1
0
Fork 0

Move ortho & numpad layouts to data driven (#20183)

Co-authored-by: Nick Brassel <nick@tzarc.org>
This commit is contained in:
Ryan 2023-03-29 15:54:34 +11:00 committed by GitHub
parent 06664e8a94
commit 4869b8061c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
589 changed files with 19002 additions and 25368 deletions

View file

@ -1,42 +0,0 @@
/* Copyright 2020 noclew
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
/* This is a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT_ortho_5x12( \
k01, k02, k03, k04, k05, k06, k07, k08, k09, k10, k11, k12, \
k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, \
k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, \
k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, \
k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60 \
) \
{ \
{ k01, k02, k03, k04, k05, k06, k07, k08, k09, k10, k11, k12 }, \
{ k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24 }, \
{ k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36 }, \
{ k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48 }, \
{ k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60 } \
}

View file

@ -18,246 +18,70 @@
"layouts": {
"LAYOUT_ortho_5x12": {
"layout": [
{
"x": 0,
"y": 0
},
{
"x": 1,
"y": 0
},
{
"x": 2,
"y": 0
},
{
"x": 3,
"y": 0
},
{
"x": 4,
"y": 0
},
{
"x": 5,
"y": 0
},
{
"x": 6,
"y": 0
},
{
"x": 7,
"y": 0
},
{
"x": 8,
"y": 0
},
{
"x": 9,
"y": 0
},
{
"x": 10,
"y": 0
},
{
"x": 11,
"y": 0
},
{
"x": 0,
"y": 1
},
{
"x": 1,
"y": 1
},
{
"x": 2,
"y": 1
},
{
"x": 3,
"y": 1
},
{
"x": 4,
"y": 1
},
{
"x": 5,
"y": 1
},
{
"x": 6,
"y": 1
},
{
"x": 7,
"y": 1
},
{
"x": 8,
"y": 1
},
{
"x": 9,
"y": 1
},
{
"x": 10,
"y": 1
},
{
"x": 11,
"y": 1
},
{
"x": 0,
"y": 2
},
{
"x": 1,
"y": 2
},
{
"x": 2,
"y": 2
},
{
"x": 3,
"y": 2
},
{
"x": 4,
"y": 2
},
{
"x": 5,
"y": 2
},
{
"x": 6,
"y": 2
},
{
"x": 7,
"y": 2
},
{
"x": 8,
"y": 2
},
{
"x": 9,
"y": 2
},
{
"x": 10,
"y": 2
},
{
"x": 11,
"y": 2
},
{
"x": 0,
"y": 3
},
{
"x": 1,
"y": 3
},
{
"x": 2,
"y": 3
},
{
"x": 3,
"y": 3
},
{
"x": 4,
"y": 3
},
{
"x": 5,
"y": 3
},
{
"x": 6,
"y": 3
},
{
"x": 7,
"y": 3
},
{
"x": 8,
"y": 3
},
{
"x": 9,
"y": 3
},
{
"x": 10,
"y": 3
},
{
"x": 11,
"y": 3
},
{
"x": 0,
"y": 4
},
{
"x": 1,
"y": 4
},
{
"x": 2,
"y": 4
},
{
"x": 3,
"y": 4
},
{
"x": 4,
"y": 4
},
{
"x": 5,
"y": 4
},
{
"x": 6,
"y": 4
},
{
"x": 7,
"y": 4
},
{
"x": 8,
"y": 4
},
{
"x": 9,
"y": 4
},
{
"x": 10,
"y": 4
},
{
"x": 11,
"y": 4
}
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [0, 4], "x": 4, "y": 0},
{"matrix": [0, 5], "x": 5, "y": 0},
{"matrix": [0, 6], "x": 6, "y": 0},
{"matrix": [0, 7], "x": 7, "y": 0},
{"matrix": [0, 8], "x": 8, "y": 0},
{"matrix": [0, 9], "x": 9, "y": 0},
{"matrix": [0, 10], "x": 10, "y": 0},
{"matrix": [0, 11], "x": 11, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [1, 4], "x": 4, "y": 1},
{"matrix": [1, 5], "x": 5, "y": 1},
{"matrix": [1, 6], "x": 6, "y": 1},
{"matrix": [1, 7], "x": 7, "y": 1},
{"matrix": [1, 8], "x": 8, "y": 1},
{"matrix": [1, 9], "x": 9, "y": 1},
{"matrix": [1, 10], "x": 10, "y": 1},
{"matrix": [1, 11], "x": 11, "y": 1},
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [2, 4], "x": 4, "y": 2},
{"matrix": [2, 5], "x": 5, "y": 2},
{"matrix": [2, 6], "x": 6, "y": 2},
{"matrix": [2, 7], "x": 7, "y": 2},
{"matrix": [2, 8], "x": 8, "y": 2},
{"matrix": [2, 9], "x": 9, "y": 2},
{"matrix": [2, 10], "x": 10, "y": 2},
{"matrix": [2, 11], "x": 11, "y": 2},
{"matrix": [3, 0], "x": 0, "y": 3},
{"matrix": [3, 1], "x": 1, "y": 3},
{"matrix": [3, 2], "x": 2, "y": 3},
{"matrix": [3, 3], "x": 3, "y": 3},
{"matrix": [3, 4], "x": 4, "y": 3},
{"matrix": [3, 5], "x": 5, "y": 3},
{"matrix": [3, 6], "x": 6, "y": 3},
{"matrix": [3, 7], "x": 7, "y": 3},
{"matrix": [3, 8], "x": 8, "y": 3},
{"matrix": [3, 9], "x": 9, "y": 3},
{"matrix": [3, 10], "x": 10, "y": 3},
{"matrix": [3, 11], "x": 11, "y": 3},
{"matrix": [4, 0], "x": 0, "y": 4},
{"matrix": [4, 1], "x": 1, "y": 4},
{"matrix": [4, 2], "x": 2, "y": 4},
{"matrix": [4, 3], "x": 3, "y": 4},
{"matrix": [4, 4], "x": 4, "y": 4},
{"matrix": [4, 5], "x": 5, "y": 4},
{"matrix": [4, 6], "x": 6, "y": 4},
{"matrix": [4, 7], "x": 7, "y": 4},
{"matrix": [4, 8], "x": 8, "y": 4},
{"matrix": [4, 9], "x": 9, "y": 4},
{"matrix": [4, 10], "x": 10, "y": 4},
{"matrix": [4, 11], "x": 11, "y": 4}
]
}
}