1
0
Fork 0

Move ortho & numpad layouts to data driven (#20183)

Co-authored-by: Nick Brassel <nick@tzarc.org>
This commit is contained in:
Ryan 2023-03-29 15:54:34 +11:00 committed by GitHub
parent 06664e8a94
commit 4869b8061c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
589 changed files with 19002 additions and 25368 deletions

View file

@ -1,41 +0,0 @@
/* Copyright 2021 knaruo
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
/* This is a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT_ortho_3x11( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24 \
) { \
{ L00, L01, L02, L03, L04, L05 }, \
{ L10, L11, L12, L13, L14, L15 }, \
{ L20, L21, L22, L23, L24, L25 }, \
{ KC_NO, R00, R01, R02, R03, R04 }, \
{ KC_NO, R10, R11, R12, R13, R14 }, \
{ KC_NO, R20, R21, R22, R23, R24 } \
}

View file

@ -18,41 +18,41 @@
"layouts": {
"LAYOUT_ortho_3x11": {
"layout": [
{"x": 0, "y": 0},
{"x": 1, "y": 0},
{"x": 2, "y": 0},
{"x": 3, "y": 0},
{"x": 4, "y": 0},
{"x": 5, "y": 0},
{"x": 9, "y": 0},
{"x": 10, "y": 0},
{"x": 11, "y": 0},
{"x": 12, "y": 0},
{"x": 13, "y": 0},
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [0, 4], "x": 4, "y": 0},
{"matrix": [0, 5], "x": 5, "y": 0},
{"matrix": [3, 1], "x": 9, "y": 0},
{"matrix": [3, 2], "x": 10, "y": 0},
{"matrix": [3, 3], "x": 11, "y": 0},
{"matrix": [3, 4], "x": 12, "y": 0},
{"matrix": [3, 5], "x": 13, "y": 0},
{"x": 0, "y": 1},
{"x": 1, "y": 1},
{"x": 2, "y": 1},
{"x": 3, "y": 1},
{"x": 4, "y": 1},
{"x": 5, "y": 1},
{"x": 9, "y": 1},
{"x": 10, "y": 1},
{"x": 11, "y": 1},
{"x": 12, "y": 1},
{"x": 13, "y": 1},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [1, 4], "x": 4, "y": 1},
{"matrix": [1, 5], "x": 5, "y": 1},
{"matrix": [4, 1], "x": 9, "y": 1},
{"matrix": [4, 2], "x": 10, "y": 1},
{"matrix": [4, 3], "x": 11, "y": 1},
{"matrix": [4, 4], "x": 12, "y": 1},
{"matrix": [4, 5], "x": 13, "y": 1},
{"x": 0, "y": 2},
{"x": 1, "y": 2},
{"x": 2, "y": 2},
{"x": 3, "y": 2},
{"x": 4, "y": 2},
{"x": 5, "y": 2},
{"x": 9, "y": 2},
{"x": 10, "y": 2},
{"x": 11, "y": 2},
{"x": 12, "y": 2},
{"x": 13, "y": 2}
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [2, 4], "x": 4, "y": 2},
{"matrix": [2, 5], "x": 5, "y": 2},
{"matrix": [5, 1], "x": 9, "y": 2},
{"matrix": [5, 2], "x": 10, "y": 2},
{"matrix": [5, 3], "x": 11, "y": 2},
{"matrix": [5, 4], "x": 12, "y": 2},
{"matrix": [5, 5], "x": 13, "y": 2}
]
}
}