1
0
Fork 0

Convert ergodone to use core mcp23018 driver (#17005)

This commit is contained in:
Joel Challis 2022-05-31 03:08:56 +01:00 committed by GitHub
parent 2879573688
commit 0e11b511e4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 652 additions and 788 deletions

View file

@ -1,161 +1,76 @@
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
// Copyright 2022 QMK
// SPDX-License-Identifier: GPL-2.0-or-later
#include "gpio.h"
#include "matrix.h"
#include "ergodone.h"
#include "expander.h"
#include "mcp23018.h"
#include "util.h"
#include "wait.h"
#include "debug.h"
/*
* This constant define not debouncing time in msecs, but amount of matrix
* scan loops which should be made to get stable debounced results.
*
* On Ergodox matrix scan rate is relatively low, because of slow I2C.
* Now it's only 317 scans/second, or about 3.15 msec/scan.
* According to Cherry specs, debouncing time is 5 msec.
*
* And so, there is no sense to have DEBOUNCE higher than 2.
*/
#define I2C_ADDR 0x20
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
static uint8_t mcp23018_errors = 0;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
// Debouncing: store for each key the number of scans until it's eligible to
// change. When scanning the matrix, ignore any changes in keys that have
// already changed in the last DEBOUNCE scans.
static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS];
static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
static void expander_init(void) {
mcp23018_init(I2C_ADDR);
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
static void expander_init_cols(void) {
mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTA, ALL_INPUT);
mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTB, ALL_INPUT);
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
debounce_matrix[i * MATRIX_COLS + j] = 0;
static void expander_select_row(uint8_t row) {
if (mcp23018_errors) {
// wait to mimic i2c interactions
wait_us(100);
return;
}
}
matrix_init_quantum();
mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTB, ~(1 << (row + 1)));
}
void matrix_power_up(void) {
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
static void expander_unselect_row(uint8_t row) {
// No need to unselect row as the next `select_row` will blank everything anyway
}
// Returns a matrix_row_t whose bits are set if the corresponding key should be
// eligible to change in this scan.
matrix_row_t debounce_mask(uint8_t row) {
matrix_row_t result = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
if (debounce_matrix[row * MATRIX_COLS + j]) {
--debounce_matrix[row * MATRIX_COLS + j];
} else {
result |= (1 << j);
static void expander_unselect_rows(void) {
if (mcp23018_errors) {
return;
}
}
return result;
mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTB, ALL_INPUT);
}
// Report changed keys in the given row. Resets the debounce countdowns
// corresponding to each set bit in 'change' to DEBOUNCE.
void debounce_report(matrix_row_t change, uint8_t row) {
for (uint8_t i = 0; i < MATRIX_COLS; ++i) {
if (change & (1 << i)) {
debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE;
static matrix_row_t expander_read_row(void) {
if (mcp23018_errors) {
return 0;
}
}
uint8_t ret = 0xFF;
mcp23018_errors += !mcp23018_readPins(I2C_ADDR, mcp23018_PORTA, &ret);
ret = bitrev(~ret);
ret = ((ret & 0b11111000) >> 1) | (ret & 0b00000011);
return ((uint16_t)ret) << 7;
}
uint8_t matrix_scan(void)
{
expander_scan();
static void expander_scan(void) {
if (!mcp23018_errors) {
return;
}
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
wait_us(30); // without this wait read unstable value.
matrix_row_t mask = debounce_mask(i);
matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask);
debounce_report(cols ^ matrix[i], i);
matrix[i] = cols;
unselect_rows();
}
matrix_scan_quantum();
return 1;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_bin_reverse16(matrix_get_row(row));
print("\n");
}
static uint16_t mcp23018_reset_loop = 0;
if (++mcp23018_reset_loop > 0x1FFF) {
// tuned to about 5s given the current scan rate
dprintf("trying to reset mcp23018\n");
mcp23018_reset_loop = 0;
mcp23018_errors = 0;
expander_unselect_rows();
expander_init_cols();
}
}
/* Column pin configuration
@ -165,32 +80,31 @@ void matrix_print(void)
*
* Expander: 13 12 11 10 9 8 7
*/
static void init_cols(void)
{
// Pro Micro
DDRE &= ~(1<<PE6);
PORTE |= (1<<PE6);
DDRD &= ~(1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7);
PORTD |= (1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7);
DDRC &= ~(1<<PC6);
PORTC |= (1<<PC6);
DDRB &= ~(1<<PB4);
PORTB |= (1<<PB4);
static void init_cols(void) {
// Pro Micro
setPinInputHigh(E6);
setPinInputHigh(D2);
setPinInputHigh(D3);
setPinInputHigh(D4);
setPinInputHigh(D7);
setPinInputHigh(C6);
setPinInputHigh(B4);
// MCP23017
expander_init();
// Expander
expander_init_cols();
}
static matrix_row_t read_cols(uint8_t row)
{
return expander_read_row() |
(PIND&(1<<PD3) ? 0 : (1<<6)) |
(PIND&(1<<PD2) ? 0 : (1<<5)) |
(PIND&(1<<PD4) ? 0 : (1<<4)) |
(PINC&(1<<PC6) ? 0 : (1<<3)) |
(PIND&(1<<PD7) ? 0 : (1<<2)) |
(PINE&(1<<PE6) ? 0 : (1<<1)) |
(PINB&(1<<PB4) ? 0 : (1<<0)) ;
static matrix_row_t read_cols(void) {
// clang-format off
return expander_read_row() |
(readPin(D3) ? 0 : (1<<6)) |
(readPin(D2) ? 0 : (1<<5)) |
(readPin(D4) ? 0 : (1<<4)) |
(readPin(C6) ? 0 : (1<<3)) |
(readPin(D7) ? 0 : (1<<2)) |
(readPin(E6) ? 0 : (1<<1)) |
(readPin(B4) ? 0 : (1<<0)) ;
// clang-format on
}
/* Row pin configuration
@ -200,48 +114,122 @@ static matrix_row_t read_cols(uint8_t row)
*
* Expander: 0 1 2 3 4 5
*/
static void unselect_rows(void)
{
// Pro Micro
DDRF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7);
PORTF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7);
DDRB &= ~(1<<PB1 | 1<<PB2);
PORTB &= ~(1<<PB1 | 1<<PB2);
static void unselect_rows(void) {
// Pro Micro
setPinInput(B1);
setPinInput(B2);
setPinInput(F4);
setPinInput(F5);
setPinInput(F6);
setPinInput(F7);
writePinLow(B1);
writePinLow(B2);
writePinLow(F4);
writePinLow(F5);
writePinLow(F6);
writePinLow(F7);
// Expander
expander_unselect_rows();
// Expander
expander_unselect_rows();
}
static void select_row(uint8_t row)
{
// Pro Micro
switch (row) {
case 0:
DDRF |= (1<<PF4);
PORTF &= ~(1<<PF4);
break;
case 1:
DDRF |= (1<<PF5);
PORTF &= ~(1<<PF5);
break;
case 2:
DDRF |= (1<<PF6);
PORTF &= ~(1<<PF6);
break;
case 3:
DDRF |= (1<<PF7);
PORTF &= ~(1<<PF7);
break;
case 4:
DDRB |= (1<<PB1);
PORTB &= ~(1<<PB1);
break;
case 5:
DDRB |= (1<<PB2);
PORTB &= ~(1<<PB2);
break;
}
static void unselect_row(uint8_t row) {
// Pro Micro
switch (row) {
case 0:
setPinInput(F4);
writePinLow(F4);
break;
case 1:
setPinInput(F5);
writePinLow(F5);
break;
case 2:
setPinInput(F6);
writePinLow(F6);
break;
case 3:
setPinInput(F7);
writePinLow(F7);
break;
case 4:
setPinInput(B1);
writePinLow(B1);
break;
case 5:
setPinInput(B2);
writePinLow(B2);
break;
}
expander_select_row(row);
// Expander
expander_unselect_row(row);
}
static void select_row(uint8_t row) {
// Pro Micro
switch (row) {
case 0:
setPinOutput(F4);
writePinLow(F4);
break;
case 1:
setPinOutput(F5);
writePinLow(F5);
break;
case 2:
setPinOutput(F6);
writePinLow(F6);
break;
case 3:
setPinOutput(F7);
writePinLow(F7);
break;
case 4:
setPinOutput(B1);
writePinLow(B1);
break;
case 5:
setPinOutput(B2);
writePinLow(B2);
break;
}
// Expander
expander_select_row(row);
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selection to stabilize
select_row(current_row);
// Skip the wait_us(30); as i2c is slow enough to debounce the io changes
current_matrix[current_row] = read_cols();
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
void matrix_init_custom(void) {
expander_init();
unselect_rows();
init_cols();
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
expander_scan();
bool changed = false;
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
changed |= read_cols_on_row(current_matrix, current_row);
}
return changed;
}