1
0
Fork 0

Squashed 'tmk_core/' changes from 7967731..b9e0ea0

b9e0ea0 Merge commit '7fa9d8bdea3773d1195b04d98fcf27cf48ddd81d' as 'tool/mbed/mbed-sdk'
7fa9d8b Squashed 'tool/mbed/mbed-sdk/' content from commit 7c21ce5

git-subtree-dir: tmk_core
git-subtree-split: b9e0ea08cb940de20b3610ecdda18e9d8cd7c552
This commit is contained in:
Jun Wako 2015-04-24 16:26:14 +09:00
parent a20ef7052c
commit 1fe4406f37
4198 changed files with 2016457 additions and 0 deletions

View file

@ -0,0 +1,208 @@
/* ----------------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_add_f32.c
*
* Description: Floating-point matrix addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixAdd Matrix Addition
*
* Adds two matrices.
* \image html MatrixAddition.gif "Addition of two 3 x 3 matrices"
*
* The functions check to make sure that
* <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
* number of rows and columns.
*/
/**
* @addtogroup MatrixAdd
* @{
*/
/**
* @brief Floating-point matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
#ifndef ARM_MATH_CM0_FAMILY
float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */
#endif // #ifndef ARM_MATH_CM0_FAMILY
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix addition */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Loop unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and then store the results in the destination buffer. */
/* Read values from source A */
inA1 = pIn1[0];
/* Read values from source B */
inB1 = pIn2[0];
/* Read values from source A */
inA2 = pIn1[1];
/* out = sourceA + sourceB */
out1 = inA1 + inB1;
/* Read values from source B */
inB2 = pIn2[1];
/* Read values from source A */
inA1 = pIn1[2];
/* out = sourceA + sourceB */
out2 = inA2 + inB2;
/* Read values from source B */
inB1 = pIn2[2];
/* Store result in destination */
pOut[0] = out1;
pOut[1] = out2;
/* Read values from source A */
inA2 = pIn1[3];
/* Read values from source B */
inB2 = pIn2[3];
/* out = sourceA + sourceB */
out1 = inA1 + inB1;
/* out = sourceA + sourceB */
out2 = inA2 + inB2;
/* Store result in destination */
pOut[2] = out1;
/* Store result in destination */
pOut[3] = out2;
/* update pointers to process next sampels */
pIn1 += 4u;
pIn2 += 4u;
pOut += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add and then store the results in the destination buffer. */
*pOut++ = (*pIn1++) + (*pIn2++);
/* Decrement the loop counter */
blkCnt--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixAdd group
*/

View file

@ -0,0 +1,163 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_add_q15.c
*
* Description: Q15 matrix addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixAdd
* @{
*/
/**
* @brief Q15 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
arm_status arm_mat_add_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst)
{
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint16_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix addition */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in the input matrix */
numSamples = (uint16_t) (pSrcA->numRows * pSrcA->numCols);
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop unrolling */
blkCnt = (uint32_t) numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add, Saturate and then store the results in the destination buffer. */
*__SIMD32(pOut)++ = __QADD16(*__SIMD32(pInA)++, *__SIMD32(pInB)++);
*__SIMD32(pOut)++ = __QADD16(*__SIMD32(pInA)++, *__SIMD32(pInB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) numSamples % 0x4u;
/* q15 pointers of input and output are initialized */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add, Saturate and then store the results in the destination buffer. */
*pOut++ = (q15_t) __QADD16(*pInA++, *pInB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = (uint32_t) numSamples;
/* q15 pointers of input and output are initialized */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add, Saturate and then store the results in the destination buffer. */
*pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ + *pInB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixAdd group
*/

View file

@ -0,0 +1,207 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_add_q31.c
*
* Description: Q31 matrix addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixAdd
* @{
*/
/**
* @brief Q31 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
arm_status arm_mat_add_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
q31_t inA1, inB1; /* temporary variables */
#ifndef ARM_MATH_CM0_FAMILY
q31_t inA2, inB2; /* temporary variables */
q31_t out1, out2; /* temporary variables */
#endif // #ifndef ARM_MATH_CM0_FAMILY
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix addition */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add, saturate and then store the results in the destination buffer. */
/* Read values from source A */
inA1 = pIn1[0];
/* Read values from source B */
inB1 = pIn2[0];
/* Read values from source A */
inA2 = pIn1[1];
/* Add and saturate */
out1 = __QADD(inA1, inB1);
/* Read values from source B */
inB2 = pIn2[1];
/* Read values from source A */
inA1 = pIn1[2];
/* Add and saturate */
out2 = __QADD(inA2, inB2);
/* Read values from source B */
inB1 = pIn2[2];
/* Store result in destination */
pOut[0] = out1;
pOut[1] = out2;
/* Read values from source A */
inA2 = pIn1[3];
/* Read values from source B */
inB2 = pIn2[3];
/* Add and saturate */
out1 = __QADD(inA1, inB1);
out2 = __QADD(inA2, inB2);
/* Store result in destination */
pOut[2] = out1;
pOut[3] = out2;
/* update pointers to process next sampels */
pIn1 += 4u;
pIn2 += 4u;
pOut += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) + B(m,n) */
/* Add, saturate and then store the results in the destination buffer. */
inA1 = *pIn1++;
inB1 = *pIn2++;
inA1 = __QADD(inA1, inB1);
/* Decrement the loop counter */
blkCnt--;
*pOut++ = inA1;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixAdd group
*/

View file

@ -0,0 +1,88 @@
/* ----------------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_init_f32.c
*
* Description: Floating-point matrix initialization.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixInit Matrix Initialization
*
* Initializes the underlying matrix data structure.
* The functions set the <code>numRows</code>,
* <code>numCols</code>, and <code>pData</code> fields
* of the matrix data structure.
*/
/**
* @addtogroup MatrixInit
* @{
*/
/**
* @brief Floating-point matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_f32(
arm_matrix_instance_f32 * S,
uint16_t nRows,
uint16_t nColumns,
float32_t * pData)
{
/* Assign Number of Rows */
S->numRows = nRows;
/* Assign Number of Columns */
S->numCols = nColumns;
/* Assign Data pointer */
S->pData = pData;
}
/**
* @} end of MatrixInit group
*/

View file

@ -0,0 +1,80 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_init_q15.c
*
* Description: Q15 matrix initialization.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixInit
* @{
*/
/**
* @brief Q15 matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_q15(
arm_matrix_instance_q15 * S,
uint16_t nRows,
uint16_t nColumns,
q15_t * pData)
{
/* Assign Number of Rows */
S->numRows = nRows;
/* Assign Number of Columns */
S->numCols = nColumns;
/* Assign Data pointer */
S->pData = pData;
}
/**
* @} end of MatrixInit group
*/

View file

@ -0,0 +1,84 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_init_q31.c
*
* Description: Q31 matrix initialization.
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixInit Matrix Initialization
*
*/
/**
* @addtogroup MatrixInit
* @{
*/
/**
* @brief Q31 matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_q31(
arm_matrix_instance_q31 * S,
uint16_t nRows,
uint16_t nColumns,
q31_t * pData)
{
/* Assign Number of Rows */
S->numRows = nRows;
/* Assign Number of Columns */
S->numCols = nColumns;
/* Assign Data pointer */
S->pData = pData;
}
/**
* @} end of MatrixInit group
*/

View file

@ -0,0 +1,700 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 1. March 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_inverse_f32.c
*
* Description: Floating-point matrix inverse.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixInv Matrix Inverse
*
* Computes the inverse of a matrix.
*
* The inverse is defined only if the input matrix is square and non-singular (the determinant
* is non-zero). The function checks that the input and output matrices are square and of the
* same size.
*
* Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
* inversion of floating-point matrices.
*
* \par Algorithm
* The Gauss-Jordan method is used to find the inverse.
* The algorithm performs a sequence of elementary row-operations till it
* reduces the input matrix to an identity matrix. Applying the same sequence
* of elementary row-operations to an identity matrix yields the inverse matrix.
* If the input matrix is singular, then the algorithm terminates and returns error status
* <code>ARM_MATH_SINGULAR</code>.
* \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
*/
/**
* @addtogroup MatrixInv
* @{
*/
/**
* @brief Floating-point matrix inverse.
* @param[in] *pSrc points to input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns
* <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size
* of the output matrix does not match the size of the input matrix.
* If the input matrix is found to be singular (non-invertible), then the function returns
* <code>ARM_MATH_SINGULAR</code>. Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.
*/
arm_status arm_mat_inverse_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn = pSrc->pData; /* input data matrix pointer */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
float32_t *pInT3, *pInT4; /* Temporary output data matrix pointer */
float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
#ifndef ARM_MATH_CM0_FAMILY
float32_t maxC; /* maximum value in the column */
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|| (pSrc->numRows != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*--------------------------------------------------------------------------------------------------------------
* Matrix Inverse can be solved using elementary row operations.
*
* Gauss-Jordan Method:
*
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
* augmented matrix as follows:
* _ _ _ _
* | a11 a12 | 1 0 | | X11 X12 |
* | | | = | |
* |_ a21 a22 | 0 1 _| |_ X21 X21 _|
*
* 2. In our implementation, pDst Matrix is used as identity matrix.
*
* 3. Begin with the first row. Let i = 1.
*
* 4. Check to see if the pivot for column i is the greatest of the column.
* The pivot is the element of the main diagonal that is on the current row.
* For instance, if working with row i, then the pivot element is aii.
* If the pivot is not the most significant of the coluimns, exchange that row with a row
* below it that does contain the most significant value in column i. If the most
* significant value of the column is zero, then an inverse to that matrix does not exist.
* The most significant value of the column is the absolut maximum.
*
* 5. Divide every element of row i by the pivot.
*
* 6. For every row below and row i, replace that row with the sum of that row and
* a multiple of row i so that each new element in column i below row i is zero.
*
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
* for every element below and above the main diagonal.
*
* 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
* Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
*----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pInT2 = pOut;
/* Loop over the number of rows */
rowCnt = numRows;
/* Making the destination matrix as identity matrix */
while(rowCnt > 0u)
{
/* Writing all zeroes in lower triangle of the destination matrix */
j = numRows - rowCnt;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
*pInT2++ = 1.0f;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1u;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Decrement the loop counter */
rowCnt--;
}
/* Loop over the number of columns of the input matrix.
All the elements in each column are processed by the row operations */
loopCnt = numCols;
/* Index modifier to navigate through the columns */
l = 0u;
while(loopCnt > 0u)
{
/* Check if the pivot element is zero..
* If it is zero then interchange the row with non zero row below.
* If there is no non zero element to replace in the rows below,
* then the matrix is Singular. */
/* Working pointer for the input matrix that points
* to the pivot element of the particular row */
pInT1 = pIn + (l * numCols);
/* Working pointer for the destination matrix that points
* to the pivot element of the particular row */
pInT3 = pOut + (l * numCols);
/* Temporary variable to hold the pivot value */
in = *pInT1;
/* Destination pointer modifier */
k = 1u;
/* Grab the most significant value from column l */
maxC = 0;
for (i = 0; i < numRows; i++)
{
maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
pInT1 += numCols;
}
/* Update the status if the matrix is singular */
if(maxC == 0.0f)
{
status = ARM_MATH_SINGULAR;
break;
}
/* Restore pInT1 */
pInT1 -= numRows * numCols;
/* Check if the pivot element is the most significant of the column */
if( (in > 0.0f ? in : -in) != maxC)
{
/* Loop over the number rows present below */
i = numRows - (l + 1u);
while(i > 0u)
{
/* Update the input and destination pointers */
pInT2 = pInT1 + (numCols * l);
pInT4 = pInT3 + (numCols * k);
/* Look for the most significant element to
* replace in the rows below */
if((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
{
/* Loop over number of columns
* to the right of the pilot element */
j = numCols - l;
while(j > 0u)
{
/* Exchange the row elements of the input matrix */
Xchg = *pInT2;
*pInT2++ = *pInT1;
*pInT1++ = Xchg;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = numCols;
while(j > 0u)
{
/* Exchange the row elements of the destination matrix */
Xchg = *pInT4;
*pInT4++ = *pInT3;
*pInT3++ = Xchg;
/* Decrement the loop counter */
j--;
}
/* Flag to indicate whether exchange is done or not */
flag = 1u;
/* Break after exchange is done */
break;
}
/* Update the destination pointer modifier */
k++;
/* Decrement the loop counter */
i--;
}
}
/* Update the status if the matrix is singular */
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
break;
}
/* Points to the pivot row of input and destination matrices */
pPivotRowIn = pIn + (l * numCols);
pPivotRowDst = pOut + (l * numCols);
/* Temporary pointers to the pivot row pointers */
pInT1 = pPivotRowIn;
pInT2 = pPivotRowDst;
/* Pivot element of the row */
in = *pPivotRowIn;
/* Loop over number of columns
* to the right of the pilot element */
j = (numCols - l);
while(j > 0u)
{
/* Divide each element of the row of the input matrix
* by the pivot element */
in1 = *pInT1;
*pInT1++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = numCols;
while(j > 0u)
{
/* Divide each element of the row of the destination matrix
* by the pivot element */
in1 = *pInT2;
*pInT2++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Replace the rows with the sum of that row and a multiple of row i
* so that each new element in column i above row i is zero.*/
/* Temporary pointers for input and destination matrices */
pInT1 = pIn;
pInT2 = pOut;
/* index used to check for pivot element */
i = 0u;
/* Loop over number of rows */
/* to be replaced by the sum of that row and a multiple of row i */
k = numRows;
while(k > 0u)
{
/* Check for the pivot element */
if(i == l)
{
/* If the processing element is the pivot element,
only the columns to the right are to be processed */
pInT1 += numCols - l;
pInT2 += numCols;
}
else
{
/* Element of the reference row */
in = *pInT1;
/* Working pointers for input and destination pivot rows */
pPRT_in = pPivotRowIn;
pPRT_pDst = pPivotRowDst;
/* Loop over the number of columns to the right of the pivot element,
to replace the elements in the input matrix */
j = (numCols - l);
while(j > 0u)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pInT1;
*pInT1++ = in1 - (in * *pPRT_in++);
/* Decrement the loop counter */
j--;
}
/* Loop over the number of columns to
replace the elements in the destination matrix */
j = numCols;
while(j > 0u)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pInT2;
*pInT2++ = in1 - (in * *pPRT_pDst++);
/* Decrement the loop counter */
j--;
}
}
/* Increment the temporary input pointer */
pInT1 = pInT1 + l;
/* Decrement the loop counter */
k--;
/* Increment the pivot index */
i++;
}
/* Increment the input pointer */
pIn++;
/* Decrement the loop counter */
loopCnt--;
/* Increment the index modifier */
l++;
}
#else
/* Run the below code for Cortex-M0 */
float32_t Xchg, in = 0.0f; /* Temporary input values */
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|| (pSrc->numRows != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*--------------------------------------------------------------------------------------------------------------
* Matrix Inverse can be solved using elementary row operations.
*
* Gauss-Jordan Method:
*
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
* augmented matrix as follows:
* _ _ _ _ _ _ _ _
* | | a11 a12 | | | 1 0 | | | X11 X12 |
* | | | | | | | = | |
* |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
*
* 2. In our implementation, pDst Matrix is used as identity matrix.
*
* 3. Begin with the first row. Let i = 1.
*
* 4. Check to see if the pivot for row i is zero.
* The pivot is the element of the main diagonal that is on the current row.
* For instance, if working with row i, then the pivot element is aii.
* If the pivot is zero, exchange that row with a row below it that does not
* contain a zero in column i. If this is not possible, then an inverse
* to that matrix does not exist.
*
* 5. Divide every element of row i by the pivot.
*
* 6. For every row below and row i, replace that row with the sum of that row and
* a multiple of row i so that each new element in column i below row i is zero.
*
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
* for every element below and above the main diagonal.
*
* 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
* Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
*----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pInT2 = pOut;
/* Loop over the number of rows */
rowCnt = numRows;
/* Making the destination matrix as identity matrix */
while(rowCnt > 0u)
{
/* Writing all zeroes in lower triangle of the destination matrix */
j = numRows - rowCnt;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
*pInT2++ = 1.0f;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1u;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Decrement the loop counter */
rowCnt--;
}
/* Loop over the number of columns of the input matrix.
All the elements in each column are processed by the row operations */
loopCnt = numCols;
/* Index modifier to navigate through the columns */
l = 0u;
//for(loopCnt = 0u; loopCnt < numCols; loopCnt++)
while(loopCnt > 0u)
{
/* Check if the pivot element is zero..
* If it is zero then interchange the row with non zero row below.
* If there is no non zero element to replace in the rows below,
* then the matrix is Singular. */
/* Working pointer for the input matrix that points
* to the pivot element of the particular row */
pInT1 = pIn + (l * numCols);
/* Working pointer for the destination matrix that points
* to the pivot element of the particular row */
pInT3 = pOut + (l * numCols);
/* Temporary variable to hold the pivot value */
in = *pInT1;
/* Destination pointer modifier */
k = 1u;
/* Check if the pivot element is zero */
if(*pInT1 == 0.0f)
{
/* Loop over the number rows present below */
for (i = (l + 1u); i < numRows; i++)
{
/* Update the input and destination pointers */
pInT2 = pInT1 + (numCols * l);
pInT4 = pInT3 + (numCols * k);
/* Check if there is a non zero pivot element to
* replace in the rows below */
if(*pInT2 != 0.0f)
{
/* Loop over number of columns
* to the right of the pilot element */
for (j = 0u; j < (numCols - l); j++)
{
/* Exchange the row elements of the input matrix */
Xchg = *pInT2;
*pInT2++ = *pInT1;
*pInT1++ = Xchg;
}
for (j = 0u; j < numCols; j++)
{
Xchg = *pInT4;
*pInT4++ = *pInT3;
*pInT3++ = Xchg;
}
/* Flag to indicate whether exchange is done or not */
flag = 1u;
/* Break after exchange is done */
break;
}
/* Update the destination pointer modifier */
k++;
}
}
/* Update the status if the matrix is singular */
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
break;
}
/* Points to the pivot row of input and destination matrices */
pPivotRowIn = pIn + (l * numCols);
pPivotRowDst = pOut + (l * numCols);
/* Temporary pointers to the pivot row pointers */
pInT1 = pPivotRowIn;
pInT2 = pPivotRowDst;
/* Pivot element of the row */
in = *(pIn + (l * numCols));
/* Loop over number of columns
* to the right of the pilot element */
for (j = 0u; j < (numCols - l); j++)
{
/* Divide each element of the row of the input matrix
* by the pivot element */
*pInT1 = *pInT1 / in;
pInT1++;
}
for (j = 0u; j < numCols; j++)
{
/* Divide each element of the row of the destination matrix
* by the pivot element */
*pInT2 = *pInT2 / in;
pInT2++;
}
/* Replace the rows with the sum of that row and a multiple of row i
* so that each new element in column i above row i is zero.*/
/* Temporary pointers for input and destination matrices */
pInT1 = pIn;
pInT2 = pOut;
for (i = 0u; i < numRows; i++)
{
/* Check for the pivot element */
if(i == l)
{
/* If the processing element is the pivot element,
only the columns to the right are to be processed */
pInT1 += numCols - l;
pInT2 += numCols;
}
else
{
/* Element of the reference row */
in = *pInT1;
/* Working pointers for input and destination pivot rows */
pPRT_in = pPivotRowIn;
pPRT_pDst = pPivotRowDst;
/* Loop over the number of columns to the right of the pivot element,
to replace the elements in the input matrix */
for (j = 0u; j < (numCols - l); j++)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
*pInT1 = *pInT1 - (in * *pPRT_in++);
pInT1++;
}
/* Loop over the number of columns to
replace the elements in the destination matrix */
for (j = 0u; j < numCols; j++)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
*pInT2 = *pInT2 - (in * *pPRT_pDst++);
pInT2++;
}
}
/* Increment the temporary input pointer */
pInT1 = pInT1 + l;
}
/* Increment the input pointer */
pIn++;
/* Decrement the loop counter */
loopCnt--;
/* Increment the index modifier */
l++;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
}
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixInv group
*/

View file

@ -0,0 +1,286 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_f32.c
*
* Description: Floating-point matrix multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixMult Matrix Multiplication
*
* Multiplies two matrices.
*
* \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
* Matrix multiplication is only defined if the number of columns of the
* first matrix equals the number of rows of the second matrix.
* Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
* in an <code>M x P</code> matrix.
* When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
* <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
* matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Floating-point matrix multiplication.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *px; /* Temporary output data matrix pointer */
float32_t sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4;
uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0u;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0.0f;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pIn1 = pInA;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
colCnt = numColsA >> 2u;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
in3 = *pIn2;
pIn2 += numColsB;
in1 = pIn1[0];
in2 = pIn1[1];
sum += in1 * in3;
in4 = *pIn2;
pIn2 += numColsB;
sum += in2 * in4;
in3 = *pIn2;
pIn2 += numColsB;
in1 = pIn1[2];
in2 = pIn1[3];
sum += in1 * in3;
in4 = *pIn2;
pIn2 += numColsB;
sum += in2 * in4;
pIn1 += 4u;
/* Decrement the loop count */
colCnt--;
}
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
sum += *pIn1++ * (*pIn2);
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Store the result in the destination buffer */
*px++ = sum;
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = pSrcB->pData + j;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
#else
/* Run the below code for Cortex-M0 */
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pInA with each column in pInB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0.0f;
/* Initialize the pointer pIn1 to point to the starting address of the row being processed */
pIn1 = pInA;
/* Matrix A columns number of MAC operations are to be performed */
colCnt = numColsA;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
sum += *pIn1++ * (*pIn2);
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Store the result in the destination buffer */
*px++ = sum;
/* Decrement the column loop counter */
col--;
/* Update the pointer pIn2 to point to the starting address of the next column */
pIn2 = pInB + (numColsB - col);
} while(col > 0u);
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/

View file

@ -0,0 +1,369 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_fast_q15.c
*
* Description: Q15 matrix multiplication (fast variant)
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @param[in] *pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The difference between the function arm_mat_mult_q15() and this fast variant is that
* the fast variant use a 32-bit rather than a 64-bit accumulator.
* The result of each 1.15 x 1.15 multiplication is truncated to
* 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
* format. Finally, the accumulator is saturated and converted to a 1.15 result.
*
* \par
* The fast version has the same overflow behavior as the standard version but provides
* less precision since it discards the low 16 bits of each multiplication result.
* In order to avoid overflows completely the input signals must be scaled down.
* Scale down one of the input matrices by log2(numColsA) bits to
* avoid overflows, as a total of numColsA additions are computed internally for each
* output element.
*
* \par
* See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
* which uses 64-bit accumulation to provide higher precision.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState)
{
q31_t sum; /* accumulator */
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifndef UNALIGNED_SUPPORT_DISABLE
q31_t in; /* Temporary variable to hold the input value */
q31_t inA1, inA2, inB1, inB2;
#else
q15_t in; /* Temporary variable to hold the input value */
q15_t inA1, inA2, inB1, inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Matrix transpose */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
col = numColsB >> 2;
/* The pointer px is set to starting address of the column being processed */
px = pSrcBT + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(col > 0u)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Decrement the column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4u;
while(col > 0u)
{
/* Read and store the input element in the destination */
*px = *pInB++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Decrement the column loop counter */
col--;
}
i++;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Reset the variables for the usage in the following multiplication process */
row = numRowsA;
i = 0u;
px = pDst->pData;
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the transposed pSrcB data */
pInB = pSrcBT;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Apply loop unrolling and compute 2 MACs simultaneously. */
colCnt = numColsA >> 2;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pInA = pSrcA->pData + i;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
#ifndef UNALIGNED_SUPPORT_DISABLE
inA1 = *__SIMD32(pInA)++;
inB1 = *__SIMD32(pInB)++;
inA2 = *__SIMD32(pInA)++;
inB2 = *__SIMD32(pInB)++;
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
#else
inA1 = *pInA++;
inB1 = *pInB++;
inA2 = *pInA++;
sum += inA1 * inB1;
inB2 = *pInB++;
inA1 = *pInA++;
inB1 = *pInB++;
sum += inA2 * inB2;
inA2 = *pInA++;
inB2 = *pInB++;
sum += inA1 * inB1;
sum += inA2 * inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the loop counter */
colCnt--;
}
/* process odd column samples */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
sum += (q31_t) (*pInA++) * (*pInB++);
colCnt--;
}
/* Saturate and store the result in the destination buffer */
*px = (q15_t) (sum >> 15);
px++;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
i = i + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/

View file

@ -0,0 +1,226 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_fast_q31.c
*
* Description: Q31 matrix multiplication (fast variant).
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The difference between the function arm_mat_mult_q31() and this fast variant is that
* the fast variant use a 32-bit rather than a 64-bit accumulator.
* The result of each 1.31 x 1.31 multiplication is truncated to
* 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
* format. Finally, the accumulator is saturated and converted to a 1.31 result.
*
* \par
* The fast version has the same overflow behavior as the standard version but provides
* less precision since it discards the low 32 bits of each multiplication result.
* In order to avoid overflows completely the input signals must be scaled down.
* Scale down one of the input matrices by log2(numColsA) bits to
* avoid overflows, as a total of numColsA additions are computed internally for each
* output element.
*
* \par
* See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
* which uses 64-bit accumulation to provide higher precision.
*/
arm_status arm_mat_mult_fast_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
// q31_t *pSrcB = pSrcB->pData; /* input data matrix pointer B */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
q31_t *px; /* Temporary output data matrix pointer */
q31_t sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
q31_t inA1, inA2, inA3, inA4, inB1, inB2, inB3, inB4;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0u;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Initiate the pointer pIn1 to point to the starting address of pInA */
pIn1 = pInA;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
colCnt = numColsA >> 2;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
inB1 = *pIn2;
pIn2 += numColsB;
inA1 = pIn1[0];
inA2 = pIn1[1];
inB2 = *pIn2;
pIn2 += numColsB;
inB3 = *pIn2;
pIn2 += numColsB;
sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA1 * inB1)) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA2 * inB2)) >> 32);
inA3 = pIn1[2];
inA4 = pIn1[3];
inB4 = *pIn2;
pIn2 += numColsB;
sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA3 * inB3)) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA4 * inB4)) >> 32);
pIn1 += 4u;
/* Decrement the loop counter */
colCnt--;
}
/* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * pIn1++ * (*pIn2))) >> 32);
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Convert the result from 2.30 to 1.31 format and store in destination buffer */
*px++ = sum << 1;
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = pSrcB->pData + j;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/

View file

@ -0,0 +1,469 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_q15.c
*
* Description: Q15 matrix multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Q15 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @param[in] *pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using a 64-bit internal accumulator. The inputs to the
* multiplications are in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate
* results are accumulated in a 64-bit accumulator in 34.30 format. This approach
* provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
* truncated to 34.15 format by discarding the low 15 bits and then saturated to
* 1.15 format.
*
* \par
* Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
*
*/
arm_status arm_mat_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState CMSIS_UNUSED)
{
q63_t sum; /* accumulator */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifndef UNALIGNED_SUPPORT_DISABLE
q31_t in; /* Temporary variable to hold the input value */
q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
#else
q15_t in; /* Temporary variable to hold the input value */
q15_t inA1, inB1, inA2, inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
col = numColsB >> 2;
/* The pointer px is set to starting address of the column being processed */
px = pSrcBT + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(col > 0u)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
#else
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4u;
while(col > 0u)
{
/* Read and store the input element in the destination */
*px = *pInB++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Decrement the column loop counter */
col--;
}
i++;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Reset the variables for the usage in the following multiplication process */
row = numRowsA;
i = 0u;
px = pDst->pData;
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the transposed pSrcB data */
pInB = pSrcBT;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Apply loop unrolling and compute 2 MACs simultaneously. */
colCnt = numColsA >> 2;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pInA = pSrcA->pData + i;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
#ifndef UNALIGNED_SUPPORT_DISABLE
/* read real and imag values from pSrcA and pSrcB buffer */
pSourceA1 = *__SIMD32(pInA)++;
pSourceB1 = *__SIMD32(pInB)++;
pSourceA2 = *__SIMD32(pInA)++;
pSourceB2 = *__SIMD32(pInB)++;
/* Multiply and Accumlates */
sum = __SMLALD(pSourceA1, pSourceB1, sum);
sum = __SMLALD(pSourceA2, pSourceB2, sum);
#else
/* read real and imag values from pSrcA and pSrcB buffer */
inA1 = *pInA++;
inB1 = *pInB++;
inA2 = *pInA++;
/* Multiply and Accumlates */
sum += inA1 * inB1;
inB2 = *pInB++;
inA1 = *pInA++;
inB1 = *pInB++;
/* Multiply and Accumlates */
sum += inA2 * inB2;
inA2 = *pInA++;
inB2 = *pInB++;
/* Multiply and Accumlates */
sum += inA1 * inB1;
sum += inA2 * inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the loop counter */
colCnt--;
}
/* process remaining column samples */
colCnt = numColsA & 3u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
sum += *pInA++ * *pInB++;
/* Decrement the loop counter */
colCnt--;
}
/* Saturate and store the result in the destination buffer */
*px = (q15_t) (__SSAT((sum >> 15), 16));
px++;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
i = i + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
#else
/* Run the below code for Cortex-M0 */
q15_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
q15_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Initiate the pointer pIn1 to point to the starting address of pSrcA */
pIn1 = pInA;
/* Matrix A columns number of MAC operations are to be performed */
colCnt = numColsA;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
sum += (q31_t) * pIn1++ * *pIn2;
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
/* Saturate and store the result in the destination buffer */
*px++ = (q15_t) __SSAT((sum >> 15), 16);
/* Decrement the column loop counter */
col--;
/* Update the pointer pIn2 to point to the starting address of the next column */
pIn2 = pInB + (numColsB - col);
} while(col > 0u);
/* Update the pointer pSrcA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/

View file

@ -0,0 +1,294 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_q31.c
*
* Description: Q31 matrix multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Q31 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate
* multiplication results but provides only a single guard bit. There is no saturation
* on intermediate additions. Thus, if the accumulator overflows it wraps around and
* distorts the result. The input signals should be scaled down to avoid intermediate
* overflows. The input is thus scaled down by log2(numColsA) bits
* to avoid overflows, as a total of numColsA additions are performed internally.
* The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
*
* \par
* See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
*
*/
arm_status arm_mat_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
q31_t *px; /* Temporary output data matrix pointer */
q63_t sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
q31_t a0, a1, a2, a3, b0, b1, b2, b3;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0u;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Initiate the pointer pIn1 to point to the starting address of pInA */
pIn1 = pInA;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
colCnt = numColsA >> 2;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
b0 = *pIn2;
pIn2 += numColsB;
a0 = *pIn1++;
a1 = *pIn1++;
b1 = *pIn2;
pIn2 += numColsB;
b2 = *pIn2;
pIn2 += numColsB;
sum += (q63_t) a0 *b0;
sum += (q63_t) a1 *b1;
a2 = *pIn1++;
a3 = *pIn1++;
b3 = *pIn2;
pIn2 += numColsB;
sum += (q63_t) a2 *b2;
sum += (q63_t) a3 *b3;
/* Decrement the loop counter */
colCnt--;
}
/* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
sum += (q63_t) * pIn1++ * *pIn2;
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Convert the result from 2.62 to 1.31 format and store in destination buffer */
*px++ = (q31_t) (sum >> 31);
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = (pSrcB->pData) + j;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
#else
/* Run the below code for Cortex-M0 */
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Initiate the pointer pIn1 to point to the starting address of pInA */
pIn1 = pInA;
/* Matrix A columns number of MAC operations are to be performed */
colCnt = numColsA;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
/* Perform the multiply-accumulates */
sum += (q63_t) * pIn1++ * *pIn2;
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Convert the result from 2.62 to 1.31 format and store in destination buffer */
*px++ = (q31_t) (sum >> 31);
/* Decrement the column loop counter */
col--;
/* Update the pointer pIn2 to point to the starting address of the next column */
pIn2 = pInB + (numColsB - col);
} while(col > 0u);
#endif
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/

View file

@ -0,0 +1,181 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_scale_f32.c
*
* Description: Multiplies a floating-point matrix by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixScale Matrix Scale
*
* Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the
* matrix by the scalar. For example:
* \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"
*
* The function checks to make sure that the input and output matrices are of the same size.
*
* In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
* The shift allows the gain of the scaling operation to exceed 1.0.
* The overall scale factor applied to the fixed-point data is
* <pre>
* scale = scaleFract * 2^shift.
* </pre>
*/
/**
* @addtogroup MatrixScale
* @{
*/
/**
* @brief Floating-point matrix scaling.
* @param[in] *pSrc points to input matrix structure
* @param[in] scale scale factor to be applied
* @param[out] *pDst points to output matrix structure
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
*/
arm_status arm_mat_scale_f32(
const arm_matrix_instance_f32 * pSrc,
float32_t scale,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn = pSrc->pData; /* input data matrix pointer */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix scaling */
#ifndef ARM_MATH_CM0_FAMILY
float32_t in1, in2, in3, in4; /* temporary variables */
float32_t out1, out2, out3, out4; /* temporary variables */
#endif // #ifndef ARM_MATH_CM0_FAMILY
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * scale */
/* Scaling and results are stored in the destination buffer. */
in1 = pIn[0];
in2 = pIn[1];
in3 = pIn[2];
in4 = pIn[3];
out1 = in1 * scale;
out2 = in2 * scale;
out3 = in3 * scale;
out4 = in4 * scale;
pOut[0] = out1;
pOut[1] = out2;
pOut[2] = out3;
pOut[3] = out4;
/* update pointers to process next sampels */
pIn += 4u;
pOut += 4u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * scale */
/* The results are stored in the destination buffer. */
*pOut++ = (*pIn++) * scale;
/* Decrement the loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixScale group
*/

View file

@ -0,0 +1,183 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_scale_q15.c
*
* Description: Multiplies a Q15 matrix by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixScale
* @{
*/
/**
* @brief Q15 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst)
{
q15_t *pIn = pSrc->pData; /* input data matrix pointer */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
int32_t totShift = 15 - shift; /* total shift to apply after scaling */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix scaling */
#ifndef ARM_MATH_CM0_FAMILY
q15_t in1, in2, in3, in4;
q31_t out1, out2, out3, out4;
q31_t inA1, inA2;
#endif // #ifndef ARM_MATH_CM0_FAMILY
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch */
if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif // #ifdef ARM_MATH_MATRIX_CHECK
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
/* Reading 2 inputs from memory */
inA1 = _SIMD32_OFFSET(pIn);
inA2 = _SIMD32_OFFSET(pIn + 2);
/* C = A * scale */
/* Scale the inputs and then store the 2 results in the destination buffer
* in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) inA1 * scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) inA2 * scaleFract);
out1 = out1 >> totShift;
inA1 = _SIMD32_OFFSET(pIn + 4);
out2 = out2 >> totShift;
inA2 = _SIMD32_OFFSET(pIn + 6);
out3 = out3 >> totShift;
out4 = out4 >> totShift;
in1 = (q15_t) (__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16));
_SIMD32_OFFSET(pOut) = __PKHBT(in2, in1, 16);
_SIMD32_OFFSET(pOut + 2) = __PKHBT(in4, in3, 16);
/* update pointers to process next sampels */
pIn += 4u;
pOut += 4u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
*pOut++ =
(q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> totShift, 16));
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixScale group
*/

View file

@ -0,0 +1,202 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_scale_q31.c
*
* Description: Multiplies a Q31 matrix by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------ */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixScale
* @{
*/
/**
* @brief Q31 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
arm_status arm_mat_scale_q31(
const arm_matrix_instance_q31 * pSrc,
q31_t scaleFract,
int32_t shift,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn = pSrc->pData; /* input data matrix pointer */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
int32_t totShift = shift + 1; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix scaling */
q31_t in1, in2, out1; /* temporary variabels */
#ifndef ARM_MATH_CM0_FAMILY
q31_t in3, in4, out2, out3, out4; /* temporary variables */
#endif // #ifndef ARM_MAT_CM0
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch */
if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif // #ifdef ARM_MATH_MATRIX_CHECK
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * k */
/* Read values from input */
in1 = *pIn;
in2 = *(pIn + 1);
in3 = *(pIn + 2);
in4 = *(pIn + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 << totShift;
out2 = in2 << totShift;
/* saturate the results. */
if(in1 != (out1 >> totShift))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> totShift))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
out3 = in3 << totShift;
out4 = in4 << totShift;
*pOut = out1;
*(pOut + 1) = out2;
if(in3 != (out3 >> totShift))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> totShift))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
*(pOut + 2) = out3;
*(pOut + 3) = out4;
/* update pointers to process next sampels */
pIn += 4u;
pOut += 4u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
in1 = *pIn++;
in2 = ((q63_t) in1 * scaleFract) >> 32;
out1 = in2 << totShift;
if(in2 != (out1 >> totShift))
out1 = 0x7FFFFFFF ^ (in2 >> 31);
*pOut++ = out1;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixScale group
*/

View file

@ -0,0 +1,209 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_sub_f32.c
*
* Description: Floating-point matrix subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixSub Matrix Subtraction
*
* Subtract two matrices.
* \image html MatrixSubtraction.gif "Subraction of two 3 x 3 matrices"
*
* The functions check to make sure that
* <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
* number of rows and columns.
*/
/**
* @addtogroup MatrixSub
* @{
*/
/**
* @brief Floating-point matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
#ifndef ARM_MATH_CM0_FAMILY
float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */
#endif // #ifndef ARM_MATH_CM0_FAMILY
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix subtraction */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract and then store the results in the destination buffer. */
/* Read values from source A */
inA1 = pIn1[0];
/* Read values from source B */
inB1 = pIn2[0];
/* Read values from source A */
inA2 = pIn1[1];
/* out = sourceA - sourceB */
out1 = inA1 - inB1;
/* Read values from source B */
inB2 = pIn2[1];
/* Read values from source A */
inA1 = pIn1[2];
/* out = sourceA - sourceB */
out2 = inA2 - inB2;
/* Read values from source B */
inB1 = pIn2[2];
/* Store result in destination */
pOut[0] = out1;
pOut[1] = out2;
/* Read values from source A */
inA2 = pIn1[3];
/* Read values from source B */
inB2 = pIn2[3];
/* out = sourceA - sourceB */
out1 = inA1 - inB1;
/* out = sourceA - sourceB */
out2 = inA2 - inB2;
/* Store result in destination */
pOut[2] = out1;
/* Store result in destination */
pOut[3] = out2;
/* update pointers to process next sampels */
pIn1 += 4u;
pIn2 += 4u;
pOut += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract and then store the results in the destination buffer. */
*pOut++ = (*pIn1++) - (*pIn2++);
/* Decrement the loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixSub group
*/

View file

@ -0,0 +1,160 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_sub_q15.c
*
* Description: Q15 Matrix subtraction
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixSub
* @{
*/
/**
* @brief Q15 matrix subtraction.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
arm_status arm_mat_sub_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst)
{
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix subtraction */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Apply loop unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract, Saturate and then store the results in the destination buffer. */
*__SIMD32(pOut)++ = __QSUB16(*__SIMD32(pInA)++, *__SIMD32(pInB)++);
*__SIMD32(pOut)++ = __QSUB16(*__SIMD32(pInA)++, *__SIMD32(pInB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract and then store the results in the destination buffer. */
*pOut++ = (q15_t) __QSUB16(*pInA++, *pInB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract and then store the results in the destination buffer. */
*pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixSub group
*/

View file

@ -0,0 +1,208 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_sub_q31.c
*
* Description: Q31 matrix subtraction
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixSub
* @{
*/
/**
* @brief Q31 matrix subtraction.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
arm_status arm_mat_sub_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
q31_t inA1, inB1; /* temporary variables */
#ifndef ARM_MATH_CM0_FAMILY
q31_t inA2, inB2; /* temporary variables */
q31_t out1, out2; /* temporary variables */
#endif // #ifndef ARM_MATH_CM0_FAMILY
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix subtraction */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numRows != pSrcB->numRows) ||
(pSrcA->numCols != pSrcB->numCols) ||
(pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract, saturate and then store the results in the destination buffer. */
/* Read values from source A */
inA1 = pIn1[0];
/* Read values from source B */
inB1 = pIn2[0];
/* Read values from source A */
inA2 = pIn1[1];
/* Subtract and saturate */
out1 = __QSUB(inA1, inB1);
/* Read values from source B */
inB2 = pIn2[1];
/* Read values from source A */
inA1 = pIn1[2];
/* Subtract and saturate */
out2 = __QSUB(inA2, inB2);
/* Read values from source B */
inB1 = pIn2[2];
/* Store result in destination */
pOut[0] = out1;
pOut[1] = out2;
/* Read values from source A */
inA2 = pIn1[3];
/* Read values from source B */
inB2 = pIn2[3];
/* Subtract and saturate */
out1 = __QSUB(inA1, inB1);
/* Subtract and saturate */
out2 = __QSUB(inA2, inB2);
/* Store result in destination */
pOut[2] = out1;
pOut[3] = out2;
/* update pointers to process next samples */
pIn1 += 4u;
pIn2 += 4u;
pOut += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C(m,n) = A(m,n) - B(m,n) */
/* Subtract, saturate and then store the results in the destination buffer. */
inA1 = *pIn1++;
inB1 = *pIn2++;
inA1 = __QSUB(inA1, inB1);
*pOut++ = inA1;
/* Decrement the loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixSub group
*/

View file

@ -0,0 +1,218 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_trans_f32.c
*
* Description: Floating-point matrix transpose.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @defgroup MatrixTrans Matrix Transpose
*
* Tranposes a matrix.
* Transposing an <code>M x N</code> matrix flips it around the center diagonal and results in an <code>N x M</code> matrix.
* \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix"
*/
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixTrans
* @{
*/
/**
* @brief Floating-point matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn = pSrc->pData; /* input data matrix pointer */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *px; /* Temporary output data matrix pointer */
uint16_t nRows = pSrc->numRows; /* number of rows */
uint16_t nColumns = pSrc->numCols; /* number of columns */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint16_t blkCnt, i = 0u, row = nRows; /* loop counters */
arm_status status; /* status of matrix transpose */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* Loop Unrolling */
blkCnt = nColumns >> 2;
/* The pointer px is set to starting address of the column being processed */
px = pOut + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u) /* column loop */
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
blkCnt--;
}
/* Perform matrix transpose for last 3 samples here. */
blkCnt = nColumns % 0x4u;
while(blkCnt > 0u)
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
uint16_t col, i = 0u, row = nRows; /* loop counters */
arm_status status; /* status of matrix transpose */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* The pointer px is set to starting address of the column being processed */
px = pOut + i;
/* Initialize column loop counter */
col = nColumns;
while(col > 0u)
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
col--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
i++;
/* Decrement the row loop counter */
row--;
} while(row > 0u); /* row loop end */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixTrans group
*/

View file

@ -0,0 +1,284 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_trans_q15.c
*
* Description: Q15 matrix transpose.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixTrans
* @{
*/
/*
* @brief Q15 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q15(
const arm_matrix_instance_q15 * pSrc,
arm_matrix_instance_q15 * pDst)
{
q15_t *pSrcA = pSrc->pData; /* input data matrix pointer */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint16_t nRows = pSrc->numRows; /* number of nRows */
uint16_t nColumns = pSrc->numCols; /* number of nColumns */
uint16_t col, row = nRows, i = 0u; /* row and column loop counters */
arm_status status; /* status of matrix transpose */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
#ifndef UNALIGNED_SUPPORT_DISABLE
q31_t in; /* variable to hold temporary output */
#else
q15_t in;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
col = nColumns >> 2u;
/* The pointer pOut is set to starting address of the column being processed */
pOut = pDst->pData + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(col > 0u)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Read two elements from the row */
in = *__SIMD32(pSrcA)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*pOut = (q15_t) in;
#else
*pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer pOut to point to the next row of the transposed matrix */
pOut += nRows;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*pOut = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer pOut to point to the next row of the transposed matrix */
pOut += nRows;
/* Read two elements from the row */
#ifndef ARM_MATH_BIG_ENDIAN
in = *__SIMD32(pSrcA)++;
#else
in = *__SIMD32(pSrcA)++;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*pOut = (q15_t) in;
#else
*pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer pOut to point to the next row of the transposed matrix */
pOut += nRows;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*pOut = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else
/* Read one element from the row */
in = *pSrcA++;
/* Store one element in the destination */
*pOut = in;
/* Update the pointer px to point to the next row of the transposed matrix */
pOut += nRows;
/* Read one element from the row */
in = *pSrcA++;
/* Store one element in the destination */
*pOut = in;
/* Update the pointer px to point to the next row of the transposed matrix */
pOut += nRows;
/* Read one element from the row */
in = *pSrcA++;
/* Store one element in the destination */
*pOut = in;
/* Update the pointer px to point to the next row of the transposed matrix */
pOut += nRows;
/* Read one element from the row */
in = *pSrcA++;
/* Store one element in the destination */
*pOut = in;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Update the pointer pOut to point to the next row of the transposed matrix */
pOut += nRows;
/* Decrement the column loop counter */
col--;
}
/* Perform matrix transpose for last 3 samples here. */
col = nColumns % 0x4u;
#else
/* Run the below code for Cortex-M0 */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* The pointer pOut is set to starting address of the column being processed */
pOut = pDst->pData + i;
/* Initialize column loop counter */
col = nColumns;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(col > 0u)
{
/* Read and store the input element in the destination */
*pOut = *pSrcA++;
/* Update the pointer pOut to point to the next row of the transposed matrix */
pOut += nRows;
/* Decrement the column loop counter */
col--;
}
i++;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixTrans group
*/

View file

@ -0,0 +1,210 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_trans_q31.c
*
* Description: Q31 matrix transpose.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixTrans
* @{
*/
/*
* @brief Q31 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q31(
const arm_matrix_instance_q31 * pSrc,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn = pSrc->pData; /* input data matrix pointer */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
q31_t *px; /* Temporary output data matrix pointer */
uint16_t nRows = pSrc->numRows; /* number of nRows */
uint16_t nColumns = pSrc->numCols; /* number of nColumns */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint16_t blkCnt, i = 0u, row = nRows; /* loop counters */
arm_status status; /* status of matrix transpose */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
blkCnt = nColumns >> 2u;
/* The pointer px is set to starting address of the column being processed */
px = pOut + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
blkCnt--;
}
/* Perform matrix transpose for last 3 samples here. */
blkCnt = nColumns % 0x4u;
while(blkCnt > 0u)
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
uint16_t col, i = 0u, row = nRows; /* loop counters */
arm_status status; /* status of matrix transpose */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose by exchanging the rows with columns */
/* row loop */
do
{
/* The pointer px is set to starting address of the column being processed */
px = pOut + i;
/* Initialize column loop counter */
col = nColumns;
while(col > 0u)
{
/* Read and store the input element in the destination */
*px = *pIn++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += nRows;
/* Decrement the column loop counter */
col--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
i++;
/* Decrement the row loop counter */
row--;
}
while(row > 0u); /* row loop end */
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixTrans group
*/