAL(__ram0_end__) - 4)
__attribute__((weak)) void bootloader_jump(void) {
*MAGIC_ADDR = BOOTLOADER_MAGIC; // set magic flag => reset handler will jump into boot loader
*MAGIC_ADDR = BOOTLOADER_MAGIC; // set magic flag => reset handler will jump into boot loader
NVIC_SystemReset();
}

View file

@ -18,4 +18,6 @@
#include <ch.h>
__attribute__((weak)) void bootloader_jump(void) { NVIC_SystemReset(); }
__attribute__((weak)) void bootloader_jump(void) {
NVIC_SystemReset();
}

View file

@ -16,7 +16,7 @@
#pragma once
#ifndef USB_VBUS_PIN
# define SPLIT_USB_DETECT // Force this on when dedicated pin is not used
# define SPLIT_USB_DETECT // Force this on when dedicated pin is not used
#endif
// STM32 compatibility
@ -76,7 +76,7 @@
# if defined(K20x) || defined(KL2x)
# define USE_I2CV1
# define USE_I2CV1_CONTRIB // for some reason a bunch of ChibiOS-Contrib boards only have clock_speed
# define USE_I2CV1_CONTRIB // for some reason a bunch of ChibiOS-Contrib boards only have clock_speed
# define USE_GPIOV1
# endif
#endif

View file

@ -101,9 +101,9 @@
// Options are 12, 10, 8, and 6 bit.
#ifndef ADC_RESOLUTION
# ifdef ADC_CFGR_RES_10BITS // ADCv3, ADCv4
# ifdef ADC_CFGR_RES_10BITS // ADCv3, ADCv4
# define ADC_RESOLUTION ADC_CFGR_RES_10BITS
# else // ADCv1, ADCv5, or the bodge for ADCv2 above
# else // ADCv1, ADCv5, or the bodge for ADCv2 above
# define ADC_RESOLUTION ADC_CFGR1_RES_10BIT
# endif
#endif
@ -123,7 +123,7 @@ static ADCConversionGroup adcConversionGroup = {
.smpr = ADC_SAMPLING_RATE,
#elif defined(USE_ADCV2)
# if !defined(STM32F1XX) && !defined(GD32VF103)
.cr2 = ADC_CR2_SWSTART, // F103 seem very unhappy with, F401 seems very unhappy without...
.cr2 = ADC_CR2_SWSTART, // F103 seem very unhappy with, F401 seems very unhappy without...
# endif
.smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_RATE),
.smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_RATE),

View file

@ -28,7 +28,9 @@ typedef struct {
uint8_t adc;
} adc_mux;
#define TO_MUX(i, a) \
(adc_mux) { i, a }
(adc_mux) { \
i, a \
}
int16_t analogReadPin(pin_t pin);
int16_t analogReadPinAdc(pin_t pin, uint8_t adc);

View file

@ -52,19 +52,19 @@ static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = {
// 256 values, max 4095
0x0, 0x1, 0x2, 0x6, 0xa, 0xf, 0x16, 0x1e, 0x27, 0x32, 0x3d, 0x4a, 0x58, 0x67, 0x78, 0x89, 0x9c, 0xb0, 0xc5, 0xdb, 0xf2, 0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe,
0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2, 0xdb, 0xc5, 0xb0, 0x9c, 0x89, 0x78, 0x67, 0x58, 0x4a, 0x3d, 0x32, 0x27, 0x1e, 0x16, 0xf, 0xa, 0x6, 0x2, 0x1};
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = {
// 256 values, max 4095
0x0, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe0, 0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf,
0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0, 0xc0, 0xa0, 0x80, 0x60, 0x40, 0x20};
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = {
[0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, // first and
[AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half
[0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, // first and
[AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half
};
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
/*
// four steps: 0, 1/3, 2/3 and 1
static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = {
@ -77,7 +77,7 @@ static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = {
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0, 0x1f, 0x7f, 0xdf, 0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf, 0x7f, 0x1f, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE};
@ -98,7 +98,7 @@ typedef enum {
OUTPUT_REACHED_ZERO_BEFORE_OFF,
OUTPUT_OFF,
OUTPUT_OFF_1,
OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level
OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level
number_of_output_states
} output_states_t;
output_states_t state = OUTPUT_OFF_2;
@ -171,7 +171,7 @@ static void dac_end(DACDriver *dacp) {
// work on the other half of the buffer
if (dacIsBufferComplete(dacp)) {
sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index'
sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index'
}
for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) {
@ -196,8 +196,8 @@ static void dac_end(DACDriver *dacp) {
* * *
* =====*=*================================================= 0x0
*/
if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below
(sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100))) // or above
if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below
(sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100))) // or above
) {
if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) {
state = OUTPUT_RUN_NORMALLY;
@ -220,7 +220,7 @@ static void dac_end(DACDriver *dacp) {
// -> saves cpu cycles (?)
for (uint8_t i = 0; i < active_tones; i++) {
float freq = audio_get_processed_frequency(i);
if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step
if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step
active_tones_snapshot[active_tones_snapshot_length++] = freq;
}
}
@ -321,7 +321,9 @@ void audio_driver_initialize() {
gptStart(&GPTD6, &gpt6cfg1);
}
void audio_driver_stop(void) { state = OUTPUT_SHOULD_STOP; }
void audio_driver_stop(void) {
state = OUTPUT_SHOULD_STOP;
}
void audio_driver_start(void) {
gptStartContinuous(&GPTD6, 2U);

View file

@ -115,13 +115,15 @@ void channel_1_set_frequency(float freq) {
channel_1_frequency = freq;
channel_1_stop();
if (freq <= 0.0) // a pause/rest has freq=0
if (freq <= 0.0) // a pause/rest has freq=0
return;
gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
channel_1_start();
}
float channel_1_get_frequency(void) { return channel_1_frequency; }
float channel_1_get_frequency(void) {
return channel_1_frequency;
}
void channel_2_start(void) {
gptStart(&GPTD7, &gpt7cfg1);
@ -140,13 +142,15 @@ void channel_2_set_frequency(float freq) {
channel_2_frequency = freq;
channel_2_stop();
if (freq <= 0.0) // a pause/rest has freq=0
if (freq <= 0.0) // a pause/rest has freq=0
return;
gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
channel_2_start();
}
float channel_2_get_frequency(void) { return channel_2_frequency; }
float channel_2_get_frequency(void) {
return channel_2_frequency;
}
static void gpt_audio_state_cb(GPTDriver *gptp) {
if (audio_update_state()) {
@ -155,8 +159,8 @@ static void gpt_audio_state_cb(GPTDriver *gptp) {
channel_1_set_frequency(audio_get_processed_frequency(0));
channel_2_set_frequency(audio_get_processed_frequency(0));
#else // two separate audio outputs/speakers
// primary speaker on A4, optional secondary on A5
#else // two separate audio outputs/speakers
// primary speaker on A4, optional secondary on A5
if (AUDIO_PIN == A4) {
channel_1_set_frequency(audio_get_processed_frequency(0));
if (AUDIO_PIN_ALT == A5) {

View file

@ -72,7 +72,7 @@ static float channel_1_frequency = 0.0f;
void channel_1_set_frequency(float freq) {
channel_1_frequency = freq;
if (freq <= 0.0) // a pause/rest has freq=0
if (freq <= 0.0) // a pause/rest has freq=0
return;
pwmcnt_t period = (pwmCFG.frequency / freq);
@ -82,14 +82,18 @@ void channel_1_set_frequency(float freq) {
PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
}
float channel_1_get_frequency(void) { return channel_1_frequency; }
float channel_1_get_frequency(void) {
return channel_1_frequency;
}
void channel_1_start(void) {
pwmStop(&AUDIO_PWM_DRIVER);
pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
}
void channel_1_stop(void) { pwmStop(&AUDIO_PWM_DRIVER); }
void channel_1_stop(void) {
pwmStop(&AUDIO_PWM_DRIVER);
}
static void gpt_callback(GPTDriver *gptp);
GPTConfig gptCFG = {
@ -108,9 +112,9 @@ void audio_driver_initialize(void) {
pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
// connect the AUDIO_PIN to the PWM hardware
#if defined(USE_GPIOV1) // STM32F103C8
#if defined(USE_GPIOV1) // STM32F103C8
palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE_PUSHPULL);
#else // GPIOv2 (or GPIOv3 for f4xx, which is the same/compatible at this command)
#else // GPIOv2 (or GPIOv3 for f4xx, which is the same/compatible at this command)
palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE(AUDIO_PWM_PAL_MODE));
#endif
@ -135,10 +139,10 @@ void audio_driver_stop(void) {
* and updates the pwm to output that frequency
*/
static void gpt_callback(GPTDriver *gptp) {
float freq; // TODO: freq_alt
float freq; // TODO: freq_alt
if (audio_update_state()) {
freq = audio_get_processed_frequency(0); // freq_alt would be index=1
freq = audio_get_processed_frequency(0); // freq_alt would be index=1
channel_1_set_frequency(freq);
}
}

View file

@ -57,7 +57,7 @@ static float channel_1_frequency = 0.0f;
void channel_1_set_frequency(float freq) {
channel_1_frequency = freq;
if (freq <= 0.0) // a pause/rest has freq=0
if (freq <= 0.0) // a pause/rest has freq=0
return;
pwmcnt_t period = (pwmCFG.frequency / freq);
@ -68,7 +68,9 @@ void channel_1_set_frequency(float freq) {
PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
}
float channel_1_get_frequency(void) { return channel_1_frequency; }
float channel_1_get_frequency(void) {
return channel_1_frequency;
}
void channel_1_start(void) {
pwmStop(&AUDIO_PWM_DRIVER);
@ -81,10 +83,10 @@ void channel_1_start(void) {
void channel_1_stop(void) {
pwmStop(&AUDIO_PWM_DRIVER);
palClearLine(AUDIO_PIN); // leave the line low, after last note was played
palClearLine(AUDIO_PIN); // leave the line low, after last note was played
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
palClearLine(AUDIO_PIN_ALT); // leave the line low, after last note was played
palClearLine(AUDIO_PIN_ALT); // leave the line low, after last note was played
#endif
}
@ -100,7 +102,7 @@ static void pwm_audio_period_callback(PWMDriver *pwmp) {
static void pwm_audio_channel_interrupt_callback(PWMDriver *pwmp) {
(void)pwmp;
if (channel_1_frequency > 0) {
palSetLine(AUDIO_PIN); // generate a PWM signal on any pin, not necessarily the one connected to the timer
palSetLine(AUDIO_PIN); // generate a PWM signal on any pin, not necessarily the one connected to the timer
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
palClearLine(AUDIO_PIN_ALT);
#endif
@ -131,7 +133,7 @@ void audio_driver_initialize(void) {
palClearLine(AUDIO_PIN_ALT);
#endif
pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER); // enable pwm callbacks
pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER); // enable pwm callbacks
pwmEnableChannelNotification(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1);
gptStart(&AUDIO_STATE_TIMER, &gptCFG);
@ -155,10 +157,10 @@ void audio_driver_stop(void) {
* and updates the pwm to output that frequency
*/
static void gpt_callback(GPTDriver *gptp) {
float freq; // TODO: freq_alt
float freq; // TODO: freq_alt
if (audio_update_state()) {
freq = audio_get_processed_frequency(0); // freq_alt would be index=1
freq = audio_get_processed_frequency(0); // freq_alt would be index=1
channel_1_set_frequency(freq);
}
}

View file

@ -24,7 +24,7 @@
# define STM32_ONBOARD_EEPROM_SIZE 1024
# else
# include "eeconfig.h"
# define STM32_ONBOARD_EEPROM_SIZE (((EECONFIG_SIZE + 3) / 4) * 4) // based off eeconfig's current usage, aligned to 4-byte sizes, to deal with LTO and EEPROM page sizing
# define STM32_ONBOARD_EEPROM_SIZE (((EECONFIG_SIZE + 3) / 4) * 4) // based off eeconfig's current usage, aligned to 4-byte sizes, to deal with LTO and EEPROM page sizing
# endif
#endif

View file

@ -203,4 +203,6 @@ i2c_status_t i2c_readReg16(uint8_t devaddr, uint16_t regaddr, uint8_t* data, uin
return chibios_to_qmk(&status);
}
void i2c_stop(void) { i2cStop(&I2C_DRIVER); }
void i2c_stop(void) {
i2cStop(&I2C_DRIVER);
}

View file

@ -50,14 +50,30 @@
# error invalid SELECT_SOFT_SERIAL_SPEED value
#endif
inline static void serial_delay(void) { wait_us(SERIAL_DELAY); }
inline static void serial_delay_half(void) { wait_us(SERIAL_DELAY / 2); }
inline static void serial_delay_blip(void) { wait_us(1); }
inline static void serial_output(void) { setPinOutput(SOFT_SERIAL_PIN); }
inline static void serial_input(void) { setPinInputHigh(SOFT_SERIAL_PIN); }
inline static bool serial_read_pin(void) { return !!readPin(SOFT_SERIAL_PIN); }
inline static void serial_low(void) { writePinLow(SOFT_SERIAL_PIN); }
inline static void serial_high(void) { writePinHigh(SOFT_SERIAL_PIN); }
inline static void serial_delay(void) {
wait_us(SERIAL_DELAY);
}
inline static void serial_delay_half(void) {
wait_us(SERIAL_DELAY / 2);
}
inline static void serial_delay_blip(void) {
wait_us(1);
}
inline static void serial_output(void) {
setPinOutput(SOFT_SERIAL_PIN);
}
inline static void serial_input(void) {
setPinInputHigh(SOFT_SERIAL_PIN);
}
inline static bool serial_read_pin(void) {
return !!readPin(SOFT_SERIAL_PIN);
}
inline static void serial_low(void) {
writePinLow(SOFT_SERIAL_PIN);
}
inline static void serial_high(void) {
writePinHigh(SOFT_SERIAL_PIN);
}
void interrupt_handler(void *arg);
@ -226,7 +242,7 @@ bool soft_serial_transaction(int sstd_index) {
uint8_t checksum = 0;
// send data to the slave
serial_write_byte(sstd_index); // first chunk is transaction id
serial_write_byte(sstd_index); // first chunk is transaction id
sync_recv();
for (int i = 0; i < trans->initiator2target_buffer_size; ++i) {
@ -238,7 +254,7 @@ bool soft_serial_transaction(int sstd_index) {
sync_recv();
serial_delay();
serial_delay(); // read mid pulses
serial_delay(); // read mid pulses
// receive data from the slave
uint8_t checksum_computed = 0;

View file

@ -238,7 +238,7 @@ void soft_serial_initiator_init(void) {
usart_master_init(&serial_driver);
#if defined(MCU_STM32) && defined(SERIAL_USART_PIN_SWAP)
serial_config.cr2 |= USART_CR2_SWAP; // master has swapped TX/RX pins
serial_config.cr2 |= USART_CR2_SWAP; // master has swapped TX/RX pins
#endif
sdStart(serial_driver, &serial_config);

View file

@ -50,15 +50,15 @@
#endif
#if !defined(USART_CR1_M0)
# define USART_CR1_M0 USART_CR1_M // some platforms (f1xx) dont have this so
# define USART_CR1_M0 USART_CR1_M // some platforms (f1xx) dont have this so
#endif
#if !defined(SERIAL_USART_CR1)
# define SERIAL_USART_CR1 (USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0) // parity enable, odd parity, 9 bit length
# define SERIAL_USART_CR1 (USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0) // parity enable, odd parity, 9 bit length
#endif
#if !defined(SERIAL_USART_CR2)
# define SERIAL_USART_CR2 (USART_CR2_STOP_1) // 2 stop bits
# define SERIAL_USART_CR2 (USART_CR2_STOP_1) // 2 stop bits
#endif
#if !defined(SERIAL_USART_CR3)

View file

@ -115,7 +115,7 @@ bool spi_start(pin_t slavePin, bool lsbFirst, uint8_t mode, uint16_t divisor) {
#elif defined(HT32)
spiConfig.cr0 = SPI_CR0_SELOEN;
spiConfig.cr1 = SPI_CR1_MODE | 8; // 8 bits and in master mode
spiConfig.cr1 = SPI_CR1_MODE | 8; // 8 bits and in master mode
if (lsbFirst) {
spiConfig.cr1 |= SPI_CR1_FIRSTBIT;

View file

@ -43,7 +43,9 @@ void uart_init(uint32_t baud) {
}
}
void uart_write(uint8_t data) { sdPut(&SERIAL_DRIVER, c); }
void uart_write(uint8_t data) {
sdPut(&SERIAL_DRIVER, c);
}
uint8_t uart_read(void) {
msg_t res = sdGet(&SERIAL_DRIVER);
@ -51,8 +53,14 @@ uint8_t uart_read(void) {
return (uint8_t)res;
}
void uart_transmit(const uint8_t *data, uint16_t length) { sdWrite(&SERIAL_DRIVER, data, length); }
void uart_transmit(const uint8_t *data, uint16_t length) {
sdWrite(&SERIAL_DRIVER, data, length);
}
void uart_receive(uint8_t *data, uint16_t length) { sdRead(&SERIAL_DRIVER, data, length); }
void uart_receive(uint8_t *data, uint16_t length) {
sdRead(&SERIAL_DRIVER, data, length);
}
bool uart_available(void) { return !sdGetWouldBlock(&SERIAL_DRIVER); }
bool uart_available(void) {
return !sdGetWouldBlock(&SERIAL_DRIVER);
}

View file

@ -18,7 +18,7 @@
#ifndef USBPD_UCPD1_CFG1
# define USBPD_UCPD1_CFG1 (UCPD_CFG1_PSC_UCPDCLK_0 | UCPD_CFG1_TRANSWIN_3 | UCPD_CFG1_IFRGAP_4 | UCPD_CFG1_HBITCLKDIV_4)
#endif // USBPD_UCPD1_CFG1
#endif // USBPD_UCPD1_CFG1
// Initialises the USBPD subsystem
__attribute__((weak)) void usbpd_init(void) {
@ -64,7 +64,7 @@ __attribute__((weak)) usbpd_allowance_t usbpd_get_allowance(void) {
switch (vstate_max) {
case 0:
case 1:
return USBPD_500MA; // Note that this is 500mA (i.e. max USB 2.0), not 900mA, as we're not using USB 3.1 as a sink device.
return USBPD_500MA; // Note that this is 500mA (i.e. max USB 2.0), not 900mA, as we're not using USB 3.1 as a sink device.
case 2:
return USBPD_1500MA;
case 3:

View file

@ -10,7 +10,7 @@
# define NOP_FUDGE 0.4
# else
# error("NOP_FUDGE configuration required")
# define NOP_FUDGE 1 // this just pleases the compile so the above error is easier to spot
# define NOP_FUDGE 1 // this just pleases the compile so the above error is easier to spot
# endif
#endif
@ -25,12 +25,12 @@
// The reset gap can be 6000 ns, but depending on the LED strip it may have to be increased
// to values like 600000 ns. If it is too small, the pixels will show nothing most of the time.
#ifndef WS2812_RES
# define WS2812_RES (1000 * WS2812_TRST_US) // Width of the low gap between bits to cause a frame to latch
# define WS2812_RES (1000 * WS2812_TRST_US) // Width of the low gap between bits to cause a frame to latch
#endif
#define NUMBER_NOPS 6
#define CYCLES_PER_SEC (CPU_CLOCK / NUMBER_NOPS * NOP_FUDGE)
#define NS_PER_SEC (1000000000L) // Note that this has to be SIGNED since we want to be able to check for negative values of derivatives
#define NS_PER_SEC (1000000000L) // Note that this has to be SIGNED since we want to be able to check for negative values of derivatives
#define NS_PER_CYCLE (NS_PER_SEC / CYCLES_PER_SEC)
#define NS_TO_CYCLES(n) ((n) / NS_PER_CYCLE)
@ -67,7 +67,9 @@ void sendByte(uint8_t byte) {
}
}
void ws2812_init(void) { palSetLineMode(RGB_DI_PIN, WS2812_OUTPUT_MODE); }
void ws2812_init(void) {
palSetLineMode(RGB_DI_PIN, WS2812_OUTPUT_MODE);
}
// Setleds for standard RGB
void ws2812_setleds(LED_TYPE *ledarray, uint16_t leds) {

View file

@ -11,19 +11,19 @@
#endif
#ifndef WS2812_PWM_DRIVER
# define WS2812_PWM_DRIVER PWMD2 // TIMx
# define WS2812_PWM_DRIVER PWMD2 // TIMx
#endif
#ifndef WS2812_PWM_CHANNEL
# define WS2812_PWM_CHANNEL 2 // Channel
# define WS2812_PWM_CHANNEL 2 // Channel
#endif
#ifndef WS2812_PWM_PAL_MODE
# define WS2812_PWM_PAL_MODE 2 // DI Pin's alternate function value
# define WS2812_PWM_PAL_MODE 2 // DI Pin's alternate function value
#endif
#ifndef WS2812_DMA_STREAM
# define WS2812_DMA_STREAM STM32_DMA1_STREAM2 // DMA Stream for TIMx_UP
# define WS2812_DMA_STREAM STM32_DMA1_STREAM2 // DMA Stream for TIMx_UP
#endif
#ifndef WS2812_DMA_CHANNEL
# define WS2812_DMA_CHANNEL 2 // DMA Channel for TIMx_UP
# define WS2812_DMA_CHANNEL 2 // DMA Channel for TIMx_UP
#endif
#if (STM32_DMA_SUPPORTS_DMAMUX == TRUE) && !defined(WS2812_DMAMUX_ID)
# error "please consult your MCU's datasheet and specify in your config.h: #define WS2812_DMAMUX_ID STM32_DMAMUX1_TIM?_UP"
@ -56,7 +56,7 @@
#ifndef WS2812_PWM_TARGET_PERIOD
//# define WS2812_PWM_TARGET_PERIOD 800000 // Original code is 800k...?
# define WS2812_PWM_TARGET_PERIOD 80000 // TODO: work out why 10x less on f303/f4x1
# define WS2812_PWM_TARGET_PERIOD 80000 // TODO: work out why 10x less on f303/f4x1
#endif
/* --- PRIVATE CONSTANTS ---------------------------------------------------- */
@ -259,8 +259,10 @@ write/read to/from the other buffer).
void ws2812_init(void) {
// Initialize led frame buffer
uint32_t i;
for (i = 0; i < WS2812_COLOR_BIT_N; i++) ws2812_frame_buffer[i] = WS2812_DUTYCYCLE_0; // All color bits are zero duty cycle
for (i = 0; i < WS2812_RESET_BIT_N; i++) ws2812_frame_buffer[i + WS2812_COLOR_BIT_N] = 0; // All reset bits are zero
for (i = 0; i < WS2812_COLOR_BIT_N; i++)
ws2812_frame_buffer[i] = WS2812_DUTYCYCLE_0; // All color bits are zero duty cycle
for (i = 0; i < WS2812_RESET_BIT_N; i++)
ws2812_frame_buffer[i + WS2812_COLOR_BIT_N] = 0; // All reset bits are zero
palSetLineMode(RGB_DI_PIN, WS2812_OUTPUT_MODE);
@ -268,22 +270,22 @@ void ws2812_init(void) {
//#pragma GCC diagnostic ignored "-Woverride-init" // Turn off override-init warning for this struct. We use the overriding ability to set a "default" channel config
static const PWMConfig ws2812_pwm_config = {
.frequency = WS2812_PWM_FREQUENCY,
.period = WS2812_PWM_PERIOD, // Mit dieser Periode wird UDE-Event erzeugt und ein neuer Wert (Länge WS2812_BIT_N) vom DMA ins CCR geschrieben
.period = WS2812_PWM_PERIOD, // Mit dieser Periode wird UDE-Event erzeugt und ein neuer Wert (Länge WS2812_BIT_N) vom DMA ins CCR geschrieben
.callback = NULL,
.channels =
{
[0 ... 3] = {.mode = PWM_OUTPUT_DISABLED, .callback = NULL}, // Channels default to disabled
[WS2812_PWM_CHANNEL - 1] = {.mode = WS2812_PWM_OUTPUT_MODE, .callback = NULL}, // Turn on the channel we care about
[0 ... 3] = {.mode = PWM_OUTPUT_DISABLED, .callback = NULL}, // Channels default to disabled
[WS2812_PWM_CHANNEL - 1] = {.mode = WS2812_PWM_OUTPUT_MODE, .callback = NULL}, // Turn on the channel we care about
},
.cr2 = 0,
.dier = TIM_DIER_UDE, // DMA on update event for next period
.dier = TIM_DIER_UDE, // DMA on update event for next period
};
//#pragma GCC diagnostic pop // Restore command-line warning options
// Configure DMA
// dmaInit(); // Joe added this
dmaStreamAlloc(WS2812_DMA_STREAM - STM32_DMA_STREAM(0), 10, NULL, NULL);
dmaStreamSetPeripheral(WS2812_DMA_STREAM, &(WS2812_PWM_DRIVER.tim->CCR[WS2812_PWM_CHANNEL - 1])); // Ziel ist der An-Zeit im Cap-Comp-Register
dmaStreamSetPeripheral(WS2812_DMA_STREAM, &(WS2812_PWM_DRIVER.tim->CCR[WS2812_PWM_CHANNEL - 1])); // Ziel ist der An-Zeit im Cap-Comp-Register
dmaStreamSetMemory0(WS2812_DMA_STREAM, ws2812_frame_buffer);
dmaStreamSetTransactionSize(WS2812_DMA_STREAM, WS2812_BIT_N);
dmaStreamSetMode(WS2812_DMA_STREAM, STM32_DMA_CR_CHSEL(WS2812_DMA_CHANNEL) | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_PSIZE_WORD | STM32_DMA_CR_MSIZE_WORD | STM32_DMA_CR_MINC | STM32_DMA_CR_CIRC | STM32_DMA_CR_PL(3));
@ -302,7 +304,7 @@ void ws2812_init(void) {
// ChibiOS driver code, so we don't have to do anything special to the timer. If we did, we'd have to start the timer,
// disable counting, enable the channel, and then make whatever configuration changes we need.
pwmStart(&WS2812_PWM_DRIVER, &ws2812_pwm_config);
pwmEnableChannel(&WS2812_PWM_DRIVER, WS2812_PWM_CHANNEL - 1, 0); // Initial period is 0; output will be low until first duty cycle is DMA'd in
pwmEnableChannel(&WS2812_PWM_DRIVER, WS2812_PWM_CHANNEL - 1, 0); // Initial period is 0; output will be low until first duty cycle is DMA'd in
}
void ws2812_write_led(uint16_t led_number, uint8_t r, uint8_t g, uint8_t b) {

View file

@ -42,7 +42,7 @@
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 8
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1)
#elif WS2812_SPI_DIVISOR == 16 // same as default
#elif WS2812_SPI_DIVISOR == 16 // same as default
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 32
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2)
@ -53,14 +53,14 @@
#elif WS2812_SPI_DIVISOR == 256
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)
#else
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0) // default
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0) // default
#endif
// Use SPI circular buffer
#ifdef WS2812_SPI_USE_CIRCULAR_BUFFER
# define WS2812_SPI_BUFFER_MODE 1 // circular buffer
# define WS2812_SPI_BUFFER_MODE 1 // circular buffer
#else
# define WS2812_SPI_BUFFER_MODE 0 // normal buffer
# define WS2812_SPI_BUFFER_MODE 0 // normal buffer
#endif
#if defined(USE_GPIOV1)
@ -104,20 +104,30 @@ static void set_led_color_rgb(LED_TYPE color, int pos) {
uint8_t* tx_start = &txbuf[PREAMBLE_SIZE];
#if (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_GRB)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_RGB)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_BGR)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.r, j);
#endif
#ifdef RGBW
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 4 + j] = get_protocol_eq(color.w, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 4 + j] = get_protocol_eq(color.w, j);
#endif
}
@ -126,7 +136,7 @@ void ws2812_init(void) {
#ifdef WS2812_SPI_SCK_PIN
palSetLineMode(WS2812_SPI_SCK_PIN, WS2812_SCK_OUTPUT_MODE);
#endif // WS2812_SPI_SCK_PIN
#endif // WS2812_SPI_SCK_PIN
// TODO: more dynamic baudrate
static const SPIConfig spicfg = {WS2812_SPI_BUFFER_MODE, NULL, PAL_PORT(RGB_DI_PIN), PAL_PAD(RGB_DI_PIN), WS2812_SPI_DIVISOR_CR1_BR_X};

View file

@ -560,9 +560,13 @@ uint16_t EEPROM_ReadDataWord(uint16_t Address) {
/*****************************************************************************
* Bind to eeprom_driver.c
*******************************************************************************/
void eeprom_driver_init(void) { EEPROM_Init(); }
void eeprom_driver_init(void) {
EEPROM_Init();
}
void eeprom_driver_erase(void) { EEPROM_Erase(); }
void eeprom_driver_erase(void) {
EEPROM_Erase();
}
void eeprom_read_block(void *buf, const void *addr, size_t len) {
const uint8_t *src = (const uint8_t *)addr;

View file

@ -20,41 +20,41 @@
#if !defined(FEE_PAGE_SIZE) || !defined(FEE_PAGE_COUNT)
# if defined(STM32F103xB) || defined(STM32F042x6) || defined(GD32VF103C8) || defined(GD32VF103CB)
# ifndef FEE_PAGE_SIZE
# define FEE_PAGE_SIZE 0x400 // Page size = 1KByte
# define FEE_PAGE_SIZE 0x400 // Page size = 1KByte
# endif
# ifndef FEE_PAGE_COUNT
# define FEE_PAGE_COUNT 2 // How many pages are used
# define FEE_PAGE_COUNT 2 // How many pages are used
# endif
# elif defined(STM32F103xE) || defined(STM32F303xC) || defined(STM32F072xB) || defined(STM32F070xB)
# ifndef FEE_PAGE_SIZE
# define FEE_PAGE_SIZE 0x800 // Page size = 2KByte
# define FEE_PAGE_SIZE 0x800 // Page size = 2KByte
# endif
# ifndef FEE_PAGE_COUNT
# define FEE_PAGE_COUNT 4 // How many pages are used
# define FEE_PAGE_COUNT 4 // How many pages are used
# endif
# elif defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F405xG) || defined(STM32F411xE)
# ifndef FEE_PAGE_SIZE
# define FEE_PAGE_SIZE 0x4000 // Page size = 16KByte
# define FEE_PAGE_SIZE 0x4000 // Page size = 16KByte
# endif
# ifndef FEE_PAGE_COUNT
# define FEE_PAGE_COUNT 1 // How many pages are used
# define FEE_PAGE_COUNT 1 // How many pages are used
# endif
# endif
#endif
#if !defined(FEE_MCU_FLASH_SIZE)
# if defined(STM32F042x6)
# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
# elif defined(GD32VF103C8)
# define FEE_MCU_FLASH_SIZE 64 // Size in Kb
# define FEE_MCU_FLASH_SIZE 64 // Size in Kb
# elif defined(STM32F103xB) || defined(STM32F072xB) || defined(STM32F070xB) || defined(GD32VF103CB)
# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
# elif defined(STM32F303xC) || defined(STM32F401xC)
# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
# elif defined(STM32F103xE) || defined(STM32F401xE) || defined(STM32F411xE)
# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
# elif defined(STM32F405xG)
# define FEE_MCU_FLASH_SIZE 1024 // Size in Kb
# define FEE_MCU_FLASH_SIZE 1024 // Size in Kb
# endif
#endif
@ -62,7 +62,7 @@
#if !defined(FEE_PAGE_BASE_ADDRESS)
# if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F405xG) || defined(STM32F411xE)
# ifndef FEE_PAGE_BASE_ADDRESS
# define FEE_PAGE_BASE_ADDRESS 0x08004000 // bodge to force 2nd 16k page
# define FEE_PAGE_BASE_ADDRESS 0x08004000 // bodge to force 2nd 16k page
# endif
# else
# ifndef FEE_FLASH_BASE

View file

@ -60,19 +60,19 @@
// Minimum EEPROM Endurance
// ------------------------
# if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
# if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
# define EEESIZE 0x33
# elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
# elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
# define EEESIZE 0x34
# elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
# elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
# define EEESIZE 0x35
# elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
# elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
# define EEESIZE 0x36
# elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
# elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
# define EEESIZE 0x37
# elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
# elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
# define EEESIZE 0x38
# elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
# elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
# define EEESIZE 0x39
# endif
@ -88,9 +88,9 @@ void eeprom_initialize(void) {
if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
// FlexRAM is configured as traditional RAM
// We need to reconfigure for EEPROM usage
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
FTFL->FCCOB4 = EEESIZE; // EEPROM Size
FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
FTFL->FCCOB4 = EEESIZE; // EEPROM Size
FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
__disable_irq();
// do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
@ -98,7 +98,7 @@ void eeprom_initialize(void) {
status = FTFL->FSTAT;
if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));
return; // error
return; // error
}
}
// wait for eeprom to become ready (is this really necessary?)
@ -162,7 +162,9 @@ void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
*
* FIXME: needs doc
*/
int eeprom_is_ready(void) { return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0; }
int eeprom_is_ready(void) {
return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0;
}
/** \brief flexram wait
*
@ -486,7 +488,9 @@ void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
}
}
int eeprom_is_ready(void) { return 1; }
int eeprom_is_ready(void) {
return 1;
}
void eeprom_write_word(uint16_t *addr, uint16_t value) {
uint8_t *p = (uint8_t *)addr;
@ -515,7 +519,9 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
#endif /* chip selection */
// The update functions just calls write for now, but could probably be optimized
void eeprom_update_byte(uint8_t *addr, uint8_t value) { eeprom_write_byte(addr, value); }
void eeprom_update_byte(uint8_t *addr, uint8_t value) {
eeprom_write_byte(addr, value);
}
void eeprom_update_word(uint16_t *addr, uint16_t value) {
uint8_t *p = (uint8_t *)addr;

View file

@ -97,10 +97,10 @@
/* Serial USART redefines. */
#if HAL_USE_SERIAL
# if !defined(SERIAL_USART_CR1)
# define SERIAL_USART_CR1 (USART_CTL0_PCEN | USART_CTL0_PM | USART_CTL0_WL) // parity enable, odd parity, 9 bit length
# define SERIAL_USART_CR1 (USART_CTL0_PCEN | USART_CTL0_PM | USART_CTL0_WL) // parity enable, odd parity, 9 bit length
# endif
# if !defined(SERIAL_USART_CR2)
# define SERIAL_USART_CR2 (USART_CTL1_STB_1) // 2 stop bits
# define SERIAL_USART_CR2 (USART_CTL1_STB_1) // 2 stop bits
# endif
# if !defined(SERIAL_USART_CR3)
# define SERIAL_USART_CR3 0x0

View file

@ -93,7 +93,7 @@ void sleep_led_init(void) {
/* Reset LPTMR settings */
LPTMR0->CSR = 0;
/* Set the compare value */
LPTMR0->CMR = 0; // trigger on counter value (i.e. every time)
LPTMR0->CMR = 0; // trigger on counter value (i.e. every time)
/* Set up clock source and prescaler */
/* Software PWM
@ -118,11 +118,11 @@ void sleep_led_init(void) {
/* === OPTION 2 === */
# if 1
// nMHz IRC (n=4 on KL25Z, KL26Z and K20x; n=2 or 8 on KL27Z)
MCG->C2 |= MCG_C2_IRCS; // fast (4MHz) internal ref clock
# if defined(KL27) // divide the 8MHz IRC by 2, to have the same MCGIRCLK speed as others
MCG->C2 |= MCG_C2_IRCS; // fast (4MHz) internal ref clock
# if defined(KL27) // divide the 8MHz IRC by 2, to have the same MCGIRCLK speed as others
MCG->MC |= MCG_MC_LIRC_DIV2_DIV2;
# endif /* KL27 */
MCG->C1 |= MCG_C1_IRCLKEN; // enable internal ref clock
# endif /* KL27 */
MCG->C1 |= MCG_C1_IRCLKEN; // enable internal ref clock
// to work in stop mode, also MCG_C1_IREFSTEN
// Divide 4MHz by 2^N (N=6) => 62500 irqs/sec =>
// => approx F=61, R=256, duration = 4
@ -140,7 +140,7 @@ void sleep_led_init(void) {
/* === END OPTIONS === */
/* Interrupt on TCF set (compare flag) */
nvicEnableVector(LPTMR0_IRQn, 2); // vector, priority
nvicEnableVector(LPTMR0_IRQn, 2); // vector, priority
LPTMR0->CSR |= LPTMRx_CSR_TIE;
}
@ -169,21 +169,33 @@ static void gptTimerCallback(GPTDriver *gptp) {
static const GPTConfig gptcfg = {1000000, gptTimerCallback, 0, 0};
/* Initialise the timer */
void sleep_led_init(void) { gptStart(&SLEEP_LED_GPT_DRIVER, &gptcfg); }
void sleep_led_init(void) {
gptStart(&SLEEP_LED_GPT_DRIVER, &gptcfg);
}
void sleep_led_enable(void) { gptStartContinuous(&SLEEP_LED_GPT_DRIVER, gptcfg.frequency / 0xFFFF); }
void sleep_led_enable(void) {
gptStartContinuous(&SLEEP_LED_GPT_DRIVER, gptcfg.frequency / 0xFFFF);
}
void sleep_led_disable(void) { gptStopTimer(&SLEEP_LED_GPT_DRIVER); }
void sleep_led_disable(void) {
gptStopTimer(&SLEEP_LED_GPT_DRIVER);
}
void sleep_led_toggle(void) { (SLEEP_LED_GPT_DRIVER.state == GPT_READY) ? sleep_led_enable() : sleep_led_disable(); }
void sleep_led_toggle(void) {
(SLEEP_LED_GPT_DRIVER.state == GPT_READY) ? sleep_led_enable() : sleep_led_disable();
}
#else /* platform selection: not on familiar chips */
void sleep_led_init(void) {}
void sleep_led_enable(void) { led_set(1 << USB_LED_CAPS_LOCK); }
void sleep_led_enable(void) {
led_set(1 << USB_LED_CAPS_LOCK);
}
void sleep_led_disable(void) { led_set(0); }
void sleep_led_disable(void) {
led_set(0);
}
void sleep_led_toggle(void) {
// not implemented

View file

@ -87,9 +87,13 @@ __attribute__((weak, used)) int _kill(int pid, int sig) {
return -1;
}
__attribute__((weak, used)) pid_t _getpid(void) { return 1; }
__attribute__((weak, used)) pid_t _getpid(void) {
return 1;
}
__attribute__((weak, used)) void _fini(void) { return; }
__attribute__((weak, used)) void _fini(void) {
return;
}
__attribute__((weak, used, noreturn)) void _exit(int i) {
while (1)

View file

@ -73,7 +73,9 @@ void timer_clear(void) {
chSysUnlock();
}
uint16_t timer_read(void) { return (uint16_t)timer_read32(); }
uint16_t timer_read(void) {
return (uint16_t)timer_read32();
}
uint32_t timer_read32(void) {
chSysLock();
@ -90,12 +92,16 @@ uint32_t timer_read32(void) {
ms_offset += OVERFLOW_ADJUST_MS;
}
last_ticks = ticks;
uint32_t ms_offset_copy = ms_offset; // read while still holding the lock to ensure a consistent value
uint32_t ms_offset_copy = ms_offset; // read while still holding the lock to ensure a consistent value
chSysUnlock();
return (uint32_t)TIME_I2MS(ticks) + ms_offset_copy;
}
uint16_t timer_elapsed(uint16_t last) { return TIMER_DIFF_16(timer_read(), last); }
uint16_t timer_elapsed(uint16_t last) {
return TIMER_DIFF_16(timer_read(), last);
}
uint32_t timer_elapsed32(uint32_t last) { return TIMER_DIFF_32(timer_read32(), last); }
uint32_t timer_elapsed32(uint32_t last) {
return TIMER_DIFF_32(timer_read32(), last);
}