1
0
Fork 0

Squashed 'tmk_core/' changes from 7967731..b9e0ea0

b9e0ea0 Merge commit '7fa9d8bdea3773d1195b04d98fcf27cf48ddd81d' as 'tool/mbed/mbed-sdk'
7fa9d8b Squashed 'tool/mbed/mbed-sdk/' content from commit 7c21ce5

git-subtree-dir: tmk_core
git-subtree-split: b9e0ea08cb940de20b3610ecdda18e9d8cd7c552
This commit is contained in:
Jun Wako 2015-04-24 16:26:14 +09:00
parent a20ef7052c
commit 1fe4406f37
4198 changed files with 2016457 additions and 0 deletions

View file

@ -0,0 +1,290 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_cos_f32.c
*
* Description: Fast cosine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup cos Cosine
*
* Computes the trigonometric cosine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
* value of 2*pi wraps around to 0.
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* <b>Example code for Generation of Cos Table:</b>
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 2); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
*/
static const float32_t cosTable[260] = {
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000061f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000184f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f
};
/**
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
* @param[in] x input value in radians.
* @return cos(x).
*/
float32_t arm_cos_f32(
float32_t x)
{
float32_t cosVal, fract, in;
int32_t index;
uint32_t tableSize = (uint32_t) TABLE_SIZE;
float32_t wa, wb, wc, wd;
float32_t a, b, c, d;
float32_t *tablePtr;
int32_t n;
float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
float32_t oneminusfractby2;
float32_t frby2xfrsq, frby6xfrsq;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (float32_t *) & cosTable[index];
/* Read four nearest values of input value from the cos table */
a = tablePtr[0];
b = tablePtr[1];
c = tablePtr[2];
d = tablePtr[3];
/* Cubic interpolation process */
fractsq = fract * fract;
fractby2 = fract * 0.5f;
fractby6 = fract * 0.166666667f;
fractby3 = fract * 0.3333333333333f;
fractsqby2 = fractsq * 0.5f;
frby2xfrsq = (fractby2) * fractsq;
frby6xfrsq = (fractby6) * fractsq;
oneminusfractby2 = 1.0f - fractby2;
wb = fractsqby2 - fractby3;
wc = (fractsqby2 + fract);
wa = wb - frby6xfrsq;
wb = frby2xfrsq - fractsq;
cosVal = wa * a;
wc = wc - frby2xfrsq;
wd = (frby6xfrsq) - fractby6;
wb = wb + oneminusfractby2;
/* Calculate cos value */
cosVal = (cosVal + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (cosVal);
}
/**
* @} end of cos group
*/

View file

@ -0,0 +1,214 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_cos_q15.c
*
* Description: Fast cosine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table values are in Q15 (1.15 fixed-point format) and generation is done in
* three steps. First, generate cos values in floating point:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q15 (fixed-point):
* (cosTable[i] * pow(2, 15))
* \par
* Finally, round to the nearest integer value:
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t cosTableQ15[259] = {
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian
* value in the range [0 2*pi).
*/
q15_t arm_cos_q15(
q15_t x)
{
q31_t cosVal; /* Temporary variable for output */
q15_t *tablePtr; /* Pointer to table */
q15_t in, in2; /* Temporary variables for input */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fract, fractCube, fractSquare; /* Variables for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q15_t *) & cosTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a * wa */
cosVal = a * wa;
/* Calculation of wb */
wb = (((fractCube >> 1u) - fractSquare) - (fract >> 1u)) + 0x7FFF;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal += d * wd;
/* Convert output value in 1.15(q15) format and saturate */
cosVal = __SSAT((cosVal >> 15), 16);
/* Return the output value in 1.15(q15) format */
return ((q15_t) cosVal);
}
/**
* @} end of cos group
*/

View file

@ -0,0 +1,249 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_cos_q31.c
*
* Description: Fast cosine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table values are in Q31 (1.31 fixed-point format) and generation is done in
* three steps. First, generate cos values in floating point:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q31 (Fixed point):
* (cosTable[i] * pow(2, 31))
* \par
* Finally, round to the nearest integer value:
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t cosTableQ31[259] = {
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian
* value in the range [0 2*pi).
*/
q31_t arm_cos_q31(
q31_t x)
{
q31_t cosVal, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = in / tableSpacing;
/* Calculate the nearest value of input */
in2 = ((q31_t) index) * tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q31_t *) & cosTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a*wa */
cosVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) b * (wb))) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest values of output value from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) c * (wc))) >> 32);
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) d * (wd))) >> 32);
/* convert cosVal in 2.30 format to 1.31 format */
return (__QADD(cosVal, cosVal));
}
/**
* @} end of cos group
*/

View file

@ -0,0 +1,291 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sin_f32.c
*
* Description: Fast sine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup sin Sine
*
* Computes the trigonometric sine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
* value of 2*pi wraps around to 0.
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for the generation of the floating-point sine table:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* }</pre>
* \par
* where pi value is 3.14159265358979
*/
static const float32_t sinTable[259] = {
-0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
};
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
* @param[in] x input value in radians.
* @return sin(x).
*/
float32_t arm_sin_f32(
float32_t x)
{
float32_t sinVal, fract, in; /* Temporary variables for input, output */
int32_t index; /* Index variable */
uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */
float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
float32_t a, b, c, d; /* Four nearest output values */
float32_t *tablePtr; /* Pointer to table */
int32_t n;
float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
float32_t oneminusfractby2;
float32_t frby2xfrsq, frby6xfrsq;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (float32_t *) & sinTable[index];
/* Read four nearest values of input value from the sin table */
a = tablePtr[0];
b = tablePtr[1];
c = tablePtr[2];
d = tablePtr[3];
/* Cubic interpolation process */
fractsq = fract * fract;
fractby2 = fract * 0.5f;
fractby6 = fract * 0.166666667f;
fractby3 = fract * 0.3333333333333f;
fractsqby2 = fractsq * 0.5f;
frby2xfrsq = (fractby2) * fractsq;
frby6xfrsq = (fractby6) * fractsq;
oneminusfractby2 = 1.0f - fractby2;
wb = fractsqby2 - fractby3;
wc = (fractsqby2 + fract);
wa = wb - frby6xfrsq;
wb = frby2xfrsq - fractsq;
sinVal = wa * a;
wc = wc - frby2xfrsq;
wd = (frby6xfrsq) - fractby6;
wb = wb + oneminusfractby2;
/* Calculate sin value */
sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (sinVal);
}
/**
* @} end of sin group
*/

View file

@ -0,0 +1,216 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sin_q15.c
*
* Description: Fast sine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Table values are in Q15 (1.15 fixed-point format) and generation is done in
* three steps. First, generate sin values in floating point:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q15 (fixed-point):
* (sinTable[i] * pow(2, 15))
* \par
* Finally, round to the nearest integer value:
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t sinTableQ15[259] = {
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324
};
/**
* @brief Fast approximation to the trigonometric sine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi).
*/
q15_t arm_sin_q15(
q15_t x)
{
q31_t sinVal; /* Temporary variables output */
q15_t *tablePtr; /* Pointer to table */
q15_t fract, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fractCube, fractSquare; /* Temporary values for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) ((index) * tableSpacing);
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q15_t *) & sinTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += ((q31_t) fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a * wa */
sinVal = a * wa;
/* Calculation of wb */
wb = (((q31_t) fractCube >> 1u) - (q31_t) fractSquare) -
(((q31_t) fract >> 1u) - 0x7FFF);
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal += d * wd;
/* Convert output value in 1.15(q15) format and saturate */
sinVal = __SSAT((sinVal >> 15), 16);
/* Return the output value in 1.15(q15) format */
return ((q15_t) sinVal);
}
/**
* @} end of sin group
*/

View file

@ -0,0 +1,248 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sin_q31.c
*
* Description: Fast sine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Table values are in Q31 (1.31 fixed-point format) and generation is done in
* three steps. First, generate sin values in floating point:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q31 (Fixed point):
* (sinTable[i] * pow(2, 31))
* \par
* Finally, round to the nearest integer value:
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t sinTableQ31[259] = {
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf
};
/**
* @brief Fast approximation to the trigonometric sine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi). */
q31_t arm_sin_q31(
q31_t x)
{
q31_t sinVal, in, in2; /* Temporary variables for input, output */
int32_t index; /* Index variables */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
in = x;
/* Calculate the nearest index */
index = (uint32_t) in / (uint32_t) tableSpacing;
/* Calculate the nearest value of input */
in2 = (q31_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q31_t *) & sinTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a*wa */
sinVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + (q63_t) b * (wb)) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) c * wc)) >> 32);
/* Calculation of wd */
/* wd = (oneBy6) * fractCube - (oneBy6) * fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) d * wd)) >> 32);
/* convert sinVal in 2.30 format to 1.31 format */
return (__QADD(sinVal, sinVal));
}
/**
* @} end of sin group
*/

View file

@ -0,0 +1,155 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q15.c
*
* Description: Q15 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q15 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if the input value is positive
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For
* negative inputs, the function returns *pOut = 0.
*/
arm_status arm_sqrt_q15(
q15_t in,
q15_t * pOut)
{
q15_t number, temp1, var1, signBits1, half;
q31_t bits_val1;
float32_t temp_float1;
union
{
q31_t fracval;
float32_t floatval;
} tempconv;
number = in;
/* If the input is a positive number then compute the signBits. */
if(number > 0)
{
signBits1 = __CLZ(number) - 17;
/* Shift by the number of signBits1 */
if((signBits1 % 2) == 0)
{
number = number << signBits1;
}
else
{
number = number << (signBits1 - 1);
}
/* Calculate half value of the number */
half = number >> 1;
/* Store the number for later use */
temp1 = number;
/*Convert to float */
temp_float1 = number * 3.051757812500000e-005f;
/*Store as integer */
tempconv.floatval = temp_float1;
bits_val1 = tempconv.fracval;
/* Subtract the shifted value from the magic number to give intial guess */
bits_val1 = 0x5f3759df - (bits_val1 >> 1); // gives initial guess
/* Store as float */
tempconv.fracval = bits_val1;
temp_float1 = tempconv.floatval;
/* Convert to integer format */
var1 = (q31_t) (temp_float1 * 16384);
/* 1st iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* 2nd iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* 3rd iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* Multiply the inverse square root with the original value */
var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1;
/* Shift the output down accordingly */
if((signBits1 % 2) == 0)
{
var1 = var1 >> (signBits1 / 2);
}
else
{
var1 = var1 >> ((signBits1 - 1) / 2);
}
*pOut = var1;
return (ARM_MATH_SUCCESS);
}
/* If the number is a negative number then store zero as its square root value */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/

View file

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q31.c
*
* Description: Q31 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q31 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if the input value is positive
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For
* negative inputs, the function returns *pOut = 0.
*/
arm_status arm_sqrt_q31(
q31_t in,
q31_t * pOut)
{
q31_t number, temp1, bits_val1, var1, signBits1, half;
float32_t temp_float1;
union
{
q31_t fracval;
float32_t floatval;
} tempconv;
number = in;
/* If the input is a positive number then compute the signBits. */
if(number > 0)
{
signBits1 = __CLZ(number) - 1;
/* Shift by the number of signBits1 */
if((signBits1 % 2) == 0)
{
number = number << signBits1;
}
else
{
number = number << (signBits1 - 1);
}
/* Calculate half value of the number */
half = number >> 1;
/* Store the number for later use */
temp1 = number;
/*Convert to float */
temp_float1 = number * 4.6566128731e-010f;
/*Store as integer */
tempconv.floatval = temp_float1;
bits_val1 = tempconv.fracval;
/* Subtract the shifted value from the magic number to give intial guess */
bits_val1 = 0x5f3759df - (bits_val1 >> 1); // gives initial guess
/* Store as float */
tempconv.fracval = bits_val1;
temp_float1 = tempconv.floatval;
/* Convert to integer format */
var1 = (q31_t) (temp_float1 * 1073741824);
/* 1st iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* 2nd iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* 3rd iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* Multiply the inverse square root with the original value */
var1 = ((q31_t) (((q63_t) temp1 * var1) >> 31)) << 1;
/* Shift the output down accordingly */
if((signBits1 % 2) == 0)
{
var1 = var1 >> (signBits1 / 2);
}
else
{
var1 = var1 >> ((signBits1 - 1) / 2);
}
*pOut = var1;
return (ARM_MATH_SUCCESS);
}
/* If the number is a negative number then store zero as its square root value */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/