1
0
Fork 0

Move single LAYOUTs to data driven (#20365)

This commit is contained in:
Ryan 2023-04-12 13:42:51 +10:00 committed by GitHub
parent 941e159a28
commit 5bd68e3695
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
1443 changed files with 45214 additions and 59923 deletions

View file

@ -1,41 +0,0 @@
/* Copyright 2021 Steven Karrmann
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
/* This is a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT( \
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2c, k2d, \
k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d \
) \
{ \
{ k00, k01, k02, k03, k04, k05, KC_NO, KC_NO, k06, k07, k08, k09, k0a, k0b }, \
{ k10, k11, k12, k13, k14, k15, KC_NO, KC_NO, k16, k17, k18, k19, k1a, k1b }, \
{ k20, k21, k22, k23, k24, k25, k26 , k27 , k28, k29, k2a, k2b, k2c, k2d }, \
{ k30, k31, k32, k33, k34, k35, k36 , k37 , k38, k39, k3a, k3b, k3c, k3d } \
}

View file

@ -18,58 +18,63 @@
"layouts": {
"LAYOUT": {
"layout": [
{ "x": 0, "y": 0 },
{ "x": 1, "y": 0 },
{ "x": 2, "y": 0 },
{ "x": 3, "y": 0 },
{ "x": 4, "y": 0 },
{ "x": 5, "y": 0 },
{ "x": 8, "y": 0 },
{ "x": 9, "y": 0 },
{ "x": 10, "y": 0 },
{ "x": 11, "y": 0 },
{ "x": 12, "y": 0 },
{ "x": 13, "y": 0 },
{ "x": 0, "y": 1 },
{ "x": 1, "y": 1 },
{ "x": 2, "y": 1 },
{ "x": 3, "y": 1 },
{ "x": 4, "y": 1 },
{ "x": 5, "y": 1 },
{ "x": 8, "y": 1 },
{ "x": 9, "y": 1 },
{ "x": 10, "y": 1 },
{ "x": 11, "y": 1 },
{ "x": 12, "y": 1 },
{ "x": 13, "y": 1 },
{ "x": 0, "y": 2 },
{ "x": 1, "y": 2 },
{ "x": 2, "y": 2 },
{ "x": 3, "y": 2 },
{ "x": 4, "y": 2 },
{ "x": 5, "y": 2 },
{ "x": 6, "y": 2 },
{ "x": 7, "y": 2 },
{ "x": 8, "y": 2 },
{ "x": 9, "y": 2 },
{ "x": 10, "y": 2 },
{ "x": 11, "y": 2 },
{ "x": 12, "y": 2 },
{ "x": 13, "y": 2 },
{ "x": 0, "y": 3 },
{ "x": 1, "y": 3 },
{ "x": 2, "y": 3 },
{ "x": 3, "y": 3 },
{ "x": 4, "y": 3 },
{ "x": 5, "y": 3 },
{ "x": 6, "y": 3 },
{ "x": 7, "y": 3 },
{ "x": 8, "y": 3 },
{ "x": 9, "y": 3 },
{ "x": 10, "y": 3 },
{ "x": 11, "y": 3 },
{ "x": 12, "y": 3 },
{ "x": 13, "y": 3 }
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [0, 4], "x": 4, "y": 0},
{"matrix": [0, 5], "x": 5, "y": 0},
{"matrix": [0, 8], "x": 8, "y": 0},
{"matrix": [0, 9], "x": 9, "y": 0},
{"matrix": [0, 10], "x": 10, "y": 0},
{"matrix": [0, 11], "x": 11, "y": 0},
{"matrix": [0, 12], "x": 12, "y": 0},
{"matrix": [0, 13], "x": 13, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [1, 4], "x": 4, "y": 1},
{"matrix": [1, 5], "x": 5, "y": 1},
{"matrix": [1, 8], "x": 8, "y": 1},
{"matrix": [1, 9], "x": 9, "y": 1},
{"matrix": [1, 10], "x": 10, "y": 1},
{"matrix": [1, 11], "x": 11, "y": 1},
{"matrix": [1, 12], "x": 12, "y": 1},
{"matrix": [1, 13], "x": 13, "y": 1},
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [2, 4], "x": 4, "y": 2},
{"matrix": [2, 5], "x": 5, "y": 2},
{"matrix": [2, 6], "x": 6, "y": 2},
{"matrix": [2, 7], "x": 7, "y": 2},
{"matrix": [2, 8], "x": 8, "y": 2},
{"matrix": [2, 9], "x": 9, "y": 2},
{"matrix": [2, 10], "x": 10, "y": 2},
{"matrix": [2, 11], "x": 11, "y": 2},
{"matrix": [2, 12], "x": 12, "y": 2},
{"matrix": [2, 13], "x": 13, "y": 2},
{"matrix": [3, 0], "x": 0, "y": 3},
{"matrix": [3, 1], "x": 1, "y": 3},
{"matrix": [3, 2], "x": 2, "y": 3},
{"matrix": [3, 3], "x": 3, "y": 3},
{"matrix": [3, 4], "x": 4, "y": 3},
{"matrix": [3, 5], "x": 5, "y": 3},
{"matrix": [3, 6], "x": 6, "y": 3},
{"matrix": [3, 7], "x": 7, "y": 3},
{"matrix": [3, 8], "x": 8, "y": 3},
{"matrix": [3, 9], "x": 9, "y": 3},
{"matrix": [3, 10], "x": 10, "y": 3},
{"matrix": [3, 11], "x": 11, "y": 3},
{"matrix": [3, 12], "x": 12, "y": 3},
{"matrix": [3, 13], "x": 13, "y": 3}
]
}
}