1
0
Fork 0

Move ortho & numpad layouts to data driven (#20183)

Co-authored-by: Nick Brassel <nick@tzarc.org>
This commit is contained in:
Ryan 2023-03-29 15:54:34 +11:00 committed by GitHub
parent 06664e8a94
commit 4869b8061c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
589 changed files with 19002 additions and 25368 deletions

View file

@ -1,60 +0,0 @@
/* Copyright 2019 Amber Holly
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
#define XXX KC_NO
/* This is a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT_ortho_4x12( \
k00, k10, k01, k11, k02, k12, k03, k13, k04, k14, k05, k15, \
k20, k30, k21, k31, k22, k32, k23, k33, k24, k34, k25, k35, \
k40, k50, k41, k51, k42, k52, k43, k53, k44, k54, k45, k55, \
k60, k70, k61, k71, k62, k72, k63, k73, k64, k74, k65, k75 \
) { \
{ k10, k11, k12, k13, k14, k15 }, \
{ k00, k01, k02, k03, k04, k05 }, \
{ k30, k31, k32, k33, k34, k35 }, \
{ k20, k21, k22, k23, k24, k25 }, \
{ k50, k51, k52, k53, k54, k55 }, \
{ k40, k41, k42, k43, k44, k45 }, \
{ k70, k71, k72, k73, k74, k75 }, \
{ k60, k61, k62, k63, k64, k65 } \
}
#define LAYOUT_planck_mit( \
k00, k10, k01, k11, k02, k12, k03, k13, k04, k14, k05, k15, \
k20, k30, k21, k31, k22, k32, k23, k33, k24, k34, k25, k35, \
k40, k50, k41, k51, k42, k52, k43, k53, k44, k54, k45, k55, \
k60, k70, k61, k71, k62, k72, k73, k64, k74, k65, k75 \
) { \
{ k10, k11, k12, k13, k14, k15 }, \
{ k00, k01, k02, k03, k04, k05 }, \
{ k30, k31, k32, k33, k34, k35 }, \
{ k20, k21, k22, k23, k24, k25 }, \
{ k50, k51, k52, k53, k54, k55 }, \
{ k40, k41, k42, k43, k44, k45 }, \
{ k70, k71, k72, k73, k74, k75 }, \
{ k60, k61, k62, XXX, k64, k65 } \
}

View file

@ -23,111 +23,111 @@
"layouts": {
"LAYOUT_planck_mit": {
"layout": [
{"x": 0, "y": 0},
{"x": 1, "y": 0},
{"x": 2, "y": 0},
{"x": 3, "y": 0},
{"x": 4, "y": 0},
{"x": 5, "y": 0},
{"x": 6, "y": 0},
{"x": 7, "y": 0},
{"x": 8, "y": 0},
{"x": 9, "y": 0},
{"x": 10, "y": 0},
{"x": 11, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 0},
{"matrix": [0, 0], "x": 1, "y": 0},
{"matrix": [1, 1], "x": 2, "y": 0},
{"matrix": [0, 1], "x": 3, "y": 0},
{"matrix": [1, 2], "x": 4, "y": 0},
{"matrix": [0, 2], "x": 5, "y": 0},
{"matrix": [1, 3], "x": 6, "y": 0},
{"matrix": [0, 3], "x": 7, "y": 0},
{"matrix": [1, 4], "x": 8, "y": 0},
{"matrix": [0, 4], "x": 9, "y": 0},
{"matrix": [1, 5], "x": 10, "y": 0},
{"matrix": [0, 5], "x": 11, "y": 0},
{"x": 0, "y": 1},
{"x": 1, "y": 1},
{"x": 2, "y": 1},
{"x": 3, "y": 1},
{"x": 4, "y": 1},
{"x": 5, "y": 1},
{"x": 6, "y": 1},
{"x": 7, "y": 1},
{"x": 8, "y": 1},
{"x": 9, "y": 1},
{"x": 10, "y": 1},
{"x": 11, "y": 1},
{"matrix": [3, 0], "x": 0, "y": 1},
{"matrix": [2, 0], "x": 1, "y": 1},
{"matrix": [3, 1], "x": 2, "y": 1},
{"matrix": [2, 1], "x": 3, "y": 1},
{"matrix": [3, 2], "x": 4, "y": 1},
{"matrix": [2, 2], "x": 5, "y": 1},
{"matrix": [3, 3], "x": 6, "y": 1},
{"matrix": [2, 3], "x": 7, "y": 1},
{"matrix": [3, 4], "x": 8, "y": 1},
{"matrix": [2, 4], "x": 9, "y": 1},
{"matrix": [3, 5], "x": 10, "y": 1},
{"matrix": [2, 5], "x": 11, "y": 1},
{"x": 0, "y": 2},
{"x": 1, "y": 2},
{"x": 2, "y": 2},
{"x": 3, "y": 2},
{"x": 4, "y": 2},
{"x": 5, "y": 2},
{"x": 6, "y": 2},
{"x": 7, "y": 2},
{"x": 8, "y": 2},
{"x": 9, "y": 2},
{"x": 10, "y": 2},
{"x": 11, "y": 2},
{"matrix": [5, 0], "x": 0, "y": 2},
{"matrix": [4, 0], "x": 1, "y": 2},
{"matrix": [5, 1], "x": 2, "y": 2},
{"matrix": [4, 1], "x": 3, "y": 2},
{"matrix": [5, 2], "x": 4, "y": 2},
{"matrix": [4, 2], "x": 5, "y": 2},
{"matrix": [5, 3], "x": 6, "y": 2},
{"matrix": [4, 3], "x": 7, "y": 2},
{"matrix": [5, 4], "x": 8, "y": 2},
{"matrix": [4, 4], "x": 9, "y": 2},
{"matrix": [5, 5], "x": 10, "y": 2},
{"matrix": [4, 5], "x": 11, "y": 2},
{"x": 0, "y": 3},
{"x": 1, "y": 3},
{"x": 2, "y": 3},
{"x": 3, "y": 3},
{"x": 4, "y": 3},
{"x": 5, "y": 3, "w": 2},
{"x": 7, "y": 3},
{"x": 8, "y": 3},
{"x": 9, "y": 3},
{"x": 10, "y": 3},
{"x": 11, "y": 3}
{"matrix": [7, 0], "x": 0, "y": 3},
{"matrix": [6, 0], "x": 1, "y": 3},
{"matrix": [7, 1], "x": 2, "y": 3},
{"matrix": [6, 1], "x": 3, "y": 3},
{"matrix": [7, 2], "x": 4, "y": 3},
{"matrix": [6, 2], "x": 5, "y": 3, "w": 2},
{"matrix": [6, 3], "x": 7, "y": 3},
{"matrix": [7, 4], "x": 8, "y": 3},
{"matrix": [6, 4], "x": 9, "y": 3},
{"matrix": [7, 5], "x": 10, "y": 3},
{"matrix": [6, 5], "x": 11, "y": 3}
]
},
"LAYOUT_ortho_4x12": {
"layout": [
{"x": 0, "y": 0},
{"x": 1, "y": 0},
{"x": 2, "y": 0},
{"x": 3, "y": 0},
{"x": 4, "y": 0},
{"x": 5, "y": 0},
{"x": 6, "y": 0},
{"x": 7, "y": 0},
{"x": 8, "y": 0},
{"x": 9, "y": 0},
{"x": 10, "y": 0},
{"x": 11, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 0},
{"matrix": [0, 0], "x": 1, "y": 0},
{"matrix": [1, 1], "x": 2, "y": 0},
{"matrix": [0, 1], "x": 3, "y": 0},
{"matrix": [1, 2], "x": 4, "y": 0},
{"matrix": [0, 2], "x": 5, "y": 0},
{"matrix": [1, 3], "x": 6, "y": 0},
{"matrix": [0, 3], "x": 7, "y": 0},
{"matrix": [1, 4], "x": 8, "y": 0},
{"matrix": [0, 4], "x": 9, "y": 0},
{"matrix": [1, 5], "x": 10, "y": 0},
{"matrix": [0, 5], "x": 11, "y": 0},
{"x": 0, "y": 1},
{"x": 1, "y": 1},
{"x": 2, "y": 1},
{"x": 3, "y": 1},
{"x": 4, "y": 1},
{"x": 5, "y": 1},
{"x": 6, "y": 1},
{"x": 7, "y": 1},
{"x": 8, "y": 1},
{"x": 9, "y": 1},
{"x": 10, "y": 1},
{"x": 11, "y": 1},
{"matrix": [3, 0], "x": 0, "y": 1},
{"matrix": [2, 0], "x": 1, "y": 1},
{"matrix": [3, 1], "x": 2, "y": 1},
{"matrix": [2, 1], "x": 3, "y": 1},
{"matrix": [3, 2], "x": 4, "y": 1},
{"matrix": [2, 2], "x": 5, "y": 1},
{"matrix": [3, 3], "x": 6, "y": 1},
{"matrix": [2, 3], "x": 7, "y": 1},
{"matrix": [3, 4], "x": 8, "y": 1},
{"matrix": [2, 4], "x": 9, "y": 1},
{"matrix": [3, 5], "x": 10, "y": 1},
{"matrix": [2, 5], "x": 11, "y": 1},
{"x": 0, "y": 2},
{"x": 1, "y": 2},
{"x": 2, "y": 2},
{"x": 3, "y": 2},
{"x": 4, "y": 2},
{"x": 5, "y": 2},
{"x": 6, "y": 2},
{"x": 7, "y": 2},
{"x": 8, "y": 2},
{"x": 9, "y": 2},
{"x": 10, "y": 2},
{"x": 11, "y": 2},
{"matrix": [5, 0], "x": 0, "y": 2},
{"matrix": [4, 0], "x": 1, "y": 2},
{"matrix": [5, 1], "x": 2, "y": 2},
{"matrix": [4, 1], "x": 3, "y": 2},
{"matrix": [5, 2], "x": 4, "y": 2},
{"matrix": [4, 2], "x": 5, "y": 2},
{"matrix": [5, 3], "x": 6, "y": 2},
{"matrix": [4, 3], "x": 7, "y": 2},
{"matrix": [5, 4], "x": 8, "y": 2},
{"matrix": [4, 4], "x": 9, "y": 2},
{"matrix": [5, 5], "x": 10, "y": 2},
{"matrix": [4, 5], "x": 11, "y": 2},
{"x": 0, "y": 3},
{"x": 1, "y": 3},
{"x": 2, "y": 3},
{"x": 3, "y": 3},
{"x": 4, "y": 3},
{"x": 5, "y": 3},
{"x": 6, "y": 3},
{"x": 7, "y": 3},
{"x": 8, "y": 3},
{"x": 9, "y": 3},
{"x": 10, "y": 3},
{"x": 11, "y": 3}
{"matrix": [7, 0], "x": 0, "y": 3},
{"matrix": [6, 0], "x": 1, "y": 3},
{"matrix": [7, 1], "x": 2, "y": 3},
{"matrix": [6, 1], "x": 3, "y": 3},
{"matrix": [7, 2], "x": 4, "y": 3},
{"matrix": [6, 2], "x": 5, "y": 3},
{"matrix": [7, 3], "x": 6, "y": 3},
{"matrix": [6, 3], "x": 7, "y": 3},
{"matrix": [7, 4], "x": 8, "y": 3},
{"matrix": [6, 4], "x": 9, "y": 3},
{"matrix": [7, 5], "x": 10, "y": 3},
{"matrix": [6, 5], "x": 11, "y": 3}
]
}
}